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Abstract: The excellent transmission characteristics of graphene surface plasmon polaritons in
mid-infrared band were analyzed and verified effectively through theoretical derivation and soft
simulation in this paper. Meanwhile, a sandwich waveguide structure of dielectric–graphene–
substrate–dielectric based on graphene surface plasmon polaritons (SPPs) was presented. Simulation
results indicate that graphene SPPs show unique properties in the mid-infrared region including
ultra-compact mode confinement and dynamic tunability, which allow these SPPs to overcome the
defects of metal SPPs and traditional silicon-based optoelectronic devices. Thus, they can be used to
manufacture subwavelength devices. The work in this paper lays a theoretical foundation for the
application of graphene SPPs in the mid-infrared region.
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1. Introduction

The development of the optoelectronics industry brought about by new emerging technologies
including silicon photonics, photonic crystals, and surface plasmon polaritons (SPPs) has
enabled optoelectronic devices to become more miniaturized, integrated, and multi-functional [1].
The miniaturization of optoelectronic devices is key to promoting the development of optoelectronic
devices for very large-scale integration. Graphene surface plasmon polaritons have become the focus
of current research because of their excellent properties and small footprint. Optical devices based
on graphene surface plasmon polaritons have the advantages of a higher bandwidth, lower loss,
and electric tunability [2,3].

Surface plasmon polaritons (SPPs) excited by resonance between incident photon and free electron
gas on a metal surface are widely used for light manipulation at the subwavelength scale [4–7]. Due to
their ability to break the fundamental diffraction limit and their ultra-compact mode confinement,
SPPs have can be used to fabricate micro–nano optoelectronic devices, which is beneficial to realizing
the miniaturization of optoelectronic integrated devices. In recent decades, the research on SPPs has
relied on noble metals represented by gold and silver [8]. Metal SPPs have been widely used in optics,
data storage, and photoelectron detection [9,10]. In contrast, plasmon resonances in metals suffer high
decoherence, which limits their applicability to optical processing devices. In this context, it is urgent
to search for better surface plasma materials to ensure a stronger constraint ability and smaller loss.

Graphene, a typical two-dimensional material, has attracted great attention and shows potential in
thin-film electronics [11,12]. Its high carrier mobility and atomic thickness make graphene promising
for applications in optoelectronic devices [13,14]. Recently, graphene has been recognized as an optical
material with novel optoelectronic applications and can be used to manufacture waveguides [15,16],
photodetectors, and light-emitting devices [17]. In addition, surface plasmons bound to the surface of
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graphene exhibit a number of favorable properties that make graphene SPPs an attractive alternative to
traditional metal SPPs [18–20]. Furthermore, the intrinsic graphene plasmons are refreshingly different
from plasmons in noble metals as they can be tuned by gating or doping [21,22]. So, it is very urgent to
study the application of graphene SPPs in photoelectric devices.

The mid-infrared band is a technologically important wave band, which has important applications
in different fields including spectroscopic sensing and environmental monitoring [23]. It was found that
graphene supports SPPs from the THz to mid-infrared band [24–26]. Graphene SPPs show excellent
properties simultaneously, including ultra-compact mode confinement, dynamic tunability, and lower
loss [19,27]. Therefore, graphene can be used as the realization platform for surface devices, which can
easily compress the wave in the mid-infrared band to subwavelength or even deep subwavelength sizes,
and it is the material that shows the most potential for the realization of very large-scale integration
(VLSI). Thus, it is of great value to study the performance of graphene SPPs in the mid-infrared
region [28–30]. The work in this paper lays a theoretical foundation for the application of graphene
SPPs in the mid-infrared band.

In this paper, a sandwich waveguide structure of dielectric–graphene–substrate–dielectric based
on graphene SPPs is presented. Firstly, the basic principle of graphene SPPs is given by theoretical
derivation. Then, the transmission characteristics of graphene SPPs in the mid-infrared band
are illustrated accurately with the analysis of software simulation results, confirming the unique
performance of graphene SPPs in the mid-infrared region. Using graphene SPPs, photoelectric devices
with a size less than 500 nm can be manufactured to realize subwavelength operation. Furthermore,
the properties of dynamic tunability and lower loss can effectively overcome the defects of metal SPPs
and traditional silicon-based optoelectronic devices.

2. Structure Design

Figure 1 illustrates the device layout, consisting of a dielectric–graphene–substrate–dielectric
structure. The dielectric constants of top and bottom dielectrics are ε1 and ε2, respectively. The dielectric
materials discussed in this paper are Si, SiO2, and BN. Here, the graphene–substrate structure is used
as a metal thin film between the top and bottom dielectrics (the substrate and bottom dielectric use
the same material). Si/SiO2 is the substrate of the entire device. The conductivity of graphene can be
regulated by changing the applied voltage (v), substrate thickness (d), and substrate material.
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3. Methods

The optical properties of graphene in the THz to mid-infrared region mainly depend on its carrier
concentration, carrier mobility, and other electrical properties. The carrier concentration of graphene
can be regulated by gating or doping. Graphene’s Fermi level can be expressed using the following
formula [31]:

µ = }v f
√
π · n0 = }v f

√
π
ε0εr

d · e
(v + v0) (1)

where h̄ = 1.055 × 10−34 J·s is the reduced Planck’s constant. vf = 1.1 × 106 m/s is the Fermi velocity. n0,
ε0, and εr are carrier concentration, dielectric constant in free space, and relative dielectric constant of
the substrate material, respectively. n0 = ε0εr(v + v0)/(d·e) and the relative dielectric constants (εr) of Si,
SiO2, and BN are 11.9, 2.25, and 7, respectively. d is the thickness of graphene substrate and v is the
voltage applied to graphene.
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4µ
π

1
}τ1 − i}w

, (2)

σ′inter = σ0(1 +
1
π

arctan
}w− 2µ
}τ2

−
1
π

arctan
}w + 2µ

}τ2
), (3)

σ′′inter = −σ0
1

2π
ln

(2µ+ }w)2 + }2τ2
2

(2µ− }w)2 + }2τ2
2

, (4)

σ = σintra + σ′inter + iσ′′inter. (5)

Graphene’s electrical conductivity can be obtained from Equations (2)–(5) [31,32]. Here, w is
the angular frequency of incident light. τ1 and τ2 are the in-band and inter-band relaxation times of
graphene, respectively. σ0 = πe2/2h. By solving Equations (1)–(5) simultaneously, the dependence of
the electrical conductivity on w and v can be obtained.

Figure 2 shows the relation between graphene’s electrical conductivity and incident wavelengths,
where the graphene substrate material is Si, v = 1 V, and d = 10 nm.
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where w is the angular frequency of incident light. dg is the thickness of single-layer graphene.
Graphene in the structure presented here can be seen as a layer current. Combining Maxwell

equations and the boundary conditions of Maxwell equations, the surface plasmon dispersion relation
in TM mode (no magnetic field component in the direction of propagation) can be expressed using
Equation (7):

ε1

k1
+
ε2

k2
+

iσ
wε0

= 0 (7)

where k1 and k2 are the longitudinal wave vectors of the SPPs’ wave in dielectric mediums of the top
and bottom layers, which meet the equation km

2 = β2
− εmk0

2, where m = 1, 2 and β is the propagation
constant of the SPPs. The real part of k1 and k2 can effectively indicate the attenuation of the wave
from the interface to the medium internal. When the top and bottom layers of graphene are the same
material, assuming ε1 = ε2 = ε, the dispersion relation of graphene can be simplified as in the following
equation:

β = k0

√
ε−

(
2ε
η0σ

)2

(8)

km =
√
β2 − εmk02 (9)

where η0 = 377 ohms is intrinsic wave impedance in free space. K0 is the propagation constant of an
electromagnetic wave in air. The propagation length of graphene SPPs (Lg) is defined as the distance at
which the electric field intensity attenuates to 1/e of the initial electric field intensity, which is mainly
dependent on the imaginary part of β and can be expressed as Lg = l / Im (β).

It can be seen from the above equations that the dispersion characteristics of graphene can be
regulated by changing the applied voltage, substrate thickness, and substrate material, so as to regulate
the transmission characteristics of graphene SPPs’ wave.

4. Results and Discussion

Figure 3 shows the transmission characteristics on incident wavelengths for different applied
voltages (1, 2, 3, 4, and 5 V), and the incident wave is in the mid-infrared region (2500–25,000 nm).
Here, Si is selected as the graphene substrate and dielectric material, and the substrate thickness is
10 nm. As shown in Figure 3, with the increase of the incident wavelength, the imaginary part of β
decreases and the transmission distance increases, revealing the reduction of transmission loss with
increasing wavelength. It can be seen in Figure 3 that the voltage applied to graphene has a great
influence on the transmission characteristics of SPPs, enabling the realization of voltage-tunable SPPs.
This is mainly due to the increasing electrical conductivity of graphene caused by the changing voltage
applied to graphene.
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Next, the effect of different substrate thicknesses (5, 10, 15, and 20 nm) on the transmission
performance of graphene SPPs in the mid-infrared region was explored. Here, substrate and dielectric
material is Si, and v = 1 V. Figure 4 reveals that Im(β) decreases and Lg increases with the increasing
wavelength. Meanwhile, the thinner the substrate, the longer the propagation length. These results
are mainly attributed to the changing graphene chemical potential caused by a changing substrate
thickness. As shown in Figure 4, Lg and Im(β) are both negative at the substrate thicknesses of 15 and
20 nm when the wavelength is less than a certain value, which is because graphene SPPs cannot be
excited under these conditions.
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Figure 5 shows the transmission characteristics of graphene SPPs on incident wavelengths for
different substrate and dielectric materials (Si, SiO2, and BN). Here, d = 10 nm and v = 1 V. Figure 5
illustrates that different substrate materials have a strong influence on the transmission properties of
graphene SPPs. Smaller transmission loss and longer transmission length can be caused by a smaller
dielectric constant of the substrate material. As shown in Figure 5, Lg and Im(β) are both negative
for the substrate materials SiO2 and BN when the wavelength is less than a certain value, because
graphene SPPs cannot be excited under these conditions. Comparing the transmission characteristics
with those of other materials, SiO2 is a superior substrate material.Crystals 2019, 9, x FOR PEER REVIEW 6 of 9 
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Figure 6 shows the influence of Im(β) and the real part of the longitudinal wave vector Re(k) on
incident wavelengths. Re(k) can effectively indicate the attenuation of the incident wave from the
interface to the internal medium, and Im(β) represents the transmission loss of graphene SPPs. Here,
the substrate material is Si, d = 10 nm, and v = 1 V. As revealed in Figure 6, Im(β) and Re(k) have
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the same changing trend with the increase of the incident wavelength, which explains why a long
propagation distance is usually accompanied with a really weak mode confinement, and vice versa.
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In order to further confirm the above conclusions, the transmission properties of proposed structure
were investigated numerically using the finite element method (FEM) package in the RF module of
COMSOL Multiphysics software (COMSOL company, Stockholm, Sweden). The convergence analysis
was applied to ensure that the meshing and boundary conditions employed in the models were
reasonable. The simulation model used is shown in Figure 1, and the sizes in the x, y, z directions
are 150, 600, and 300 nm, respectively. The substrate material is Si, d = 10 nm, and v = 1 V. Figure 7
shows the effect of electric field distributions in the direction of light transmission (z direction) on
different incident wavelengths. It can be seen from Figure 7 that the incident wavelength of 2500 nm
cannot excite graphene SPPs under these conditions. The mode confinement becomes weaker and
longitudinal attenuation of light decreases with the increasing incident wavelength, which is mainly
attributed to the decrease of Re(k). These results are consistent with the results of Figure 6 above.Crystals 2019, 9, x FOR PEER REVIEW 7 of 9 
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All of the simulation results above confirm the unique performance of graphene SPPs in the
mid-infrared region. The transmission characteristics of graphene SPPs can be regulated by changing
the applied voltage, substrate thickness, and substrate material. The properties of subwavelength
operation and dynamic tunability make graphene the material with the most potential for application
in optoelectronic devices. Moreover, this material outperforms metal SPPs and traditional silicon-based
optoelectronic devices.

5. Conclusions

Through theoretical derivation and software simulation, the excellent transmission characteristics
of graphene SPPs in the mid-infrared band were analyzed and verified effectively in this paper,
and a sandwich waveguide structure of dielectric–graphene–substrate–dielectric based on graphene
SPPs was presented. The dependence of the transmission characteristics on incident wavelengths
for different substrate materials, different substrate thicknesses, and different applied voltages was
obtained in this paper. This work is of great significance to further research of optical devices based
on graphene SPPs in the mid-infrared region. Owing to their remarkable transmission properties,
graphene SPPs can be used to manufacture subwavelength devices and represent the material with the
most potential for the possible realization of VLSI.
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