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Abstract: The ruthenium carbonyl compounds, Ru(bpy)(CO)2X2 (X = Cl, Br or I) act as neutral
halogen bond (XB) acceptors when co-crystallized with 1,4-diiodotetrafluoro-benzene (DITFB). The
halogen bonding strength of the Ru-X···I halogen bonds follow the nucleophilic character of the
halido ligand. The strongest halogen bond occurs between the chlorido ligand and the iodide atoms
of the DITFB. All three halogen bonded complexes form polymeric assemblies in the solid state.
In Ru(bpy)(CO)2Cl2·DITFB (1) and in Ru(bpy)(CO)2Br2·DITFB (2) both halido ligands are halogen
bonded to only one DITFB donor. In Ru(bpy)(CO)2I2·DITFB (3) only one of the halido ligands is
involved in halogen bonding acting as ditopic center for two DITFB donors. The polymeric structures
of 1 and 2 are isomorphic wave-like single chain systems, while the iodine complexes form pairs
of linear chains attached together with weak F···O≡C interactions between the closest neighbors.
The stronger polarization of the iodide ligand compared to the Cl or Br ligands favors nearly linear
C-I···I angles between the XB donor and the metal complex supporting the linear arrangement of the
halogen bonded chain.
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1. Introduction

Halogen bond (XB) has found to be a useful tool in crystal engineering in recent years due to its
strength and directional preferences [1–6]. A molecular entity with electrophilic region on a halogen
atom is defined as XB donor, while an entity with nucleophilic region, i.e., Lewis base, is defined as
an XB acceptor [7]. The strength and the directionality of halogen bond are well explained by σ-hole
theory and by the nature of the elements attached to the halogen atoms [8–20]. Typical XB acceptors
include covalently bonded nitrogen or sulfur atoms but also electron donors such as oxygen, selenium,
and silicon are known to act as XB acceptors [21–24]. Even metal centers in square planar and linear
metal compounds have shown XB acceptor properties [25–27]. Metal coordinated electron donor
ligands provide another group of potential XB acceptors [28–36]. Especially metal halides are quite
commonly used as XB acceptors. Even if coordination to a metal center is not usually enough to
generate strong σ-hole on a halido ligand, the electron density around a coordinated halogen atom,
X, is polarized [28,31]. This means that the M-X···X angle in a halogen bonded M-X···X-R system
is typically ranging between 90◦ and 150◦, depending on the nature of the metal center [13,30,31].
By using bidentate halogen bond donors, such as I2, it is possible to link metal complexes together
to form non-covalent metallopolymers [14,30,31,37–47]. However, I2 is not necessarily the most
desirable linking unit due to its redox behavior and its impact on the metal complex [45,47]. When the
interaction between the metal coordinated halogen atom and the I2 donor remains mainly electrostatic,
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symmetrical bridges between the metal centers can be obtained. However, when the charge transfer
and electron sharing, i.e., covalency, between the halogen atoms are increased, the electron distribution
in the linking I2 may change. This, in turn, may hamper the formation of symmetrical bridges and
nature of the contacts between the linking unit and the metal complexes [31]. From this point of
view, other XB donors, such as fluorinated iodobenzenes, behave more predictably as linkers in XB
complexes and are, therefore, more reliable bridging units. In general, the motivation in building
halogen bonded extended metal complex systems arises from the possibilities to modify the redox,
magnetic, photophysical and optical properties of the complexes extended by halogen bonds [4,6,29,48].

Previously, we studied crystal structures and the nature of XBs in I2 linked assemblies of
[Ru(bpy)(CO)2X2] (X = Cl, Br, I) compounds (Figure 1) [31]. Since the I2 linkers XB properties are
dependent on the nature of the halogen bond contacts, here, we used another potentially bridging XB
donor, i.e., tetrafluorodiiodobenzene (DITFB, Figure 1) as the linker for [Ru(bpy)(CO)2X2] molecules
(X = Cl, Br, I). The goal was to further investigate the extended assemblies that can be obtained through
XB by using organometallic [Ru(bpy)(CO)2X2] molecules as XB acceptors.
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Figure 1. The schematic structures of Ru(bpy)(CO)2X2 (X = Cl, Br, I) and 1,4-diiodotetrafluorobenzene
(DITFB).

2. Materials and Methods

2.1. Materials

All reagents and solvents were obtained from commercial sources and were used as received.
The syntheses and crystal structures of the parent metal compounds [Ru(bpy)(CO)2X2] (X = Cl, Br, I)
have been reported in the literature [49,50]. All co-crystallizations were optimized only for obtaining
high-quality single crystals, not for obtaining maximum yields.

2.2. Syntheses of co-crystals 1–3

[Ru(bpy)(CO)2Cl2]·DITFB (1). The light-yellow crystals were obtained by dissolving 5 mg of the
metal complex and 10.5 mg of DITFB in CH2Cl2 solvent. The crystallization was carried out at room
temperature by slow evaporation of the solvent. The X-ray quality crystals were harvested in two days.

[Ru(bpy)(CO)2Br2]·DITFB (2). The yellowish green crystals were obtained by dissolving 5 mg of
the metal complex and 8.5 mg of DITFB in CH2Cl2 solvent. The crystallization was carried out at room
temperature by slow evaporation of the solvent. The X-ray quality crystals were harvested in a week.

[Ru(bpy)(CO)2I2]·DITFB (3). The bright orange crystals were obtained by dissolving 5 mg of the
metal complex and 7.1 mg of DITFB in CH2Cl2 solvent. The crystallization was carried out at room
temperature by slow evaporation of the solvent. The X-ray quality crystals were harvested in a week.

2.3. X-ray Structure Determination

The crystals of 1–3 were measured at 120 K on a Rigaku Oxford Diffraction Supernova diffractometer
(Oxford Diffraction, Woodlands, Tex, USA) (1), or on a Bruker Kappa Apex II diffractometer (Bruker
Nonius, Delft, The Netherlands) (2,3) using Mo Kα (λ = 0.71073 Å) radiation. The CrysAlisPro [51]
or Apex2 [52] program packages were used for cell refinements and data reductions. Multi-scan
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absorption corrections based on equivalent reflections (CrysAlisPro, Apex2, Yarnton, Oxfordshire,
England) were applied to the intensities before structure solutions. The structures were solved by the
charge flipping method using the SUPERFLIP [53] software or by the intrinsic phasing method using
SHELXT (v. 2014/5) [54]. All structures were refined by using SHELXL program [54]. Both structures 1
and 2 contained voids with heavily disordered and partially lost solvent of crystallization. A series of
crystals were analyzed, and the residual electron density was found to vary from crystal to crystal
indicating a variable amount of solvent in different crystals. Therefore, the final structural models of
1 and 2 were refined without the solvent molecules, and the contribution of the missing solvent to
the calculated structure factors were taken into account by using the SQUEEZE routine of PLATON(v.
141217) [55]. Since the amount of solvent could not be determined accurately, the missing solvent
molecules were not taken into account in the unit cell content. The hydrogen atoms were positioned
geometrically and constrained to ride on their parent atoms, with C-H = 0.95 Å and Uiso = 1.2·Ueq

(parent atom). The crystallographic details are summarized in Table 1.
CCDC 1820788–1820790 contain the crystallographic data for 1–3, respectively. These data can

be obtained free of charge via http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi, or from the Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223 336 033; or
e-mail: deposit@ccdc.cam.ac.uk.

Table 1. Crystal Data.

1 2 3

Formulas
C18H8Cl2F4I2N2O2Ru

[+ solvent]
[+ solvent]

C18H8Br2F4I2N2O2Ru
[+ solvent] C18H8F4I4N2O2Ru

Fw 786.03 * 874.95 * 968.93
temp (K) 120(2) 120(2) 120(2)
λ(Å) 0.71073 0.71073 0.71073

Crystal system Monoclinic Monoclinic Orthorhombic
space group C2/c C2/c Pnma

a (Å) 11.9736(7) 12.2824(4) 8.3320(3)
b (Å) 29.8725(13) 30.3634(11) 14.0070(5)
c (Å) 6.7654(3) 6.8630(2) 20.6378(7)
β (◦) 96.925(5) 100.444(2) 90

V (Å3) 2402.2(2) 2517.05(14) 2408.56(15)
Z 4 4 4

ρcalc (Mg/m3) 2.173 2.309 2.672
µ(Kα) (mm−1) 3.493 6.297 5.826

No. reflns. 18821 12583 26750
θ Range (◦) 3.326–32.783 2.626–29.145 2.636–29.258

Unique reflns. 4175 3387 3384
GOOF (F2) 1.064 1.147 1.152

Rint 0.0498 0.0292 0.0505
R1 a (I ≥ 2σ) 0.0359 0.0281 0.0360

wR2 b (I ≥ 2σ) 0.0761 0.0586 0.0795
a R1 = Σ||Fo| – |Fc||/Σ|Fo|. b wR2 = [Σ[w(Fo

2 – Fc
2)2]/ Σ[w(Fo

2)2]]1/2. * Fw without solvent of crystallization.

3. Results and Discussion

3.1. Strength of the Halogen Bonds

The relative strength of halogen bonds can be estimated by the commonly used concept of the
halogen bond interaction ratio, RXB, (sometimes also called as normalized interaction distance). It is
defined as RXB = dXB/(Xvdw + Bvdw), where dXB [Å] is the distance between the donor atom (X) and
the acceptor atoms (B), divided by the sum of vdW radii [Å] of X and B, and the XB donor···acceptor
(XB···A) [56–58]. Smaller values indicate stronger XB interactions. Small differences in RXB values do

http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi
deposit@ccdc.cam.ac.uk
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not reflect differences in the overall structures. For example, structure 1 and 2 are isomorphous even if
there is a small difference (2%) in the RXB values. Although the correlation between the crystal/overall
structure and the XBs and their strength is not always straightforward, structural analysis provides
a fast way to compare halogen bonds 116–125. The key structural parameters of the halogen bonds
between the ruthenium coordinated halido ligand and the iodine of the DITFB XB donor in the three
structures [Ru(bpy)(CO)2Cl2]·DITFB (1), [Ru(bpy)(CO)2Br2]·DITFB (2) and [Ru(bpy)(CO)2I2]·DITFB (3)
are summarized in Table 2.

Table 2. Halogen bonds in 1–3 and in the [Ru(bpy)(CO)2X2]·I2 XB complexes from Reference [31].

Compound Ru-X···I (Å) C-I···X (◦) M-X···I (◦) RXB

1 3.1790(8) 170.60(9) 114.94(3) 0.85
2 3.3191(4) 171.34(10) 112.108(14) 0.87
3 3.5301(3) 177.66(13) 96.672(9) 0.89

Ref. [31] Ru-X···I (Å) I-I···X (◦) M-X···I (◦) RXB

Cl···I2 3.0421(3) 174.566(8) 115.76(1) 0.82
Br···I2 3.2938(4) 170.28(1) 101.3(1) 0.86
Br···I2 3.3627(3) 173.80(1) 102.27(1) 0.88
Br···I2 3.2381(3) 175.405(9) 101.66(1) 0.85
Br···I2 3.3001(3) 174.164(9) 102.57(1) 0.86
I···I2 3.1984(2) 177.941(7) 97.91(1) 0.81
I···I2 3.7984(3) 152.083(6) 104.26(1) 0.96
I···I2 3.2553(13) 172.75(2) 97.81(2) 0.82
I···I2 3.4108(15) 166.50(2) 98.90(2) 0.86

3.2. Crystal Structures

Unlike in the case of I2 XB donor reported earlier [31], the diiodotetrafluorobenze acts as a
symmetrical XB donor bridging the Ru complexes in all three structures 1–3. In 1 and 2 the DITFB
molecules are located on an inversion center, while in 3 it is located on a mirror plane. Similarly, the Ru
atoms in 1 and 2 are located on a two-fold rotation axis, while in 3 the ruthenium atom is on a mirror
plane. Due to the symmetry, the distances from both iodines of DITFB to the halido ligand of the metal
complex are equal in all cases. This is due to the fact that when one end of the DITFB molecule forms a
halogen bond, it does not change the behavior of the second iodine, which is possible in the case of I2

linker [31].
The extended structures of Ru(bpy)(CO)2Cl2]·DITFB (1) and Ru(bpy)(CO)2Br2]·DITFB (2) are

isomorphous zig-zag chains (Figure 2).
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Figure 2. Top: TELP drawing of 1. Thermal ellipsoids have been drawn at 50% probability level.
Middle: the polymeric zig-zag chain of 1. Bottom: Packing of 1 along the crystallographic c-axis.
The corresponding figures of the isomorphous structure 2 are given in the Supplementary Materials.
Symmetry transformations used to generate equivalent atoms: #1: −x + 1, y, −z + 3/2, #2: −x, −y + 1,
−z + 1.

The TELP and packing images of 2 are given in the supplementeray material. In both 1 and 2
the halido ligands of the metal complexes are involved in halogen bonding and the halogen-halogen
distances in both of these contacts are equal, as mentioned above. The M-Cl···I and M-Br···I contacts are
3.1790(8) Å and 3.3191(4) Å, respectively. The C-I···X angles are reasonably close to the linear contacts
in both structures being 170.60(9)◦ for 1 and 171.34(10)◦ for 2. Both Ru-Cl···I and Ru-Br···I angles
deviate quite clearly from the ideal 90◦ being 114.94(3)◦ and 112.108(14)◦ for 1 and 2, respectively. Such
a deviation indicates that the electron density around the halido ligands is redistributed, increasing the
electron density perpendicular to the Ru-X bond, but the effect is not particularly strong. In both 1 and
2, the aromatic DITFB donors are stacked with weak π–π interactions between the aromatic rings. The
shortest carbon–carbon distances between the neighboring DITFB molecules range from 3.178(5) Å to
3.358(5) Å for 1 and from 3.165(5) Å to 3.685(5) Å for 2. In both 1 and 2 there are apparent voids in the
structure (259 Å3 and 310 Å3, respectively). However, these voids are actually filled with disordered
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solvent molecules, which were omitted from the crystal structure via SQUEEZE procedure (see X-Ray
Structure Determination section).

The structure of 3 differs clearly from 1 and 2. Only one of the iodido ligands (I1) is involved in
halogen bonding. The I1 of the Ru-complex acts as a ditopic XB acceptor linking simultaneously two
DITFB donors (Figure 3).
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Figure 3. Top: TELP drawing of 3. Bottom: The chain of 3 with I···I halogen bonds and F···O contacts
(2.833(5) Å). Symmetry transformations used to generate equivalent atoms: #1: x, −y + 1/2, z, #2: x, −y
+ 3/2, z.

The C-I···I angle of 177.66(13)◦ in 3 is closer to 180◦ and Ru-I···I angle of 96.672(9)◦ closer to 90◦ than
the corresponding angles in 1 and 2. The Ru-I···I angle close to 90◦ is expected since the polarization of
the iodido ligand is likely to be more efficient than the polarization of chlorido or bromido ligands. Just
like in 1 and 2, all Ru-I···I halogen bond distances are also equal [3.5301(3) Å] in the structure 3. When
the geometric parameters of 1–3 are compared to the values found in iodine linked [Ru(bpy)(CO)2X2]·I2

system some differences can be observed. First of all, based on the interaction ratios (RXB) the order
of the XB strength in 1–3 is increased systematically, i.e., X = Cl > Br > I (Table 2). In all cases, the
RXB values were calculated by using Bondi van der Waals’ radii [59]. Johnson et al. have reported
the same order for the halogen-containing Pd pincer complexes with I2 donors [14]. However, in
[Ru(bpy)(CO)2X2]·I2 systems the order is less obvious. In these co-crystals the strength of the first
halogen–halogen interaction between the halido ligand and I2 have an impact on the XB donor strength
of the second I atom [31]. The order of the strongest interactions in the [Ru(bpy)(CO)2X2]·I2 series is
X = I > Cl > Br (see the Table 1). This is due to the increased electron sharing, i.e., covalency and charge
transfer in the case of [Ru(bpy)(CO)2I2]·I2. In the case of Cl and Br complexes, the halogen bonds are
more clearly electrostatic, and therefore the XB strength follows the same order as 2 and 3. In general,
the RXB values found in structures 1–3 are slightly greater than the values found in other systems
with halogen-containing ruthenium complexes and I2 donors. Mosquera et al. have studied a series
of [Ru(CNR)4X2]·I2 (X = Cl, Br, I) acceptors and their interactions with I2 [45,47]. In these structures
the M-X···I RXB value for X = Cl systems range between 0.78 and 0.85, for X = Br, RXB is 0.84 and for
X = I the RXB value range between 0.79 and 0.84. Again, the order of the XB strength in these systems
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is not so straightforward as in the case of 1–3. The RXB values in [Ru(dcbpy)(CO)2I2]·I2 complexes
are also somewhat smaller than in 3 with RXB = 0.79–0.82 [30] indicating again increased electron
sharing and covalency between the XB donor and acceptor in I2 donor systems. When structures
1–3 are compared with other, mainly electrostatic XB systems, such as trimethylplatinum(IV) iodide
with iodopentafluoro-benzene XB donor, the observed RXB values match well [60]. This can also be
seen if structures 1–3 are compared with the other metal complex adducts having DITFB as a halogen
bond donor. The RXB values are nearly equal even if the metal and other ligands around the metal are
different. For example, in PCPdX pincer complexes with DITFB donor the RXB values are 0.87 (X = Cl)
and 0.88 (X = Br), respectively [14]. The slightly larger values found in these systems may be due to the
steric hindrance reflected by the relatively wide M-X···I angle (131–143◦). In the sterically more relaxed
square planar cyclometallated [Pt(btpy)(PPh3)Cl]·DITFB complex the RXB value for the Pt-Cl···I is 0.86,
which is nearly the same value that can be found in structure 1 as well [29].

4. Conclusions

A series of [Ru(bpy)(CO)2X2]·DITFB (X = Cl, Br or I) halogen-bonded complexes were crystallized
and analyzed. The [Ru(bpy)(CO)2Cl2]·DITFB and [Ru(bpy)(CO)2Br2]·DITFB complexes form
isomorphous polymeric zig-zag chains where the 1,4-diiodotetrafluoro-benzenes (DITFB) act as
symmetrical halogen bonding bridges linking metal complexes together. Although halogen bonds
are relatively weak intermolecular interactions, they have a similar directional/directing role in
crystallization as hydrogen bonds. Both halido ligands of the metal complex are involved in halogen
bonding forming a single X···I contacts. The structure of [Ru(bpy)(CO)2I2]·DITFB differs from the
other two systems. Only one of the iodido ligands is involved in XB interactions as a ditopic acceptor
leading to a nearly linear polymeric chain of metal complexes. Furthermore, the neighboring chains
are linked together via weak F···O contacts. The strength of the halogen bonds M-X···I, estimated by
the halogen bond interaction ratio, RXB, follows the order of nucleophilicity of the halido ligands being
0.85, 0.87, and 0.89 for X = Cl, X = Br, and X = I, respectively. When the [Ru(bpy)(CO)2X2]·DITFB series
is compared with the corresponding series containing I2 as the bridging halogen bond donors, the main
differences arise from the behavior and nature of the XB donor. In the case of [Ru(bpy)(CO)2X2]·DITFB
the halogen bonds, formed by the two iodines of DITFB, are equal in all structures. This differs from
the behavior of the two ends of the I2 linker, where the second contact depend on the strength and
nature of the initial halogen bond. Almost solely electrostatically behaving DITFB provide thus a more
predictably behaving linker for XB-bonded assemblies of metal halides.

Supplementary Materials: The following materials are available online at http://www.mdpi.com/2073-4352/9/6/
319/s1, Figure S1: TELP drawing of structure 2; Figure S2: The polymeric zig-zag chains of 2; Figure S3: Packing of
2 along the crystallographic c-axis.
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