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Abstract: The proposed work reports that ZnO nanoflowers were grown on fluorine-doped tin oxide
(FTO) substrates via a solution process at low temperature. The high purity and well-crystalline
behavior of ZnO nanoflowers were established by X-ray diffraction. The morphological characteristics
of ZnO nanoflowers were clearly revealed that the grown flower structures were in high density
with 3D floral structure comprising of small rods assembled as petals. Using UV absorption and
Raman spectroscopy, the optical and structural properties of the ZnO nanoflowers were studied.
The photoelectrochemical properties of the ZnO nanoflowers were studied by utilizing as a photoanode
for the manufacture of dye-sensitized solar cells (DSSCs). The fabricated DSSC with ZnO nanoflowers
photoanode attained reasonable overall conversion efficiency of ~1.40% and a short-circuit current
density (JSC) of ~4.22 mA cm−2 with an open circuit voltage (VOC) of 0.615 V and a fill factor (FF)
of ~0.54. ZnO nanostructures have given rise to possible utilization as an inexpensive and efficient
photoanode materials for DSSCs.

Keywords: Flower-shaped ZnO structures; FTO substrate; Dye-sensitized solar cells: Photovoltaics

1. Introduction

People need to step up efforts to find highly efficient and renewable energy sources to maintain
social and economic development [1–5]. A reliable and renewable energy source, solar energy is
accounted as a future energy resource due to its abundance and completely free of cost from sunlight.
A low-cost wide band gap semiconducting oxide based solar cell, named dye sensitized solar cell (DSSC)
is considered as potential alternative in the field of photovoltaic devices due to its high power conversion
efficiency (PCE) and ease of manufacturing [6–9]. Till now, Gratzel group reported so far highest PCE
of 12.3% using DSSCs with nanoporous TiO2 photoanode [10]. Other than TiO2 photoanode, zinc oxide
(ZnO) nanomaterials are shown a great potential as an excellent wide-bandgap oxide semiconductor
for photoanode in DSSCs because ZnO presents the similar band position and electron affinities along
with high electron diffusivity and high electron mobility of 115 to 155 cm2V−1s−1, in comparison
with TiO2 [11–14]. Importantly, these special properties of ZnO are reflected to help in reduction
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of recombination rate and efficient electron transport in the photoanode [15]. Most the reported
DSSCs based on ZnO photoanodes are inferior to DSSCs based on the TiO2 photoanode [16–18], which
normally can be attributed to ZnO dissolution to Zn2+ via the adsorbed acidic dye such as N3, N719,
and black dye, resulting in the aggregate formation of Zn2+ and dye molecules [19]. These aggregates
formation of Zn2+/dye complexes are further blocked the injected electrons from the photoexcited dye
molecules to the ZnO, which results in decrease in proper electron injection. It is realized that some
extent of research on the improvement in performance of ZnO-based DSSC are needed to outperform
the aggregates formation of Zn2+/dye complexes [19].

ZnO is highly scrutinized n-type semiconducting oxide owing to its an unique wide band gap
of 3.37 eV and considerable large exciton binding energy of ~60 meV at ambient condition [20,21].
The unique properties of ZnO materials have attracted attention in the area of electrochemical
and photoelectrochemical devices because they have special ability to grow a variety of different
nanostructures [22–29]. Apart from thermal growth of ZnO, ZnO synthesis at low temperature solution
processes has recently been popularized due to ease of processibility, high aspect growth ratio, low-cost,
and high yield [30]. In past few years, researches are experimented to elevate the conversion efficiency
of ZnO-based DSSCs by adopting different structural and morphological aspects like 1D, 2D, and
3D branched networks and mixed morphologies for preparing ZnO photoanodes [31–33]. Several
works on the utilization of 1D and 2D ZnO-based photoanodes have already been reported, but the
conversion efficiencies of DSSCs are not competent to TiO2 based DSSCs [29–33].

Herein, we report the low-temperature hydrothermal synthesis, characterization, and
dye-sensitized solar cell (DSSC) application of ZnO nanoflowers. The ZnO nanoflowers were
grown directly on the fluorine-doped tin oxide (FTO) substrate via simple hydrothermal process and
directly used as working electrode for the dye absorption in DSSCs. The manufactured DSSC poses
reasonable PCE of ~1.40% along with open circuit voltage (VOC) of 0.615 V, short-circuit current density
(JSC) of ~4.22 mA cm−2, and a fill factor (FF) of ~0.54.

2. Materials and Methods

2.1. Synthesis of Flower-Shaped ZnO Nanostructures Directly Grown on FTO Substrate

For the growth of flower-shaped ZnO nanostructures directly on the FTO substrate, a facile
hydrothermal process was adopted. Briefly, 0.05 M (1.2 g) zinc nitrate hexahydrate (Zn(NO3)2.6H2O),
Sigma-Aldrich, Missouri, United States) solution was mixed in 50.0 ml deionized (DI) water and
stirred continuously at ambient temperature. Simultaneously, 0.05 M (0.5 g) aqueous solution of
hexamethylenetetramine (HMTA, Sigma-Aldrich, Missouri, United States) was added in the stirred
solution. A small portion (0.12 g) of poly(ethylene glycol) (PEG, MW: 20000, Sigma-Aldrich, Missouri,
United States) was also introduced to reaction mixture under vigorous stirring at 25 ◦C as a binder.
The pH = 8.0 was maintained by adding few drops of liquid ammonia solution. Finally, cleaned FTO
substrates were horizontally placed in the Teflon beaker and the resulting mixture was poured in
it [7]. The Teflon beaker was placed in the stainless steel autoclave which was heated to 150 ◦C for 8 h.
After completion of the reaction, the ZnO coated FTO substrates were removed from the autoclave
and rinsed with ethanol and DI water and dried at room temperature. Finally, the substrate was
heated at 250 ◦C for 1 h under air condition. It was presumed that the formation of the flower-shaped
morphologies on the FTO substrate follows the below mentioned chemical reactions.

(CH2)6N4 + 6H2O→ 6HCHO + 4NH3 (1)

NH3 + H2O↔ NH4+ + OH− (2)

Zn2+ + 2OH−→ Zn(OH)2 (3)

Zn(OH)2→ ZnO + H2O (4)
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Thus, ZnO nuclei were formed which after prolonged heating and reaction time, the formed ZnO
nuclei were collectively assembled into the flower shaped ZnO nanostructures on the FTO substrate.

2.2. Characterizations of Flower-Shaped ZnO Nanostructures Directly Grown on FTO Substrate

Flower-shaped ZnO nanostructures directly grown on FTO substrate were examined by various
techniques to inspect various characteristics and properties. The crystal structure and related
characteristics were inspected by X-ray diffraction (XRD; PAN analytical Xpert Pro., Malvern Panalytical,
Malvern, UK) using Cu–Kα radiation (λ= 1.54178 Å) in the range of 20–70◦. The field emission scanning
electron microscopy (FESEM; JEOL-JSM-7600F, Akishima, Tokyo, Japan) was employed to monitor
the morphological information of the prepared material. The qualitative localized chemical analysis
and chemical compositions were inspected using energy-dispersive spectroscopy (EDS) attached
with FESEM. The scattering characteristics have been investigated by Raman scattering spectroscopy
(Perkin Elmer-Raman Station 400, Waltham, MA, USA) at room temperature. The X-ray Photoelectron
Spectroscopy (XPS) (XPS, Kratos analytical, ESCA-3400, Shimazu, Kyoto, Kyoto Prefecture, Japan)
measurements were conducted to determine the chemical composition and the elemental states in the
prepared flower-shaped ZnO nanostructures by determining the binding energies. The applied X-ray
source (MgKα, 1253.6 eV) was operated at 10 kV and 20 mA. The specific Brunauer–Emmett–Teller (BET)
surface area of flower-shaped ZnO nanostructures was evaluated by measuring Nitrogen adsorption
via a Micromeritics ASAP 2020 nitrogen adsorption apparatus (Norcross, GA, USA).

2.3. Fabrication of ZnO Nanoparticles-Based Flower-Shaped ZnO Nanostructures Directly Grown on
FTO Substrate

The DSSC based on flower-shaped ZnO nanostructures directly grown on FTO substrate
was fabricated as reported earlier [7]. The flower-shaped ZnO nanostructures on FTO substrate
was immersed into freshly prepared 0.3 M ethanolic solution of cis-bis (isothiocyanate) bis
(2,2-bipyridyl-4,4-dicarboxylate)-ruthenium(II) bistetrabutyl ammonium dye (N719) for 12 h under
dark condition at 298 K. Simultaneously, a counter electrode of Pt metal (thickness = 120 nm) was made
by the sputtering onto the FTO substrate. To manufacture the DSSC, the dye-absorbed ZnO-based
electrode was attached with Pt counter electrode and edges were sealed using a 60-µm-thick polyimide
sealing sheet. Consequently, the introduction of the liquid electrolyte comprising of 0.5 M LiI, 0.05 mM
I2, and 0.2 M tert-butyl pyridine in acetonitrile was filled into cell via drilled small holes in the
counter electrode. The active area of the fabricated DSSC was 0.5 cm × 0.5 cm. For the photocurrent
density-voltage (J–V) curve of the manufactured DSSC, a self-designed computerized digital multimeter
coupled with ammeter and voltammeter was used under 1 sun light using the 1000 W metal halide
lamp as light source. The intensity of light was adjusted and calibrated by Si reference solar cell
to set the light intensity around one-sun (100 mW/cm2) at 1.5 AM. The electrochemical behavior
of fabricated DSSCs was analyzed by the electrochemical impedance (EIS) measurements using
VersaSTAT4 potentiostat/galvanostat. EIS plot for fabricated DSSCs was measured by applying 10 mV
ac signal over the frequency range of 100 kHz to 1 Hz.

3. Results and Discussion

3.1. Characterization and Properties of Flower-Shaped ZnO Nanostructures Directly Grown on FTO Substrate

The XRD results of the synthesized ZnO nanostructures on FTO substrate are illustrated in
Figure 1. From the XRD patterns, all characteristic diffraction peaks, such as (100), (002), (101), (102),
(110), (103), (112), and (201), are well matched with JCPDS card no. 36–1451, deducing the hexagonal
wurtzite structure of ZnO in synthesized ZnO nanostructures. Other diffraction peaks in Figure 1 are
related to the FTO substrate. Moreover, the highest peak intensity at (001) for ZnO nanoflowers on
the FTO substrate clearly evident that the ZnO nanoflowers grow perpendicular to the FTO substrate
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surface [34–36]. Besides, no other impurity-the related peak is detected from the observed XRD pattern,
which revealed the wurtzite hexagonal phase of the grown nanoflowers.
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Figure 1. Typical XRD pattern of flower-shaped ZnO nanostructures directly grown on fluorine-doped
tin oxide (FTO) substrate.

As shown in Figure 2a−d, the field-emission scanning electron microscopic (FESEM) images are
used to explore the structure and morphology of the flower-shaped ZnO nanostructures. It is easy
to see the well-grown flower-like morphology, which is comprised of small nanorods with a central
peripheral rod. Figure 2c,d shows the high-resolution FESEM images of the ZnO nanostructures,
which reveal that each petals are composed of agglomerated nanorods. Fascinatingly, some of the
small nanorods are assembled in such a way that they are collectively formed the flower-shaped
morphologies while most of the nanoflowers are grown almost perpendicularly on the surface of the
substrate. These flower like morphologies are uniformly deposited on the whole substrate surface.
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Using room temperature photoluminescence (PL) spectroscopy, the optical properties of the
flower-shaped ZnO nanostructures were determined, as shown in Figure 3. Before each measurement,
FTO/glass was used to remove the effects of fluorine tin oxide and glass [37,38] as a reference. From
Figure 3, the ZnO nanoflowers exhibits the strong emission peak at a lower wavelength along with a
broad green emission at higher wavelength [39]. The ZnO nanoflowers show well-defined peak in the
UV region, assigning the near-band-edge (NBE) emission of ZnO which normally appeared from the
recombination process of free-exciton [40,41]. The broad green emissions are accounted from several
intrinsic structural and surface defects such as interstitials oxygen defects (Oi), oxygen vacancies (VO),
and antisite oxygen (OZn) in the synthesized ZnO nanoflowers [42]. It was suggested that the emission
peaks are governed the electronic transitions due to the travelling of electron from valence band to the
conduction band of the ZnO nanostructures [43].
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Figure 3. Room temperature PL spectrum of flower-shaped ZnO nanostructures directly grown on
FTO substrate.

Raman scattering spectroscopy was determined to analyze the vibration modes and quality of
the flower-shaped ZnO nanostructures, as shown in Figure 4. The intense Raman peak observed at
437.6 cm−1 due to metal–oxygen atom vibration, which is ascribed to E2 (high) mode. The appeared E2

(high) mode supports the usual formation of hexagonal ZnO nanostructures [44]. The second order
Raman peak centered at 581.8 cm−1 is related to E1 (LO) mode [45,46] which usually originated due to
the presence of interstitials defects such as oxygen vacancies in zinc lattices. Two less intense Raman
peaks centered at 335 cm−1 and 381 cm−1 are referred to E2(high)–E2(low) mode or the origin of the
multiple phonon scattering processes. The intense E2 (high) mode deduces the good crystal quality
and structures of flower-shaped ZnO nanostructures grown on FTO substrate, which is well aligned
with XRD outcomes.
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Figure 4. Typical Raman scattering spectrum of flower-shaped ZnO nanostructures directly grown on
FTO substrate.

In addition, XPS measurement was evaluated for the synthesized flower-shaped ZnO
nanostructures to elucidate the existence of surface species, composition, oxidation state, and electronic
environment. The survey XPS (Figure 5a) spectrum displays that the synthesized ZnO nanoflowers
recorded well-defined binding energies of Zn 2p, O 1s, and small C 1s. The main reason for the
existence of C1s at 284 eV might be happened due to small amount of carbon species from hydrocarbons
in precursors and solvents. From Figure 5b, the high-resolution Zn 2p XPS for the synthesized ZnO
nanostructures shows binary binding energies at 1044.8 and 1021.7 eV, which are assigned to Zn
2p1/2 and Zn 2p3/2 spin-orbital splitting photoelectrons, respectively. Notably, the difference of Zn 2p
binding energies is estimated to 23.1 eV which is evidenced for Zn2+ oxidation state in ZnO. From the
high-resolution O 1s XPS spectra (Figure 5c), the binding energy at 530.8 eV is ascribed to the lattice
Zn–O bond within the ZnO crystal. However, the two resolved binding energies at 530.3 and 532.7 eV
arise from the surface oxygen over the ZnO surfaces, which usually come from the atmospheric
humidity and oxygen deficiencies/vacancies. The obtained Zn 2p and O 1s binding energies again
confirm the high quality ZnO crystals with less impurities.
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3.2. Dye-Sensitized Solar Cell Application of Flower-Shaped ZnO Nanostructures

To define the photoelectrochemical properties of flower-shaped ZnO nanostructures, a DSSC
has been manufactured and tested under 1 sun (AM1.5G, 100 mW/cm2) to assess the photovoltaic
properties of the synthesized flower-shaped ZnO nanostructures based photoanode. Figure 6a shows
the J–V curve of the manufactured DSSC with the synthesized flower-shaped ZnO nanostructures
based photoanode. The manufactured DSSC attained the healthy overall conversion efficiency of
~1.40% along with open circuit voltage (VOC) of 0.615 V, short-circuit current density (JSC) of ~4.22 mA
cm−2, and a fill factor (FF) of ~0.54. Relatively good VOC and FF in DSSC might be accounted from the
creation of large grain sizes in the ZnO nanostructures which result in the interface recombination rate
at the interface of the ZnO nanostructures/electrolyte.
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flower-shaped ZnO nanostructures based photoanode.

The low efficiency and JSC in manufactured DSSC with flower-shaped ZnO nanostructures based
photoanode are attributed to its nonuniform distribution of flowers and low specific surface area
(Surface area = 8.351 m2/g), resulting in moderate amount of dye absorption via the flower-shaped ZnO
nanostructure based photoanode. The yielded photovoltaic parameters of manufactured DSSC are
better than those of similarly DSSCs fabricated with ZnO-based photoanode [47–52]. Moreover, the low
JSC of manufactured DSSC was affiliated to the low surface area and low efficiency of light harvesting.
In order to elucidate the light harvesting and photocurrent, an incident photon to current efficiency
(IPCE) analysis of the manufactured DSSC with synthesized flower-shaped ZnO nanostructures based
photoanode was measured as a function of wavelength. As we know, the estimation of IPCE is from
the efficiencies of the processes which evaluate the solar energy to electrical conversion in DSSCs by
using the below equation.

IPCE (%) = ηlh(λ) ηinj(λ) ηcol(λ) (5)
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where ηlh(λ) is the light-harvesting efficiency, ηinj(λ) is the electron injection efficiency from the sensitizer
into the semiconductor oxide layer, and ηcol(λ) is the electron collection efficiency. Figure 6b shows the
IPCE curve of the manufactured DSSC with the synthesized flower-shaped ZnO nanostructure-based
photoanode using the range of a wavelength range from 400 to 800 nm. The maximum IPCE of
~21% at 530 nm for the manufactured DSSC is attained, and also estimates the integrated JSC value
of ~4.67 mA/cm2 from the obtained IPCE result. It is visible that the integrated JSC value is in
well-aligned with the JSC value extracted from the J–V curve. The low IPCE value is also associated
to the poor light harvesting efficiency in dye absorbed flower-shaped ZnO nanostructures based
photoanode. Further, the flower-shaped ZnO nanostructures are assumed to have a poor surface for
dye absorption, contributing to the high recombination of electrons and relatively low injection rate of
electrons. These factors might have restricted to achieve high performance and photocurrent density
in DSSC using flower-shaped ZnO nanostructures based photoanode. Table 1 exhibits the photovoltaic
performance of variety of fabricated DSSCs based on the utilization of different ZnO nanostructures as
photoanodes [47–59].

Table 1. Photovoltaic performance of fabricated DSSCs based on different ZnO nanostructure-
based photoanodes.

Morphologies of
ZnO Nanostructures

Substrate Dye
Photovoltaic Performances

Ref.
JSC(mA /cm2) VOC(V) FF η (%)

Nanoparticles FTO N719 5.4 0.58 0.35 1.1 47
Tripods FTO N719 2.80 0.55 0.54 0.88 48
Bush-like morphology FTO N719 3.46 0.69 0.35 0.82 49
Nanorods FTO N3 1.37 0.845 0.69 0.80 50
Aligned nanorods FTO N719 2.08 0.736 0.43 0.66 51
Paddle wheel like
structured ZnO
nanorod

FTO - 2.82 0.70 0.65 1.3 52

ZnO nanorods FTO N719 1.69–2.13 - - 0.36–0.47 53
ZnO nanorods FTO N719 1.52 0.361 0.37 0.21 54
Nanorods +
nanosheets

Zn foil N719 3.041 0.524 0.42 0.67 55

Nanotubes ITO N3 4.70 0.386 - 1.20 56
Nanograsses FTO N719 1.93 0.630 0.39 0.47 57
Nanocombs FTO N719 3.14 0.671 0.34 0.68 58
Nanofibers FTO N719 2.87 0.690 0.44 0.88 59
ZnO nanoflowers
directly grown
on FTO

FTO N719 4.22 0.615 0.54 1.40 This work

Electrochemical impedance spectroscopy (EIS) for DSSCs with flower-shaped ZnO nanostructures
has been performed to explain the charge transport and recombination mechanisms. Figure 7 illustrates
the typical Nyquist plot along with equivalent circuit for the fabricated DSSC with flower-shaped
ZnO nanostructure-based photoanode. Generally, the Nyquist plot comprises of three semicircles with
respect to frequency, which are associated with charge transfer within the electrolyte (RS), charge transfer
at electrolyte/counter electrode interface (RCE), and electron transfer at the electrolyte/semiconductor
oxide interface (RCT) [60], as shown Figure 7. Fabricated DSSC presents the large RCT of 142 Ω
and large RS of 73.5 Ω (as estimated from Figure 7), suggesting the lesser charge transfer at the
interface of dye-loaded ZnO and electrolyte layer. In this work, RCT and RS values are higher than
that of DSSCs fabricated based on ZnO nanoparticles (low RS and low RCT), which clearly indicates
weak charge transportation at ZnO/electrolyte interface [61]. It is believed that the high RCT and
RS values obtained by DSSCs with flower-shaped ZnO nanostructure-based photoanode clearly
explains the unfavorable electron transport, thus it probably leads to fast electron recombination rate.
This result is also consistent with low photovoltaic parameters for DSSCs with flower-shaped ZnO
nanostructure-based photoanode.
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