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Abstract: The gadolinium(III) fluoride oxidotungstate(VI), with the formula Gd5FW3O16, represents
the first published fluoride-derivative of a rare-earth metal oxidotungstate. It is synthesized by a
mixture of GdF3, Gd2O3, and WO3 at 800 ◦C and a pressure of 2 GPa with the help of a belt press.
The title compound crystallizes in the monoclinic space group P21/c (no. 14) with four formula units
per unit cell and the following lattice parameters: a = 539.29 (4), b = 1556.41 (12), c = 1522.66 (11) pm,
and β = 93.452 (4). The crystal structure comprises five crystallographically distinguishable Gd3+

cations, which are surrounded by either oxide and fluoride anions (Gd1–3) or by oxide anions only
(Gd4, Gd5), with coordination numbers ranging between seven and nine. The fluoride anions are
trigonal non-planar coordinated by three Gd3+ cations (Gd1–3). The distorted [WO6]6− octahedra
in this structure form isolates edge- and vertex-connected entities of the compositions [W2O10]8−

and [W2O11]10−, respectively. According to the presented units, a structured formula can be written
as Gd4[FGd3]2[W2O10][W2O11]2. The single-crystal Raman spectrum reveals the typical symmetric
stretching vibration mode of octahedral oxidotungstate(VI) units at about 871 cm−1.
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1. Introduction

Fluoride oxidotungstates (VI), as well as mixed-ligand fluoridooxidotungstates, are known for
several alkali, alkaline-earth, and transition metals but not yet for rare-earth elements. Among them,
compounds with non-tungsten bonded fluoride, e.g., Ca2NaF[SiO4]-type [1] Na3F[WO4] [2] are
known, while Li[W3O9F] [3], Na5[W3O9F5] [4], K2GeF6-type [5], Cs2[WO2F4] [6], Rb2[WO2F4] [7],
and Ag[WOF5]2 [8] represent structures, with all F− anions, of the ligand sphere of hexavalent
tungsten both in isolated units or in condensed ones, such as in CuWO3F2 [9]. Ba2[WO3F2]F2 [10,11]
and Pb5W3O9F10 [12] (≡ Pb10[WO3F3]4(W2O6F4)F4 with units in parentheses being condensed and
those in brackets being isolated) exhibit fluoride anions that are both bonded to W6+ and not.
Although fluoride-containing rare-earth metal oxidomolybdates with the compositions REF [MoO4]
(RE = Y [13], Ce—Nd [14], Sm—Tm [15], and REFMo2O7 (RE = Y [16], Eu—Yb [17]) are well known, the
syntheses of the isotypic tungstates is still very challenging. In case of the aforementioned REF[MoO4]
representatives, it is possible to utilize molybdenum trioxide both as reactant and as fluxing agent due
to its low melting point of 802 ◦C [18], while in the respective reaction mixture for the tungstates, all
components show a melting point above 1200 ◦C (e.g., GdF3: m.p. = 1232 ◦C; Gd2O3: m.p. = 2425 ◦C;
WO3: m.p. = 1473 ◦C) [18], thus a reaction in silica ampoules would only be possible with another
compound as flux. Appropriate candidates, such as alkali metal halides, boron oxide, or molybdenum
oxide, all result in undesired side products, such as scheelite-type ARE[WO4]2 representatives (e.g.,
NaGd[WO4]2 [19]) or rare-earth metal borates and molybdates of various compositions, respectively.
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Experiments following a modified solution route with respect to the one of Naruke and Yamase [20]
were tried by Schustereit [21] to obtain rare-earth metal fluoride tungstate derivatives; however, no
crystalline products were attained. Inspired by single crystals of two RE(OH)[WO4] derivatives, which
occurred during high-pressure experiments to obtain RE3Cl3[WO6] representatives of the smaller
rare-earth metals [22,23], the high-pressure synthesis of the formula analogous, and presumably
pseudo-isotypic (due to the replacement of OH− by F−) REF[WO4] derivatives, was pursued. Although,
the desired products could not be yielded, it was possible to obtain very few single crystals of the
gadolinium(III) fluoride oxidotungstate(VI) with the composition Gd5FW3O16 comprising two different
ditungstate units as well as [FGd3]8+ entities — a structural motif known also from La3FMo4O16 [24]
and other fluoride-containing lanthanoid compounds. Hence, the high-pressure synthesis route opens
up a possibility to obtain fluoride-containing rare-earth metal(III) oxidotungstates(VI), which may
provide suitable host lattices for luminescent cations, e.g., Eu3+ and Tb3+, as dopants for compounds of
the luminescent innocent rare-earth metals yttrium, lanthanum, gadolinium, and lutetium, analogous
to the molybdates, e.g., YF[MoO4]:Eu3+ [13].

2. Materials and Methods

2.1. High-Pressure Synthesis

Single crystals of gadolinium(III) fluoride oxidotungstate(VI), with the formula Gd5FW3O16

(Figure 1), were received in attempts to synthesize the gadolinium(III) fluoride ortho-oxidotungstate(VI)
GdF[WO4] comprising isolated [WO4]2− tetrahedra. Therefore, the starting materials gadolinium(III)
fluoride (GdF3: 99.9%, ChemPur, Karlsruhe, Germany), gadolinium sesquioxide (Gd2O3: 99.9%,
ChemPur, Karlsruhe, Germany), and tungsten trioxide (WO3: 99.9%, Merck, Darmstadt, Germany)
were mixed together in a molar ratio of 1:1:3 and finely powdered under argon atmosphere in
a glovebox.
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The mixture was filled into a homemade gold ampoule (purity 99.99%; Figure 2b, top), which was
closed with a gold lid and exposed to a reaction temperature of 800 ◦C and a maximum pressure of
2 GPa for 12 h in a belt press (Figure 2a). Due to the fluoride-containing starting materials and the
high-pressure setting, gold was chosen as the most suitable container material. For the title compound
Gd5FW3O16, the following reaction equation assuming a not entirely homogeneous mixture of the
starting materials was proposed:

GdF3 + 7 Gd2O3 + 9 WO3→ 3 Gd5FW3O16 (1)
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Figure 2. Schematic cross-section (a) of the high-pressure die and the pressure cell of the belt press at
the Max-Planck-Institute for Solid State Research (Stuttgart, Germany), and the gold ampoule after
treatment ((b), top).

Due to the extremely small amount of reaction mixture (approx. 50 mg) within the gold ampoules,
only very few single crystals of the title compound were obtained. The identification of expected
by-products, such as GdOF or GdF[WO4], was not possible.

2.2. Single-Crystal Structure Determination

Intensity data sets for the title compound Gd5FW3O16 were collected with a Smart Apex II Duo
single-crystal diffractometer (Bruker AXS, Karlsruhe, Germany) by using Mo-Kα radiation (λ = 71.07
pm) at a temperature of T = 130(2) K. Data correction was applied by the program SADABS [25], and
crystal structure solution and refinement were performed with the program package SHELX-2013 [26].
The crystallographic data are displayed in Table 1, while atomic positions and coefficients of the
isotropic thermal displacement parameters are given in Table 2. Due to the high absorption of both
gadolinium and tungsten, it was not possible to refine all oxygen atoms anisotropically; hence only
isotropic refinements for all 16 crystallographically independent O2− anions were performed. The rather
high residual electron density, mainly around (Gd5)3+, results from the quite peculiar surrounding
of this cation (see Section 3.1). Attempts to solve the structure with the aforementioned cation at a
split position (also to resolve the pronouncedly prolate displacement ellipsoid) were not successful.
Furthermore, a variation in the occupation of the (Gd5) site, such as defect, mixed, or single occupation
with Au3+ (from the container material), resulted in either a full occupation with gadolinium after
refinement or in significantly worse residual values (for the occupation of the aforementioned site
with gold).
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Table 1. Crystallographic data for gadolinium (III) fluoride oxidotungstate (VI) (Gd5FW3O16).

Crystal System Monoclinic

Space group P21/c (no. 14)
Formula units, Z 4

a/pm 539.29(4)
b/pm 1556.41(12)
c/pm 1522.66(11)
β/◦ 93.452(4)

Density, Dx/g·cm−3 8.397
Molar volume, V/cm3

·mol−1 192.07

Single-crystal X-ray diffractometer Smart Apex II Duo (Bruker AXS)
Radiation 71.07 (Mo-Kα)

Temperature, T/K 130(2)

Data corrections Program SADABS [25]

Structure solution and refinement Program package SHELX-2013 [26], scattering factors
according to [27]

Index range, ±h/±k/±l 8/23/23
2θmax /

◦ 66.40
F (000) 2716

Absorption coefficient, µ 52.64
Reflections collected/unique 22613/4758

Refined parameters 147
Rint/Rσ 0.058/0.059

R1 for (n) reflections with |Fo| ≥ 4σ (Fo) 0.033 (3728)
R1/wR2 for all reflections 0.052/0.047

Goodness of Fit, S 1.005
Extinction, g 0.00078 (1)

Residual electron density, ρmin/max/e− 10−6 pm−3
−4.98/3.95 at (Gd5)3+

Table 2. Wyckoff positions, fractional atomic coordinates, and equivalent isotropic displacement
parameters (Ueq

1) for Gd5FW3O16.

Atom Position x/a y/b z/c Ueq/pm2

Gd1 4e 0.54505(6) 0.22505(2) 0.86095(2) 51.2(8)
Gd2 4e 0.99526(6) 0.15440(2) 0.22655(2) 47.8(7)
Gd3 4e 0.02811(6) 0.11780(2) 0.47811(2) 48.0(8)
Gd4 4e 0.48355(6) 0.02332(2) 0.12010(2) 43.4(8)
Gd5 4e 0.98901(8) 0.09537(3) 0.72614(3) 152.9(10)

F 4e 0.1920(7) 0.1929(3) 0.3634(3) 67(9)

W1 4e 0.00855(5) 0.10733(2) 0.97043(2) 41.7(7)
W2 4e 0.54455(5) 0.21721(2) 0.63497(2) 42.4(6)
W3 4e 0.56511(5) 0.02705(2) 0.34505(2) 42.7(6)

O1 4e 0.8804(8) 0.2125(3) 0.9665(3) 58(10)
O2 4e 0.1430(9) 0.1177(3) 0.0836(3) 67(10)
O3 4e 0.2830(9) 0.1171(3) 0.9023(3) 67(11)
O4 4e 0.7770(8) 0.0232(3) 0.0125(3) 48(10)
O5 4e 0.8007(8) 0.0847(3) 0.8614(3) 50(10)
O6 4e 0.3607(9) 0.2020(3) 0.5350(3) 80(11)
O7 4e 0.6309(9) 0.1708(3) 0.1260(3) 57(10)
O8 4e 0.8288(9) 0.1619(3) 0.5964(3) 75(11)
O9 4e 0.2937(9) 0.2284(3) 0.7170(3) 85(11)

O10 4e 0.7822(8) 0.2219(3) 0.7491(3) 46(10)
O11 4e 0.5031(9) 0.0898(3) 0.6852(3) 98(11)
O12 4e 0.3689(9) 0.0384(3) 0.4321(3) 80(10)
O13 4e 0.3196(9) 0.0591(3) 0.2558(3) 101(11)
O14 4e 0.7181(9) 0.1391(3) 0.3603(3) 83(11)
O15 4e 0.1307(9) 0.0152(3) 0.5929(3) 64(10)
O16 4e 0.7875(8) 0.0239(3) 0.2326(3) 51(10)

1 Ueq = 1
3

[
U22 +

1
sin (β)2 (U11 + U33 − 2U13 cos(β))

]
[28].
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2.3. Single-Crystal Raman Spectroscopy

The single-crystal Raman spectrum for the title compound Gd5FW3O16 was measured with the
help of a Horiba XploRa spectrometer using a LASER device of the wavelength λ = 532 nm. For this
purpose, the crystal was placed in a glass capillary and fixed with desiccator grease (Figure 1).

3. Results and Discussion

3.1. Crystal Structure

The first gadolinium(III) fluoride oxidotungstate(VI), with the empirical formula Gd5FW3O16,
crystallizes in the monoclinic space group P21/c (no. 14) with four formula units per unit cell and the
lattice parameters a = 539.29(4), b = 1556.41(12), c = 1522.66(11) pm, and β = 93.452(4) (Table 1). The
motifs of mutual adjunction [29–31], as well as selected interatomic distances (d/pm) and bond angles
(∠/◦), in the crystal structure of Gd5FW3O16, are summarized in Tables 3–5.

Table 3. Selected interatomic distances (d/pm) in the crystal structure of Gd5FW3O16.

Distance Distance Distance Distance

Gd1–F 229.4(4) Gd2–F 235.8(4) Gd3–F 232.1(4) Gd4–O2 239.1(5)
Gd1–O1 235.4(5) Gd2–O2 243.0(5) Gd3–O1 276.1(5) Gd4–O3 255.5(5)
Gd1–O3 230.8(5) Gd2–O7 243.1(5) Gd3–O6 234.4(5) Gd4–O4 234.5(5)
Gd1–O5 258.3(5) Gd2–O9 244.3(5) Gd3–O8 225.9(5) Gd4–O4’ 249.7(5)
Gd1–O9 250.8(5) Gd2–O10 227.9(5) Gd3–O12 235.6(5) Gd4–O5 230.3(5)
Gd1–O10 219.0(5) Gd2–O13 231.6(5) Gd3–O14 240.0(5) Gd4–O7 242.9(5)
Gd1–O14 231.2(5) Gd2–O14 260.9(5) Gd3–O15 240.8(5) Gd4–O13 236.6(5)

Gd2–O16 232.4(5) Gd3–O15’ 246.5(5) Gd4–O16 229.8(5)

Gd5–O5 235.7(5) W1–O1 177.6(5) W2–O6 178.2(5) W3–O11 190.6(5)
Gd5–O8 234.8(5) W1–O2 183.6(5) W2–O7 181.1(5) W3–O12 175.4(5)
Gd5–O9 265.2(5) W1–O3 186.4(5) W2–O8 188.3(5) W3–O13 190.5(5)
Gd5–O10 230.0(5) W1–O4 194.5(5) W2–O9 190.4(5) W3–O14 193.7(5)
Gd5–O11 265.8(5) W1–O4’ 234.4(5) W2–O10 209.8(5) W3–O15 195.7(5)
Gd5–O11’ 287.9(5) W1–O5 197.8(5) W2–O11 214.3(5) W3–O16 215.0(5)
Gd5–O13 294.6(5)
Gd5–O15 253.9(5)
Gd5–O16 228.1(5)

Table 4. Selected bond angles (∠/◦) in the crystal structure of Gd5FW3O16.

Angle

Gd1–F–Gd2 (1x) 117.2(2)
Gd1–F–Gd3 (1x) 130.3(2)
Gd2–F–Gd3 (1x) 111.4(2)

W1–O4–W1 (2x) 107.3(2)
O4–W1–O4’ (2x) 72.7(2)
W2–O11–W3 (1x) 145.0(3)
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Table 5. Motifs of mutual adjunction [29–31] and effective coordination numbers (ECoN) [32] for the
cations in the crystal structure of Gd5FW3O16.

Atom Gd1 Gd2 Gd3 Gd4 Gd5 W1 W2 W3 C.N.

F 1/1 1/1 1/1 0/0 0/0 0/0 0/0 0/0 3
O1 1/1 0/0 1/1 0/0 0/0 1/1 0/0 0/0 3
O2 0/0 1/1 0/0 1/1 0/0 1/1 0/0 0/0 3
O3 1/1 0/0 0/0 1/1 0/0 1/1 0/0 0/0 3
O4 0/0 0/0 0/0 2/2 0/0 2/2 0/0 0/0 4
O5 1/1 0/0 0/0 1/1 1/1 1/1 0/0 0/0 4
O6 0/0 0/0 1/1 0/0 0/0 0/0 1/1 0/0 2
O7 0/0 1/1 0/0 1/1 0/0 0/0 1/1 0/0 3
O8 0/0 0/0 1/1 0/0 1/1 0/0 1/1 0/0 3
O9 1/1 1/1 0/0 0/0 1/1 0/0 1/1 0/0 4

O10 1/1 1/1 0/0 0/0 1/1 0/0 1/1 0/0 4
O11 0/0 0/0 0/0 0/0 2/2 0/0 1/1 1/1 4
O12 0/0 0/0 1/1 0/0 0/0 0/0 0/0 1/1 2
O13 0/0 1/1 0/0 1/1 1/1 0/0 0/0 1/1 4
O14 1/1 1/1 1/1 0/0 0/0 0/0 0/0 1/1 4
O15 0/0 0/0 2/2 0/0 1/1 0/0 0/0 1/1 4
O16 0/0 1/1 0/0 1/1 1/1 0/0 0/0 1/1 4
C.N. 7 8 8 8 9 6 6 6

ECoN 6.2 7.4 7.2 7.6 6.3 4.8 4.8 5.0

The crystal structure of Gd5FW3O16 comprises five crystallographically distinguishable Gd3+

cations (Tables 2 and 3) with coordination numbers of seven (Gd1), eight (Gd2–Gd4), and nine (Gd5)
set up by both oxide and fluoride anions (Gd1–Gd3) and only by oxide anions (Gd4, Gd5), respectively.
While the coordination polyhedra of the cations (Gd1)3+, (Gd3)3+, and (Gd5)3+ are irregularly shaped,
the ones for (Gd2)3+ and (Gd4)3+ can be described as distorted square antiprisms (Figure 3). Both
the Gd3+–O2− distances of 219–295 pm and the Gd3+–F− distances of 230–236 pm (Table 3) are in
good accordance to correspondent values found in literature (e.g., in Gd4O3F6 (C.N. (Gd3+) = 9 +

4): d(Gd3+–O2−) = 215–296 pm, d(Gd3+–F−) = 215–278 pm [33]). The fluoride anions are surrounded
by three Gd3+ cations (Gd1–Gd3) with a deviation of about 14 pm out of the plane built up by the
F− anions (Figure 3, bottom right) and Gd–F–Gd bond angles of 111–130◦ (Table 4). A very similar
environment of the fluoride anions is found in the crystal structure of the lanthanum(III) fluoride
oxidomolybdate(VI) of the composition La3FMo4O16 [24], in which the La–F–La bond angles range
between 108 and 137◦ and the deviation of the fluoride atoms out of the plane built up by La3+ cations
is about 24 pm. For (Gd5)3+, a rather high and very prolate displacement ellipsoid is noticeable (see
Figure 3 bottom left), which can be explained by an anisotropic distribution of the distances between
these cations and their surrounding oxide ligands. Although being the gadolinium cation with the
highest coordination number, only four O2− anions (O5, O8, O10, O16) are found with distances shorter
than 236 pm. These form a belt (or very flat tetrahedron) around (Gd5)3+, roughly situated in the
crystallographic (241) layer. Hence, these cations “escape” the stress of a tight, almost two-dimensional
surrounding by extending their displacement anisotropically perpendicular to the aforementioned
layer. Of the five oxygen atoms with distances longer than 250 pm, the shortest one (O15) also resides
within the aforementioned belt, while the four longest ones (O9, O11, O11’, O13) are situated in the
direction of the longest principal axis of the displacement ellipsoid of (Gd5)3+.

These findings are also corroborated by both MAPLE [29–31] and bond valence calculations [34,35].
The effective coordination numbers (ECoN, [33]) of Gd1–4 are at best about 0.8 less than the real ones
(Table 5), whereas (Gd5)3+ exhibits an ECoN value of 6.3, which is only 70% of the nine surrounding
oxide anions detected from the crystal structure description, due to this anisotropic distance distribution.
The contribution of every single oxygen ligand to the effective coordination number displays a gap
from the ideal value of 1 ± 0.2 for the four shortest ones to 0.63 for (O5)2− and between 0.4 and 0.08
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for the longest contacts. The same is true for the bond valence calculations, in which Gd1–4 result to
an average charge of 3.1, while it amounts for Gd5 to less than 2.9, with the O2− atoms showing the
shortest contacts delivering between 0.5 and 0.4 to the overall charge (0.27 for O15 with the median
bond length), and the other five provide 0.2 and less (bond-valence parameters for Gd3+

−O2− contacts:
R0 = 2.065 Å, B = 0.37 [35]). Thus, the coordination number around the (Gd5)3+ cations is better
described as five plus four instead of nine.

Crystals 2019, 9, x FOR PEER REVIEW 6 of 11 

 

the coordination polyhedra of the cations (Gd1)3+, (Gd3)3+, and (Gd5)3+ are irregularly shaped, the ones 
for (Gd2)3+ and (Gd4)3+ can be described as distorted square antiprisms (Figure 3). Both the Gd3+–O2– 
distances of 219–295 pm and the Gd3+–F− distances of 230–236 pm (Table 3) are in good accordance to 
correspondent values found in literature (e.g., in Gd4O3F6 (C.N. (Gd3+) = 9 + 4): d(Gd3+–O2−) = 215–296 
pm, d(Gd3+–F−) = 215–278 pm [33]). The fluoride anions are surrounded by three Gd3+ cations (Gd1–Gd3) 
with a deviation of about 14 pm out of the plane built up by the F− anions (Figure 3, bottom right) and 
Gd–F–Gd bond angles of 111–130° (Table 4). A very similar environment of the fluoride anions is found 
in the crystal structure of the lanthanum(III) fluoride oxidomolybdate(VI) of the composition 
La3FMo4O16 [24], in which the La–F–La bond angles range between 108 and 137° and the deviation of 
the fluoride atoms out of the plane built up by La3+ cations is about 24 pm. For (Gd5)3+, a rather high and 
very prolate displacement ellipsoid is noticeable (see Figure 3 bottom left), which can be explained by 
an anisotropic distribution of the distances between these cations and their surrounding oxide ligands. 
Although being the gadolinium cation with the highest coordination number, only four O2− anions (O5, 
O8, O10, O16) are found with distances shorter than 236 pm. These form a belt (or very flat tetrahedron) 
around (Gd5)3+, roughly situated in the crystallographic (241) layer. Hence, these cations “escape” the 
stress of a tight, almost two-dimensional surrounding by extending their displacement anisotropically 
perpendicular to the aforementioned layer. Of the five oxygen atoms with distances longer than 250 
pm, the shortest one (O15) also resides within the aforementioned belt, while the four longest ones (O9, 
O11, O11’, O13) are situated in the direction of the longest principal axis of the displacement ellipsoid 
of (Gd5)3+. 

 
Figure 3. Coordination environments of the five crystallographically distinguishable Gd3+ cations (red) 
and trigonal non-planar coordination polyhedra of the fluoride anions (green) in the crystal structure of 
Gd5FW3O16 (ellipsoid representation at 95% probability). 

These findings are also corroborated by both MAPLE [29–31] and bond valence calculations [34,35]. 
The effective coordination numbers (ECoN, [33]) of Gd1–4 are at best about 0.8 less than the real ones 
(Table 5), whereas (Gd5)3+ exhibits an ECoN value of 6.3, which is only 70% of the nine surrounding 

Figure 3. Coordination environments of the five crystallographically distinguishable Gd3+ cations (red)
and trigonal non-planar coordination polyhedra of the fluoride anions (green) in the crystal structure
of Gd5FW3O16 (ellipsoid representation at 95% probability).

The crystal structure of Gd5FW3O16 further comprises three crystallographically distinguishable
W6+ cations, which are surrounded by six oxide anions each in shape of distorted octahedra (Figure 4).
These coordination polyhedra are interconnected via edge- and vertex-sharing to discrete [(W1)2O10]8−

and [(W2)(W3)O11]10− entities, respectively (Figure 4). The W6+–O2− distances range from 175 (terminal)
to 234 pm (connecting) with the values in between, resembling the overall coordination of the oxygen
anion, i.e., the less contact to Gd3+ cations, the shorter the W6+

−O2− bond length (Table 4). These
values are typical for octahedral oxidotungstates(VI), especially those in Keggin polyhedra comprising
both, terminal as well as edge and vertex sharing oxygen atoms (e.g. H3PW12O40: d(W6+–O2−) =

169–245 pm [36]). While the interaction between the oxide anions and the gadolinium cations is of a
mainly ionic nature, the bond between oxygen and tungsten can better be described as covalent. Thus,
the anionic arrangement is determined by the previously described isolated ditungstate entities, and
the Gd3+ cations are arranged in suitable voids (together with the F− anions). However, the voids
filled by the (Gd5)3+ cations appear not to be as suitable as those for (Gd1–4)3+; hence the anisotropic
distance distribution found for the coordination polyhedra around the (Gd5)3+ cations is explainable.
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Figure 4. Distorted [WO6]6− octahedra in the crystal structure of Gd5FW3O16 (ellipsoid representation
at 95% probability), which are connected via common edges to discrete [(W1)2O10]8− units comprising
an inversion center # (left) and by sharing vertices to also discrete [(W2)(W3)O11]10− entities (right).

A view at the expanded unit cell of Gd5FW3O16 is given in Figure 5. Based on the previously
mentioned building blocks, namely the two molecular ditungstate units [W2O10]8− and [W2O11]10−,
the anionic but non-covalent [FGd3]8+ triangles, and the remaining two Gd3+ cations, Gd4 and Gd5,
this first gadolinium fluoride oxidotungstate (VI) can be described with a structured formula according
to Gd4[FGd3]2[W2O10][W2O11]2.
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rhombuses of the [(W1)2O10]8− entities (light blue), [(W2)(W3)O11]10− units (dark blue), and the
trigonal non-planar coordination environments of the F− anions (green).
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3.2. Single-Crystal Raman Spectrum

The single-crystal Raman spectrum (Figure 6) shows the band of the symmetric vibration mode of
the distorted octahedral [WO6]6− entities in the crystal structure of Gd5FW3O16 at a Raman shift of 871
cm−1. This shift is in good accordance with data from both, compounds consisting of vertex-sharing
octahedra like russelite (Bi2WO6) [37] and minerals comprising edge-connected octahedral units, such
as hübnerite (MnWO4) [37], ferberite (FeWO4) [37], and raspite (α-PbWO4) [37], with their symmetric
vibration modes ranging between 800 and 885 cm−1. Due to the large background caused by the
desiccator grease (also responsible for the modes between 1000 and 1500 cm−1, as well as between 2600
and 3100 cm−1 [38,39]) in combination with the very small single crystal (Figure 1), the less intense
antisymmetric stretching, as well as the deformation vibrations, can only be adumbrated in the area
below 850 cm−1 (inset of Figure 6). Other than preliminary experiments using a belt press, in which
a contamination with H2O lead to hydroxide containing products, the absence of OH groups in the
presented compound is proved by the missing vibration mode at about 3500 cm−1 [40,41], which is a
crucial point for the corroboration of the overall composition since F− and OH− groups behave isosteric
and the single crystals have proven to be too small for a reliable microprobe analysis.
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(λ = 532 nm).

4. Conclusions

The new gadolinium (III) fluoride oxidotungstate (VI), Gd5FW3O16 (≡Gd4[FGd3]2 [W2O10]
[W2O11]2), was synthesized via high-pressure methods in gold ampoules using a belt press and GdF3,
Gd2O3, and WO3 as starting materials. The characterization was carried out in single-crystal diffraction
and Raman spectroscopy. This fluoride derivative of a rare-earth metal oxidotungstate marks the first
success in the syntheses of this class of compounds, while numerous synthesis attempts with both
solid-state and solvochemical methods failed to yield crystalline products. Although the high-pressure
synthesis has proven to be successful, a high yield of the product could not be established due to
the small sample size. However, since elevated pressure appears to have a positive effect on the
formation of rare-earth metal fluoride tungstates, there is a good chance to produce a larger amount
with hydrothermal methods. Appropriate experiments are already underway, and if a single-phase
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synthesis has proven to be successful, these materials are rather promising for doping with active
cations for luminescence purposes.
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