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Abstract: Crystal structure elucidations of bio-based polymers provide invaluable data regarding
structure–property relationships. In this work, we achieved synthesis and Single Crystal X-ray
Diffraction (SCXRD) structural determination of a new furan-based polydiacetylene (PDA) derivative
with carbamate (urethane) functionality. Firstly, diacetylene (DA) monomers were found to
self-assemble in the crystalline state in such a way that the polymerization theoretically occurred
in two different directions. Indeed, for both directions, geometrical parameters for the reactive
alignment of DA are satisfied and closely related with the optimal geometrical parameters for DA
topochemical polymerization (d(1) = 4.7–5.2 Å, d(2) ≤ 3.8 Å, θ ≈ 45◦). However, within the axis of
hydrogen bonds (HB), the self-assembling monomers display distances and angles (d(1) = 4.816 Å,
d(2) = 3.822 Å, θ = 51◦) that deviate more from the ideal values than those in the perpendicular
direction (d(1) = 4.915Å, d(2) = 3.499Å, θ ≈ 45◦). As expected from these observations, the thermal
topochemical polymerization occurs in the direction perpendicular to the HB and the resulting PDA
was characterized by SCXRD.

Keywords: biopolymer; sustainable materials; polydiacetylene; furan; Single Crystal X-ray Diffraction
(SCXRD); carbamate; hydrogen bond; topochemical polymerization; diacetylene

1. Introduction

Biomass and biomass-derived materials are considered by the scientific community as some of the
most promising alternatives for decreasing the current dependence on fossil resources [1–6]. This is
evidenced by plans to gradually replace some petroleum-based plastic by bio-based plastic [7–12]
or at least hybrid bio- and fossil-based polymeric blends [13,14]. Synthesis of bio-based polymers,
especially furan-based polymers, has, therefore, been the subject of extensive studies [15–23]. There are
several reasons that can explain the growing interest in furan-based polymers: (1) they originate
from lignocellulose, the most abundant and bio-renewable biomass on earth [1]; (2) the synthetic
accessibility of a wide variety of furan monomers with very different chemical properties, providing
access to various types of macromolecular materials such as polyesters, polyamides, polyurethanes,
epoxy resins, etc., [18]; and (3) the possibility of exploiting the chemical features associated with the
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furan heterocycle (e.g., thermoreversible furan/maleimide Diels-Alder reaction) to prepare materials
with useful properties, such as self-healing, thermal reverse-cross-linking and recyclability [3,24,25].

Development of new bio-based polymers requires characterization tools to gain better
understanding of the material’s structure and properties [26]. In this context, X-ray Diffraction
(XRD) techniques are widely applied [27–29]. These effective tools were also exploited in the case of
furan-based polymers, which have been studied by many X-ray characterization techniques such as
X-ray Powder Diffraction (XRPD) [30], X-ray Fiber Diffraction (XRFD) [31], Wide-Angle X-ray Scattering
(WAXS) [32], and Small-Angle X-ray Scattering (SAXS) [33]. In this way, the herringbone packing of
polyfuran, a semiconducting polymer, has been indirectly inferred from the related α-sexifuran single
crystal structure (Figure 1a) [34,35]. The same Single Crystal X-ray Diffraction (SCXRD) technique
was also used to predict the potential biological activities of a newly developed BisFuran Diol (BFD,
Figure 1b) from a structural comparison with the famous endocrine disruptor bisphenol A (BPA) [36].
Finally, the structure of a furfural-derived diacid monomer (CBDA-2) prepared with a solid-state
[2+2] phototocycloaddition (Figure 1c) was also explored using SCXRD. That rigid monomer was later
introduced in a fully bio-based polymer through condensation with glycerol [37].
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Figure 1. Some selected examples of furan-based monomer or oligomer investigated using Single
Crystal X-ray Diffraction (SCXRD) technique. (a) α-sexifuran, (b) BisFuran Diol (BFD), and (c) diacid
(CBDA-2)

However, to the best of our knowledge, there is no single example of a complete SCXRD
characterization of a furan-based polymer. While some natural furan-based diacetylene (DA) do
exist [38–40], no attempts to polymerize them have been reported. This seems quite surprising since
polydiacetylene (PDA) has attracted tremendous attention for applications in various fields [41,42] due
to its unique chromatic [43–50] and semi-conductive properties [51–61].

We now present the complete SCXRD structural determination of the thermal topochemical
polymerization of the furan-DA derivative 1 to the semiconducting Furan-PDA 2 (Figure 2). As already
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documented, the general polymerization of DA in the solid-state proceeds only if specific geometrical
and experimental conditions are fulfilled [62–66]. The SCXRD analysis of this process is useful since it
provides valuable data for the comprehension of the structure–property relationships within materials.
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Figure 2. Chemical structures of the furan-diacetylene (DA) derivative 1 and the corresponding
furan-polydiacetylene (PDA) 2 which have both been fully characterized using SCXRD.

2. Materials and Methods

2.1. Synthesis and Recrystallization

Alkyne 3 was obtained in an efficient manner from commercially available furfuryl isocyanate
(Scheme 1). The homocoupling of the isolated terminal alkyne 3 to give symmetrical Furan-DA 1 was
achieved in 1.5 h with a Hay catalyst [67]. All chemicals were handled with great care as the Furan-DA
1 is sensitive to light and temperature.
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Scheme 1. Synthesis of alkyne 3 and symmetrical Furan-DA 1. DCM: dichloromethane; DIPEA:
diisopropylethylamine; TMEDA: tetramethylethylenediamine.

2.1.1. Synthesis of Alkyne 3

To a solution of propargyl alcohol (130 µL, 2.27 mmol) in dichloromethane (DCM, 10 mL) were
added furfuryl isocyanate (175 µL, 1.62 mmol) and N,N-diisopropylethylamine (DIPEA, 340 µL,
1.95 mmol) under argon. The reaction mixture was stirred under an argon atmosphere for seven days
at room temperature. The resulting mixture was purified by flash chromatography (DCM then 1%
Acetone/DCM), yielding the alkyne 3 as an orange oil which slowly solidified (196 mg, 67%). Rf = 0.35
(DCM). 1H NMR (300 MHz, CDCl3) δ ppm: 7.30 (d, 1H, J = 1.8 Hz), 6.26 (m, 1H), 6.18 (d, 1H, J = 3.3 Hz),
5.53 (br, 1H), 4.63 (d, 2H, J = 2.7 Hz), 4.29 (d, 2H, J = 6.0 Hz), and 2.44 (t, 1H, J = 2.7 Hz).

2.1.2. Synthesis and Recrystallization of Furan-DA 1

To a solution of alkyne 3 (495 mg, 2.76 mmol) in DCM (8 mL), Hay catalyst was added. The catalyst
had been freshly prepared by stirring CuI (534 mg, 2.76 mmol) and tetramethylethylenediamine
(TMEDA, 830 µL, 5.53 mmol) in DCM (7 mL) under argon. The reaction vessel was then covered
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with aluminum foil to prevent early photopolymerization. The reaction mixture was stirred under
an oxygen atmosphere (balloon) for 90 min, before it was then passed through a short pad of silica
gel, applying a gradient of solvent from pure DCM to 1% acetone/DCM, then to 5% acetone/DCM.
The solvent was removed under reduced pressure while keeping the temperature below 45 ◦C to
prevent thermal polymerization. The resulting Furan-DA 1 appeared as a white solid with a slight
purple tint (≈225 mg, ≈46%), that was quickly dissolved in a minimal volume of DCM. A small amount
of red insoluble fibers (presumably Furan-PDA 2) was filtered off (cotton wool), before pentane was
allowed to slowly diffuse in the DCM solution of 1 at 5 ◦C. Pink-colored single crystals of Furan-DA 1,
with plate and needle morphologies, suitable for X-ray analysis, were harvested. Rf = 0.05 (DCM) and
0.43 (5% acetone/DCM). 1H NMR (300 MHz, CDCl3) δ ppm: 7.35 (m, 1H), 6.31 (m, 1H), 6.23 (m, 1H),
5.12 (br, 1H), 4.76 (s, 2H), and 4.36 (d, 2H, J = 6.0 Hz).

2.2. Topochemical Polymerization of Furan-DA 1 to Afford Furan-PDA 2

After one week at room temperature, the initial clear pink crystals of Furan-DA 1 had turned
into deeper red–purple crystals, providing evidence of PDA formation that is visible to the naked eye.
In order to drive the topochemical polymerization to completeness, the crystals were heated at 80 ◦C
for 50 h, then subsequently, at 65 ◦C for 20 h. The resulting lustrous dark red needle-like single crystals
of Furan-PDA 2 were suitable for X-ray analysis.

2.3. Single Crystal Structure Analysis of Furan-DA 1 and Furan-PDA 2

The X-ray intensity data were measured on a Bruker Apex DUO system equipped with a Cu
Kα ImuS micro-focus source with MX optics (λ = 1.54178 Å). The frames were integrated with the
Bruker SAINT software package using a wide-frame algorithm. Data were corrected for absorption
effects using the Numerical Mu Calculated method (SADABS). The structure was solved and refined
using the Bruker SHELXTL Software Package. Details of the crystallographic data and refinement
are presented in Table 1 and in the Supplementary Materials (CIF). Crystallographic data for the
structures reported in this paper have also been deposited in the Cambridge Crystallographic Data
Centre (CCDC). The following numbers CCDC-1922071 and CCDC-1922076 have been assigned to the
two compounds Furan-DA 1 and Furan-PDA 2, respectively.

Table 1. Crystallographic data for Furan-DA 1 and Furan-PDA 2.

Furan-DA 1 Furan-PDA 2

formula C18H16N2O6 (C18H16N2O6)n
CCDC Number 1922071 1922076

MW/g mol−1 356.33 356.33
crystal color clear light pink lustrous dark red

crystal system monoclinic monoclinic
space group P21/c P21/c

a/Å 4.9153(3) 4.8908(1)
b/Å 38.0403(19) 37.6027(9)
c/Å 4.8163(2) 4.8297(1)
β/deg 109.884(4) 112.000(1)
V/Å3 846.86(8) 823.54(3)

Z 2 2
density (calculated)/g cm−3 1.397 1.437
total number of reflections 8755 10411

independent reflections 1548 1544
Rint 0.0842 0.0717

R1 [I >2σ(I)] 0.0863 0.0524
wR2 [I >2σ(I)] 0.1696 0.1295

GoF 1.100 1.077
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3. Results and Discussion

3.1. Single Crystal Structure of Furan-DA 1

All the hydrogen bond (HB) capabilities arising from the carbamate C = O and N-H parts are
fulfilled in the crystal of Furan-DA 1. As a result, each Ci symmetric unit 1 is involved in four HBs with
two neighbors. In this arrangement, parallel stacking of carbamates causes the alignment of diynes
parallel to the c-axis (Figure 3a). Such alignment of diynes is also present along the perpendicular
a-axis despite the absence of HBs (Figure 3b). In both cases, the distance d(2) between the diynes
reactive carbons, which is under 4 Å, is in fairly good agreement with the optimal value for the
1,4-addition reaction [65,68] (Table 2). However, the closer d(2) contact for the a-axis values in the case
of the DA stacking in the perpendicular direction to the hydrogen bonding seems to be more prone to
polymerization. Another argument in favor of the polymerization in the ab plane is that the solid-state
reaction needs to proceed with a certain degree of flexibility between the reactive monomers. In some
cases, the additional rigidity from the presence of intermolecular hydrogen bonds has been reported to
inhibit the solid-state reactivity [69]. The same phenomenon has been reported for a similar DA in
which the biobased furan group of 1 had been replaced by a benzyl group [70].
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Figure 3. Alignment of diacetylene functional groups in the stacking of Furan-DA 1 (a) parallel to the
c-axis and (b) parallel to the a-axis.

Table 2. Comparison between the general optimal values for topochemical polymerization and the
geometrical parameter observed for the stacking of Furan-DA 1 in the direction parallel to the c-axis
(parallel to the hydrogen bonds (HBs)) and parallel to the a-axis (orthogonal to the HBs).

Significant Geometric Parameters
for Polymerization of DA Optimal Values Furan-DA 1 (Direction

Parallel to the c-axis)
Furan-DA 1 (Direction
Parallel to the a-axis)

d(1) 4.7–5.2Å 4.816 Å 4.915 Å
d(2) ≤3.8Å 3.822 Å 3.499 Å
θ ≈45◦ 51◦ 45◦

3.2. Topochemical Polymerization of Furan-DA 1 to Furan-PDA 2

As expected from the topological parameters (Table 2), the topochemical thermal polymerization
of Furan-DA 1 proceeds within the ab plane (Figure 4). The product Furan-PDA 2 is, as often observed
for symmetric DAs, the result of a turnstile mechanism [63], which leads to contraction (about 1.2%)
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along the b-axis (38.0403 to 37.6027Å). Looking in the a-axis direction, the repeating period d(1) also
shrinks from 4.9153 to 4.8908Å (about 0.5% only). In this context, the furan side groups stay at almost
the same position before and after the solid-state transformation, ensuring a smooth transition.
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Figure 4. Single crystal characterization of the topochemical polymerization of Furan-DA 1 to
Furan-PDA 2.

A small expansion from 4.8163 to 4.8297 Å (about 0.3%) was observed along the c-axis (the direction
of the HBs). There is also a minor change in the hydrogen bond distance contact (N-H . . . O),
which corresponds to 2.859 Å in the monomer crystal and 2.863 Å in the final PDA crystal. As the
H-bonding pattern is nearly unaffected, almost no lattice strain or mismatch is present and the
polymerization can proceed smoothly to completion [70]. Finally, although the c-axis shows an
expansion, the resulting final PDA crystal is denser than the corresponding DA monomer crystal
(respectively, 1.437 vs. 1.397 g/cm3, Table 1).

4. Conclusions

Furan-based biopolymers have received considerable attention in recent years because of their great
potential to replace petroleum-based plastics [11]. Organic Semiconductor Single Crystals [58,71,72] are
also considered to be an important research topic, given they are “ideal candidates for the construction
of high-performance optoelectronic devices/circuits” [55]. In this study, we reported the topochemical
polymerization of a furan-based diacetylene (Furan-DA 1). In fact, the obtained Furan-PDA 2 single
crystal represents the first fully structurally characterized furan-based polydiacetylene. Further
research on this novel family of green conjugated polymers is currently being carried out in our
laboratories. It is likely that these preliminary results will stimulate the scientific community to pursue
the development of green biomass PDA-based organic electronic or sensor materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/9/448/s1.
Crystallographic information files for Compounds 1 and 2 (CIF).
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