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Abstract: Millimeter-sized α-glycine crystals were generated from continuous non-seeded cooling
crystallization in slug flow. The crystallization process is composed of three steps in sequence: slug
formation, crash-cooling nucleation, and growth. Stable uniform slugs of three different aspect ratios
(slug length/tubing inner diameter) were formed, by adjusting the flow rates of both the solution and
air streams. Besides supersaturation, the slug aspect ratio can also affect primary nucleation outcome.
Stable slug flow can accommodate a relative supersaturation (C/C*) of up to 1.5 without secondary
nucleation. Large glycine crystals can grow to millimeter size within 10 min, inside millimeter-sized
slugs without reducing the slug quality.

Keywords: continuous crystallization; cooling crystallization; nucleation; crystal growth rate; slug
flow; glycine

1. Introduction

Continuous crystallization has received increasing research interests in both academia and industry
for controlling crystal qualities, including polymorphic form, size, and morphology [1–13]. Many
types of continuous crystallizers have been designed to meet different product quality requirements,
with representative examples: (a) multi-stage mixed-suspension mixed-product removal (MSMPR)
crystallizers [14–17]; (b) fluidized bed crystallizers [18–22]; (c) oscillatory baffled crystallizers [23–25];
(d) unbaffled crystallizers with an interior tubing mixing enhancer [8] (such as static mixers [11,26,27]);
and (e) segmented/slug-flow crystallizers [3,26–29]. Stirred-tank based crystallizers (a) allow relatively
longer residence time and spacious crystallization area. Thus, those crystallizers can function well
under lower supersaturation and end up with higher purity. Besides, compared to tube/pipe-based
crystallizers (b–e), transferring the concept from a batch/semi-batch experiment into a stirred-tank
crystallizer is easier in general. Correspondingly, tubular crystallizers have a short residence time, a
narrow crystal size distribution (CSD), low shear force, and rapid heat transfer [10].

Batch crystallizers provide many important pieces of information for guiding the design of
continuous crystallizers [30–34]. For example, the solubility curve and crystallization properties (e.g.,
kinetics) for the specific solute/solvent system are usually derived in batch experiments. Non-optimum
cooling (e.g., crash cooling) was shown in batch crystallizers to generate tiny crystals from secondary
nucleation, especially for non-seeded situations [35,36]. In addition, batch experience indicates that
organic crystals probably cannot hold their morphology under the shear in the crystallizer, if their
longer dimension reaches 20% or larger of the shorter dimension of the crystallizer [6,33,34,37].

A slug flow crystallizer was recently developed for organic crystals that shares some advantages
of both batch and plug flow. Each liquid segment/slug is a functional crystallizer itself, with mixing
from recirculation (intrinsic properties of slug flow) without requiring mixing blades [3,4,38–40].
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Various types of crystallization have been demonstrated in slug flow [10], including reactive
precipitation [27,41–46], cooling crystallization [3,39,40,47,48], and anti-solvent crystallization [49,50].
Several compounds (e.g., L asparagine monohydrate [3], acetylsalicylic acid [39], and succinic acid [27])
were crystallized into uniform crystals of up to a few hundred microns in millifluidic slugs. Experimental
results also showed that the aspect ratio of the slugs may affect the distribution of the crystals inside.
For example, the small volume allows a uniform spatial distribution of temperature and concentration
within each slug, and a slug with an aspect ratio close to one also favors a uniform distribution of
the crystals inside [3]. Multiple in-line nucleation methods were also successfully implemented for
continuous flow (before slug formation) to enhance the uniformity of nuclei, such as temperature
cycling [6,51], ultrasonication [40,51], and micromixers [11,26,27].

As with any other continuous crystallizer, it is interesting to explore more aspects of the slug flow
crystallizer, including how slug flow properties affect the crystallization process and crystals inside
and how to tune the flow to enhance crystallization in the desired direction. More specifically: (1) Is
it possible to directly nucleate inside slugs (instead of upstream of slugs, as commonly done) using
a simple method. Compared to batch crystallizers, how does slug flow handle crash cooling, which
tends to induce secondary nucleation and sometimes agglomeration as well, especially for non-seeded
situations? Is it possible to use slug flow to suppress secondary nucleation; and if so, what is the
proper condition? Does the process scale up easily? (2) Is it possible to generate millimeter-sized
crystals inside slugs and keep their size? How will those large crystals behave in millimeter-sized slugs,
especially for non-square-shaped crystals, e.g., how will they behave with respect to slug geometry?
(3) How can one form stable slugs with various aspect ratios (all close to one) that are different by a
small amount, and will the slug aspect ratio affect the nucleation and growth processes inside slugs?

This article provides additional aspects and understanding of the slug flow crystallizer, including
using glycine cooling crystallization from water solvent as an example for the questions above. Even
though it is impossible to cover all aspects of all compounds, the examples may provide useful
information, such as generating large crystals from suppressing secondary nucleation.

2. Materials and Experimental Methods

2.1. Chemicals

The solute was glycine (purity ≥ 99.5%, from J.T Baker, NJ, U.S.), and the solvent was DI
water. The solubility of the α form glycine in water follows an empirical mathematical expression
(Csat = 0.563 Tsat exp + 9.836, where Csat is the equilibrium saturation concentration, g/100 g of water,
and Tsat exp is the experimental saturation temperature, ◦C) [52], within the temperature range of 0–60 ◦C.
Specifically, for the experimental conditions, the glycine solubility at 40 ◦C (starting concentration,
Table 1) was 32.4 g/100 g water, and the final temperature at room temperature (20 ◦C) was 21.1 g/100 g
water and at 4 ◦C (ice bags) was 12.1 g/100 g water. As the solubility of glycine in water highly depends
on temperature, crystallization via cooling the solution from above its solubility temperature was
performed. The fast growth rate (high supersaturation) and large size of glycine crystals make any
secondary nucleation obvious [53–55].



Crystals 2019, 9, 412 3 of 16

Table 1. Experimental conditions for cooling crystallization in slug flow and batches. Conditions 1–5
(denoted as Con 1–5) are in slug flow. Conditions 1–3 are at 3 different slug aspect ratios, with all
other conditions the same, and no secondary nucleation. Conditions 1 and 4 are at different starting
concentration and temperatures, with all other conditions the same (including the slug aspect ratio of
0.8). Condition 5 is a scale-up experiment of Condition 1. Batches 1–3 are the batch crystallization of
different total volume. The maximum supersaturation is based on the starting concentration in Table 1
and the solubility profile in Figure S1. The slug aspect ratio is defined as the ratio between slug length
along with the tubing to tubing inner diameter.

Condition Number Con 1 Con 2 Con 3 Con 4 Con 5 Batch 1 Batch 2 Batch 3

Total solution volume (mL) 5 5 5 5 50 1 5 50

Concentration of hot
solution (g/g water) 0.32 0.32 0.32 0.39 0.32 0.32 0.32 0.32

Initial temperature (◦C) 40 40 40 50 40 40 40 40

Maximum relative
supersaturation (unit: 1) 2.68 2.68 2.68 3.23 2.68 2.68 2.68 2.68

Volumetric flow rate of hot
solution (mL/min) 3.0 4.0 2.6 3.0 3.0 NA NA NA

Rotation speed of peristaltic
pump (RPM) 22 22 24 22 22 NA NA NA

Slug aspect ratio 0.8 1.2 0.6 0.8 0.8 NA NA NA

2.2. Slug Flow Procedure

Figure 1a is a schematic diagram of a continuous slug-flow crystallization process simplified from
the previous work [3,6,40] while keeping the key aspects. The crystallizer was mainly a 15 m-long
silicone tubing (Masterflex, Platinum-Cured Silicon, L/S 16, ID = 3.125 mm, IL, U.S.). Stable slugs were
formed by combining hot glycine solution and room-temperature air streams at proper flow rates,
through a simple T-mixer (Polypropylene, ID = 3.125 mm, IL, U.S.). A 10 mL glycine solution (0.32 g
glycine/g DI H2O) at 40 ◦C was pumped through a heat-preserved syringe (New Era syringe pump,
Model # NE-4000, NY, U.S.). Filtered air was pumped through a peristaltic pump (Masterflex L/S
Precision Pump, Easy load II pump head, IL, U.S.). Then, the slugs went through the tubular crystallizer
for nucleation and growth, through a temperature profile shown in Figure S1. The nucleation zone
was made by immersing the first 0.4 m part of the tubing into an ice bags (4 ◦C). The growth zone was
composed of the rest of the tubing at room temperature. The linear flow rate of liquid slugs was 26
mm/s, and the residence time in the nucleation zone and the growth zone was about 15 s and 9.5 min,
respectively. The slurry slugs were collected in a 96-well plate for 2 slugs per well. To minimize solvent
evaporation inside collection wells, two droplets of mineral oil were added to each well immediately
after collecting the slurry product. The scaling up test was carried out with 50 mL of the same solution
and operation as the 5 mL experiment. Among all slug-flow experiments, the setup and residence time
were the same, while the slug aspect ratios and solution volume and concentrations could be different,
as specified in Table 1.
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Figure 1. (a) Schematic of the slug-flow cooling crystallization process. Slugs form by combining
glycine solution and air streams at proper flow rates. Nucleation is induced by crash cooling of glycine
solution slugs through tubing wall (from ice bags). The nucleation region is not necessarily only in the
ice bags. (b) Photos of packed crystallizers, with different aspect ratios of liquid slugs (slug boundary
highlighted in green).

2.3. Batch Crystallization

For comparison with slug flow crystallization results, a batch experiment with the same initial
and final crystallization conditions (e.g., concentration, temperature) was conducted. Five milliliters
0.32 g glycine/g DI water at an initial temperature of 40 ◦C in an Eppendorf tube was left in air for
naturally cooling down to 35 ◦C (same as the temperature of slugs right before the ice bags). The hot
solution was then quickly poured into an Eppendorf tube wrapped by a bag containing an ice-water
mixture (4 ◦C) for 15 s, during which time the solution was shaken gently by hand, without mixing
blades to reduce possible secondary nucleation. The solution was then poured back to the original
tube and was shaken for 10 min before taking off-line microscope images of the slurry. The scaling up
test was carried out with 50 mL of the same solution and operation as the 5 mL experiment.

2.4. Crystal Characterization

For viewing slurry slugs and crystals inside, in-line imaging was carried out with a USB digital
microscope (Amscope, model UTP200 × 020MP, CA, U.S.). For off-line imaging towards crystal size
statistics (e.g., Table 2), an Amscope ME520TA microscope equipped with an MU-900 camera was used.
All slugs were recorded and analyzed, for both in-line and off-line imaging. Crystals from batches were
sampled (batches were blending well, and two droplets were dispensed on a glass slide immediately)
and imaged off-line. ImageJ was used to analyze CSD based on off-line microscope images. An X-ray
diffractometer (XRD, from Rigaku, MiniFlex II, NC, U.S.) was used for confirming the polymorphic
form of product crystals.

To quantify the yield for each condition, product crystals from all slugs under the same condition
were combined. The slurry was centrifuged, then the supernatant was discarded, and solids were
dried in air. The dried crystals were weighed for qualification. The crystallization process yield was
calculated based on the definition, the mass ratio between product crystals and the total solute. All
yield calculation was based on crystals 10 min after crash cooling.
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Table 2. Crystal size statistics for cooling crystallization in slug flow and batches. The total number of
crystals (N) for statistical analysis is included. Definition of length and width is the same as in the
book [34]., and width is perpendicular to the length on the image. For all these crystals, their standard
deviation (SD) and the coefficient of variation (COV) of both the length and width are also included
here. The average crystal growth rate is estimated by dividing the mean crystal length (for that specific
condition) by the growth time of 10 min.

Condition Number Con 1 Con 2 Con 3 Con 4 Con 5 Batch 1 Batch 2 Batch 3

Portion of slugs/batches
with primary nucleation ~80% ~90% ~30% ~100% ~90% 100% 100% 100%

Short-term yield ii of
nucleated slugs/batches

24.1 26.3 19.7 36.7 26.8 6.40 4.95 1.43

Total number of crystals, N i 97 67 17 48 159 155 205 29
Mean length (mm) 0.62 0.63 0.86 0.11 0.71 0.08 0.05 0.03
SD, length (mm) 0.21 0.23 0.26 0.05 0.21 0.06 0.04 0.01

Mean width (mm) 0.34 0.33 0.46 0.04 0.41 0.03 0.02 0.02
SD, width (mm) 0.13 0.12 0.09 0.03 0.16 0.03 0.02 0.00
COV in length 0.34 0.37 0.30 0.48 0.29 0.73 0.77 0.32
COV in width 0.37 0.36 0.20 0.69 0.39 0.86 1.02 0.27

Average growth rate
(µm/min) 62 63 86 11 71 8 5 3

i N for Condition 1–3, 5 represents the total crystal number from off-line images of all slugs. N for Condition 4 and
all batches counts the total crystals from one representative image. ii The short-term yield calculation is the same as
yield except for using crystals after 10 min (residence time), instead of waiting longer for equilibrium (theoretical
yield). Here, the theoretical yield is 30.2% except for Condition 4.

3. Results and Discussion

3.1. Inducing Primary Nucleation in Slug Flow from Crash Cooling

In the past, nucleation for slug flow crystallization was usually achieved upstream of slug
formation in regular tubular flow (e.g., direct cooling or sonication through the tubing wall [3,40]).
In this study, nucleation occurred directly in slugs, which had a much smaller individual volume
than a continuous stream. As primary nucleation is a stochastic process that depends on both the
supersaturation and solution volume [56], such a process is intrinsically more difficult. Figure 2
shows that primary nucleation can be induced, with a few crystals formed in each slug, at a relative
supersaturation (C/C*, where C is the solution concentration and C* is the equilibrium saturation
concentration) of about three. Here, primary nucleation is indicated by the existence of crystals in
the slugs collected at the crystallizer exit. In comparison, a slug-flow experiment of all the same
conditions, except for not using the ice bags, did not produce any crystals, indicating the usefulness of
the crash cooling. Based on the temperature profile in Figure S1, the slug can have a fast cooling rate of
1.2 ◦C/s, likely due to the large surface-to-volume ratio. In addition, due to the residence time limit
in the nucleation zone (15 s), it is also possible that some slugs nucleated not in the nucleation zone
with the highest supersaturation, but instead in the growth zone, with still positive supersaturation.
For example, eye observation of crystals in slugs during experiments indicated that primary nucleation
occurred within 1.2 min of residence time.

Even with crash cooling, not all slugs could induce primary nucleation at the same condition,
which also confirms that the nucleation process is stochastic. Further, the primary nucleation possibility
(a portion of slugs that nucleated) was affected by the slug aspect ratio (and volume), even though the
ratio did not change very much. For example, there was a sudden drop of such a portion (from 80%
to 30%) when the slug aspect ratio changed from 0.8 to 0.6, as shown in Table 2. The portion did not
change much (from 90% to 80%) when the aspect ratio changed from 1.2 to 0.8. As a side comparison,
the batch crystallizers of 1, 5, and 50 mL in volume (for the same crash cooling time of 15 s) all had
primary nucleation. These trends all indicate a possible “nucleation critical volume” for the residence
time [55], which is beyond the scope of this paper.
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Figure 2. In-line microscope images of crystals in the slurry slug (in the center) with a slug aspect
ratio of about (a) 0.8, (b) 1.2, and (c) 0.6. The experimental details are in Table 1, Conditions 1, 2,
and 3, respectively. The flow direction is from left to right. The green line delineates the outline of
the slurry slug. The front of the slurry slug resembles a projecting semicircle indicating the surface
hydrophobicity of the inside tubing wall. The front is protruding more than the tail end [57]. Larger
liquid flow rate and smaller air flow rate would reduce the length of the slurry slug [58]. Scale bar:
0.5 mm. The images of representative product crystals are in Figures 3–5, with size statistics in Table 2.

3.2. Suppressing Secondary Nucleation for Crystal Growth in Slug Flow

Suppressing secondary nucleation means that most of the solute crystallizing will grow onto the
existing small number of nuclei and generate large crystals (based on mass balance). The crystal size
for Condition 3 was larger than that of Condition 1 and 2 (Figure 5), which directly came from the
different numbers of crystals (with secondary nucleation shut off for all three conditions). For a similar
condition in batch cooling crystallization (with initial temperature of 35 ◦C and final temperature of
20 ◦C) [59], crystals with an average size of circa 600 µm were generated after 20 min to 6 h [60,61],
and here, only 10 min were needed. Although glycine was the compound used here, a similar
strategy (e.g., suppressing secondary nucleation) may potentially help generate large crystals of other
compounds [62–72].

Secondary nucleation is usually indicated by the co-existence of small crystals with large crystals,
or a broad or bimodal size distribution, based on the assumption that all crystals nucleated at the same
time growth at similar rates. One key factor is supersaturation, as with any crystallization process.
For slug flow, the increase of supersaturation (through starting solution concentration) can increase the
number of crystals and change the size distribution of product crystals from unimodal to bimodal, as
shown in Table 2 and Figures 3–7. Both trends were as expected based on existing knowledge [73,74].
Under the same supersaturation (Condition 1), which did not induce secondary nucleation in slug flow,
a broad and bimodal particle size distribution resulted from a batch crystallizer (Figure 7, Table 2).
The mean crystal size was also smaller in the batch, due to a larger number of crystals. As shown in
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Table 2, the average growth rate of crystals in the slug flow at a relative supersaturation can reach
60–80 µm/min for 10 min, compared to the 3–8 µm/min batches from the same starting condition.
The average growth rate was estimated based on the main crystal length, as crystals reached 600 µm or
larger (nuclei size was negligible compared to final crystal size). In addition, in slug flow with slightly
higher maximum supersaturation (usually a faster growth rate) such as Condition 4, the average crystal
growth rate was actually 6+-times smaller than other conditions. The result indicates that secondary
nucleation suppression played an important role in growing larger crystals and increasing the average
crystal growth rate. As a side comparison, the typical reported growth rate of α-glycine ranged from
3–80 µm/min in the relative average supersaturation range from 1.15–1.65 in the batch. Under relative
supersaturation of 1.45 (similar to the conditions in Table 1), the reported growth rate in the batch
(volume was not specified) was circa 42 µm/min [75].
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Figure 3. (A) Representative off-line microscope images (with polarizer) of produced crystals in slugs 
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Figure 3. (A) Representative off-line microscope images (with polarizer) of produced crystals in slugs
with an aspect ratio of about 0.8 and a total volume of 5 mL and the crystal size distribution from all
off-line images. Experimental details are in Table 1, Condition 1. Scale bar: 0.2 mm. (B) Representative
off-line microscope images (with polarizer) of produced crystals in slugs of a total volume of 50 mL and
the crystal size distribution from all off-line images. Experimental details are in Table 1, Condition 5.
Scale bar: 0.2 mm.
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Figure 4. Representative off-line microscope images (with polarizer) of produced crystals in slugs with
an aspect ratio of about 1.2 and the crystal size distribution from all off-line images. Experimental
details are in Table 1, Condition 2. Scale bar: 0.2 mm.
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Figure 5. Representative off-line microscope images (with polarizer) of produced crystals in slugs with
an aspect ratio of about 0.6 and the crystal size distribution from all off-line images. Experimental
details are in Table 1, Conditions 3. Scale bar: 0.2 mm.
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Figure 6. (Left) Representative microscopy images (with polarizer) of crystals in slugs from Conditions
4 in Table 1. The slug aspect ratio is also 0.8. (Right) Crystal size distribution (CSD) of the microscope
image on the left.
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Figure 7. (A) (Left) Off-line microscope images (with polarizer) of crystals in a 1-mL batch after 10 min
(residence time). The batch experimental details are in Table 1, Batch 1, under the same experimental
conditions as in slug flow experiments (Table 1, Condition 1). (Right) CSD of the microscope image on
the left. (B) (Left) Off-line microscope images (with polarizer) of crystals in a 5 mL batch after 10 min
(residence time). The batch experimental details are in Table 1, Batch 2, under the same experimental
conditions as in the slug flow experiments (Table 1, Condition 1). (Right) CSD of the microscope image
on the left. (C) (Left) Off-line microscope images (with polarizer) of crystals in a 50 mL batch after 10 min
(residence time). The batch experimental details are in Table 1, Batch 3, under the same experimental
conditions as in slug flow experiments (Table 1, Condition 1). (Right) CSD of the microscope image on
the left. The crystal data for after one day are shown in Figure S4.
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Note that the CSD difference may also be complicated by the volume difference, which is another
factor. When the CSD of slug flow crystallization was quantified, data of all slugs from the same
experiment were combined. The total solution volume for slug flow experiments (5 mL) was the
same as Batch 2’s total volume (5 mL), but the volume of each slug (e.g., 14–28 µL) was much smaller
than the batch experiment. A smaller solution volume not only reduced the secondary nucleation
probability as found by other studies [52–54,56], but also had a more evident effect on the total CSD.
The reason is that for a small total number of crystals, a small change in primary nuclei number still
means a large change in portion, thus a large change in CSD per slug and total, as in this case.

While the small volumes of slugs helped suppress secondary nucleation and grow larger crystals
faster, the short-term yield can be reduced (Table 2) due to the slower rate of nucleation and growth
within the measurement time frame. Many slugs can stay at the supersaturated states without
nucleation. Under Condition 1, final product crystals after growth in slugs with an aspect ratio of 0.8
were uniform and non-agglomerated, with a yield of 24.1% (Figure 3). Under Condition 2, the amount
of crystals in each slug was slightly more than Condition 1, which is reasonable due to the increased
volume of the slug. The total yield from Condition 2 was 26.3%, closer to theoretical yield from the
batch (30.2%) cooling experiment from the same solution concentration. Under Condition 3, only 1/3
of total slugs showed crystals with a relatively low yield of about 19.7%. The final yield (given more
time for equilibrium) was expected to approach the theoretical value (larger than short-term yield).
For example, after letting the batch with nuclei (Figure 7C) sit for one day without disturbing, the yield
reached 30.2%. Condition 4 presented a larger yield than Conditions 1–3 due to the higher starting
concentration and supersaturation. The XRD data verified that all the crystals were in the α form [76]
(Figure S2).

3.3. Scale-Up Performance of Non-Seeded Cooling Crystallizer

The scale-up of batch crystallization from 1 mL to 50 mL (Table 1) was achieved by using a
larger-volume container for the solution. In comparison, the scale-up of slug flow crystallization was
achieved from running the experiments for a longer time (more slugs) using the same equipment and
the same conditions (e.g., residence time, starting concentration, temperature profile). The reason is
that each slug was an individual small self-circulated crystallizer, and the scale-up of total volume did
not change the microenvironment for each slug. Other scale-up methods can be useful, but are not in
the scope of this article, such as using different nucleation methods in batches or installing multiple
sets of the same flow crystallizers.

The 5 mL batch (Table 2, Figure 7B) generated a larger crystal number density (primary nucleation
outcome) than the 50 mL batch (Figure 7C), likely due to the reduced surface-to-volume ratio for larger
volume crystallizer using crash cooling nucleation. There was a similar trend for the average growth
rate and short-term yield (Table 2). The crystal size distributions were very different (Figure 7A–C)
among the different scales. These scale-up difficulties for batches have all been well-recognized [77–80].
In contrast, the crystal number density and size distribution for slug flow experiments of different
scales were much closer to each other, as indicated from representative slug images (Figure 2 and
Figure S3) and crystal statistics (Figure 3, Table 2). The scale-up simplicity can be attribute to the fast
heat and mass transfer inside millimeter-sized uniform slugs with a high surface-to-volume ratio, as
discussed earlier.

3.4. Large Crystal Behavior inside Slugs

Stable uniform slugs with different aspect ratios (Figure 1b) were generated by varying the flow
rate of both the liquid and air incoming streams. Small glycine crystals (about 0.11 mm) generated
under Condition 4 (the dark particles in Figure 8d) were circulated in the whole slug geometry.
This behavior was consistent with the past observation that particles of a few hundred microns were
able to circulate evenly inside the slurry slug of an aspect ratio of ~1 [9,58]. However, millimeter-sized
glycine crystals performed differently in the slugs whose dimension was on the same length scale (e.g.,
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the tubing ID was less than four-times larger than the average crystal size). As shown in Figure 8a–c,
these large crystals were not bouncing around in the whole slug under Conditions 1–3. Instead, for
different experiments (e.g., slugs of different aspect ratios), these hexagonal-shaped crystals always
stayed in the tail end region of each slug and self-rotated. Even with such large crystals at ~1.5-times
the density of the solution [81], each slug still retained its shape and flow velocity. Further, no fouling
(resting of crystals on the tubing wall), nor breakage of the crystals were observed (e.g., Figures 3–5)
throughout the crystallization and transporting process.
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Figure 8. Frame to frame image of slug flow under Conditions (a) 1, (b) 2, (c) 3, and (d) 4. The interval
between adjacent images is 1/30 s. The flow direction is from left to right. Slurry slug and crystals are
delineated approximately. Except for Condition 4, the small dark particles inside the slug are glycine
crystals. The crystals size and location variation from frame to frame indicate that the crystals were
circulating in the tail end region of each slug. Some delineated particles seem out of the slurry periphery
because of the relative position variation between the microscope and slug. Scale bar is 0.5 mm.

3.5. Additional Comments

In the slug-flow crystallization of this work, the system was divided into three zones for different
purposes: (a) slug generation by solution stream and air stream; (b) primary nucleation induced
by crash cooling; (c) growth of particles with little secondary nucleation. With such a design, the
final particle size distribution was controlled by the rate of primary nucleation, i.e., the number and
morphology of the particles created during crash cooling.

The primary nucleation kinetics in the crash cooling zone was found to be related to the aspect ratios
of the slugs and their supersaturation levels. Primary nucleation is a stochastic process. The possibility
of its occurrence is proportional to the supersaturation ratio [82] and the volume of the supersaturated
solution [83]. Both factors were key controls for slug flow crystallization as demonstrated by the
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results. The supersaturation level was determined by the initial concentration of the feed solution
and the temperature of the crash cooling zone. A high supersaturation level was achieved by using a
more concentrated feed (Condition 4), in which case fine particles were seen in the exit of the slug flow
crystallizer, due to secondary nucleation in the growth zone. The low supersaturation level case was
studied by using room temperature for the crash cooling zone, where none of the slug nucleated out
any crystals although they were all supersaturated. A few large particles in each slug were successfully
generated with the temperature and concentration of Conditions 1–3, but the chance of nucleation
depended on the volume. In this condition, the fact that only a few crystals nucleated out indicated
that the nucleation rate was relatively slow. Therefore, the stochastic nature of primary nucleation
is significant, and a sufficient solution volume should be used to maximize the chance of primary
nucleation. Such experience is valuable for future applications of slug flow crystallizers.

4. Conclusions

A simple continuous slug-flow cooling crystallization process has been designed to generate
large and non-agglomerated α-glycine crystals rapidly. The specific process and physical setup were
composed of slug formation, cooling nucleation, and growth zones in sequence. Primary and secondary
nucleation was affected by both the initial solution concentrations (supersaturation levels) and slug
aspect ratios in the nucleation zone. Conditions were selected such that a few glycine crystals nucleated
in each slug. In the growth zone, secondary nucleation could be suppressed in slug flow for up to a
certain supersaturation level, so that existing nuclei could grow to millimeter size in 10 min. These
large crystals did not disturb the slug flow quality. The scale-up slug flow crystallization process
demonstrated its capabilities of scaling up without any difficulties. No clogging nor fouling were
observed throughout the slug flow process, showing potential for process scale-up.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/8/412/s1.
Figure S1. Spatial profiles of the temperature in slugs and corresponding solute solubility along the length of
the tubular crystallizer. The solubility is a function of temperature, Csat = 0.563 Tsat exp + 9.836, as in Section 2.1.
The solution concentration is 0.32 g glycine/g DI H2O, until after nucleation. The temperature was monitored
with an IR laser thermometer to verify every slug has the same temperature trajectory. Figure S2. XRD spectra of
product crystals under batch, condition 1, condition 2 and condition 3, respectively. Figure S3. In-line microscope
image of crystals in the slurry slug (in the center) for condition 5. Figure S4. Representative off-line microscope
images (with polarizer) of produced crystals in slugs of total volume of 50 mL after 1 day. Experimental details are
in Table 1, condition 5. Scale bar: 0.2 mm.
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