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Abstract: Particulate matter (PM) pollution, which usually carries viruses and bacteria, has drawn
considerable attention as a major threat to public health. In this present study, an environment-friendly
antibacterial Poly(lactic acid)(PLA)/chitosan composite air filter was fabricated using the one-step
electrospinning technique. The composite PLA/chitosan fibres show a highly porous structure,
in which chitosan nanoparticles (NPs) were found to be uniformly distributed throughout the
entire fibre. The morphologies, through-pore size and distribution, air filtration and anti-microbial
properties of these filter media were studied. The results showed that it was not the chitosan content
but instead the concentration of the spinning solutions that had the greatest effect on the morphologies
of the porous fibres. The relative humidity influenced the nanometre-scale pores on the surface of
PLA/chitosan fibres. The PLA/chitosan fibrous membranes with a chitosan to PLA mass ratio of
2.5:8 exhibited a high filtration efficiency of 98.99% and a relatively low pressure drop (147.60 Pa)
when the air flow rate was 14 cm/s, while these also had high antibacterial activity of 99.4% and
99.5% against Escherichia coli and Staphylococcus aureus, respectively. It took 33 min for the PM2.5

concentration to decrease to 0 µg/m3 from 999 µg/m3 using the PLA/chitosan fibrous membranes,
which demonstrates obviously effective air purification performance.
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1. Introduction

In recent decades, the levels of particulate matter (PM) in the air, which are well known to affect
the quality of human life and even to pose a serious threat to the health of the public [1–7] have been
obviously rising due to rapid urbanization and industrialization. In most situations, the components
of indoor air are complex, including solid particles, liquid droplets, pet hairs, etc., and can pose
great harm. Previous studies have shown that PM2.5, which are particles with diameters that are less
than 2.5 µm, are particularly harmful because they can penetrate human bronchi, lungs and even
extrapulmonary organs [1,8,9]. In addition, PM2.5 always carries and spreads bacteria and viruses,
causing serious harm [9]. Therefore, filter media with excellent filtration and antibacterial performance
are in high demand.

Recently, various types of polymers have been fabricated as electrospun fibrous membranes to
be used as air filtration media. Nanofibre membranes with optimal characteristics, such as a high
specific surface area and porous microstructure with interconnected pores, can efficiently capture the
fine particles [8,10–12]. Electrospun mats have also been widely researched in the field of biomedical
materials, such as tissue engineering scaffolds, drug delivery, etc. [13–15]. Electrospinning is an
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efficient and versatile continuous process for the preparation of uniform nanofibres and the technique
is becoming increasingly mature after years of research. In recent years, various types of polymers have
been fabricated as electrospun fibrous membranes to be used as air filtration media, such as PVA [16],
Nylon 6 [17] and PAN [8,12,18]. Most of them are petroleum-based polymers, the application of which
has been found to coincide with serious environmental pollution. Additionally, fossil resources are
gradually being depleted [19].

Poly(lactic acid) (PLA, [CH(CH3)COO]n) is a linear aliphatic polyester, which can be prepared
from renewable bioresources through fermentation and polymerization [15]. In recent years, PLA has
drawn research attention worldwide due to its good biocompatibility and biodegradability [20,21].
In addition, PLA can be dissolved in common solvents and turned into nanofibrous membranes
with good mechanical properties through electrospinning. Bognitiski et al. were the first to fabricate
nanostructured, electrospun PLA fibres using a dichloromethane (DCM) solvent [22]. Zhe Wang et al.
used PLA as a raw material in the manufacture of porous nanofibre membranes, which displayed
excellent air filtration performance [23,24].

Chitosan has attracted great interest as a new functional biomaterial because of its advantageous
properties, such as biodegradability, biocompatibility [25], nontoxicity and natural antimicrobial
activities against different groups of microorganisms [26,27]. However, the electrospinning of chitosan
is difficult due to its limited solubility in most organic solvents as well as its high viscosity and strong
hydrogen bonds in acidic aqueous solutions [28,29], which has resulted in chitosan having limited
applications as an electrospun fibre material. Therefore, chitosan and its derivatives should be blended
with a polymer solution before electrospinning. Polymers that can be dissolved in acidic aqueous
solutions are preferred, such as PEO and PVA [30,31].

Electrospun PLA/chitosan nanofibres are expected to form a new biomaterial that possesses a
combination of properties, which cannot be exhibited by individual polymers. During recent decades,
significant progress has been made in the preparation of PLA/chitosan nanofibres [32–38]. The results
show that the differences in nature, structure and compatibility between PLA and chitosan lead to
a poor dispersion of the two phases. Nguyue et al. [39] even used PEO as a compatibilizer in order
to improve the interaction and dispersion between PLA and chitosan phases. Andri et al. [14] added
ethanol to make PLA/chitosan solutions miscible without precipitation. However, these measures did
not appear to work well.

In this study, chitosan NPs were added to PLA solutions and were dispersed homogeneously
without affecting the solution viscosity. Fibres made from the suspension by electrospinning had
nanopores on their surfaces and the chitosan was distributed on the surfaces of the fibres in the form
of particles. The membranes were characterized with a field emission scanning electron microscope
(FE-SEM), energy-dispersive X-ray spectrometer (EDX), a transmission electron microscope (TEM),
a through-pore size analyser and automated filtration testing unit. The antibacterial activity of
the PLA/chitosan composite fibrous membranes was evaluated according to GB/T 20944.3-2008:
Textiles–Evaluation for antibacterial activity—Part 3: Shake flask method.

2. Materials and Methods

2.1. Materials

PLA (Wm = 1.0 × 105, Melt Index (190 ◦C, 2.16 kg) = 1–30 g/10 min) was obtained from Zhejiang
Hai Zheng Biological Materials Co., Ltd., Taizhou, China. Chitosan NPs (degree of deacetylation = 95%,
viscosity = 42 cps) with a diameter of 100–600 nm were supplied by ShanDong LaiZhou Highly
Bio-Products Co., Ltd., Laizhou, China. Both N,N-dimethylacetamide (DMAC) and dichloromethane
(DCM) were purchased from the National Medicine Group Chemical Reagents Co., Ltd., Suzhou,
China. All of the chemicals were of analytical grade and were used without further purification.
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2.2. Preparation of Solutions

A mixture of DCM/DMAC (with a mass ratio of 10:1) was used as the solvent for the PLA. Initially,
the PLA polymer was dissolved by stirring for 12 h at room temperature. After that, the chitosan NPs
were added to the as-prepared PLA solutions by stirring for 2 h, with these dispersed NPs having
maintained their shape without being dissolved. The solutions were then sonicated for 90 min to
obtain a well-mixed homogenized suspension.

As listed in Table 1, one set of samples (set A) was composed of PLA solutions of different
concentrations (4 wt %, 5 wt %, 6 wt %, 7 wt % and 8 wt %), while the mass ratio of chitosan NPs to
PLA was 1:4 (w/w). The other one (set B) was composed of PLA solutions with 8 wt % concentration
containing different mass ratios of chitosan NPs (the chitosan NPs to PLA ratios were 0:8, 1:8, 1.5:8, 2:8
and 2.5:8 (w/w)).

Table 1. Composition of electrospinning solutions.

Set Sample Chitosan/Solution
wt %

PLA/Solution
wt %

Mass Ratio of
DCM/DMAC

Mass Ratio of
Chitosan/PLA

A

A1 1 4 10:1 1:4
A2 1.25 5 10:1 1:4
A3 1.5 6 10:1 1:4
A4 1.75 7 10:1 1:4
A5 2 8 10:1 1:4

B

B1 0 8 10:1 0:8
B2 1 8 10:1 1:8
B3 1.5 8 10:1 1.5:8
B4 2 8 10:1 2:8
B5 2.5 8 10:1 2.5:8

2.3. Electrospinning

The prepared PLA/chitosan solution was loaded into a 5-mL syringe with a 21-gauge needle
tip that was connected to a voltage supply (DWP503-1ACDF, Tianjin Dongwen High Voltage Co.,
Tianjin, China) and ejected at a controllable feed rate (1 mL/h), which was operated by a syringe pump
(KDS-100, KD Scientific Inc., Holliston, MA, USA). A high voltage (18 kV) was applied to the needle
tip. The composite PLA/chitosan fibres were deposited on the nonwoven fabrics wrapped around a
grounded metallic roller rotating at 5.5 m/min, which was positioned 14 cm from the tip of the needle.

2.4. Characterisation

2.4.1. Solution Viscosity

The viscosity of the PLA and PLA/chitosan solutions was measured with a rheometer (AR 2000,
TA Instruments, New Castle, DE, USA) at 20 ◦C. The diameter of the cone plate was 40 mm and the
shear rate was 0–1001 s−1.

2.4.2. Fibre Morphology

The FE-SEM (S-4800, Hitachi Ltd., Tokyo, Japan) images of the electrospun fibres were obtained
under an accelerating voltage of 3 kV. The dispersion of chitosan NPs in the fibres was examined using
a TEM (HT7700, 120 kV, Hitachi Ltd., Tokyo, Japan). The average fibre diameter and average diameter
of the pores on the surface of the micro-scale fibres were measured by using image processing software
(Image-Pro Plus 5.0) and were tested 100 times and 300 times, respectively.
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2.4.3. Elemental Detection

EDX analysis combined with SEM (TM3030, Hitachi Ltd., Tokyo, Japan) was used to detect the
element concentrations and distribution on the electrospun fibrous membranes at randomly selecting
areas, before X-ray net counts were obtained.

2.4.4. Through-Pore Size and Distribution

The through-pore size and through-pore size distribution of the fibrous membranes were
measured by using a manually operated through-pore size analyser (Porometer 3G, Quantachrome
Instruments Co., Boynton Beach, FL, USA). The fibrous membranes were cut to a diameter of 2.5 cm
and thoroughly wetted with a liquid accessory kit (Number 01150-10035) to fill all of the pores with
liquid (Porometer 3G—Porofil® Wetting Solution). The wetted sample was subjected to increasing
pressure from a gas source. As the pressure of the gas increased, the liquid in the largest pores was
pushed out. Increasing the pressure further allowed the gas to flow through the smaller pores until all
of the pores were emptied and thus, a ‘wet’ run was obtained. When the dried sample was then tested
without liquid, a ‘dry’ run was obtained. Comparing the flows from the ‘wet’ run with those from the
‘dry’ run, the through-pore size and through-pore size distribution could be calculated.

2.4.5. Filtration Performance

The aerosol filtration efficiency and airflow resistance of the composite PLA/chitosan fibrous
membranes were measured with an automated filtration testing unit (TSI8130, TSI Inc., Shoreview,
MN, USA). NaCl aerosol particles with a 260-nm mass median diameter and a 75-nm count median
diameter were prepared with an aerosol particle generator. The neutralized NaCl aerosol particles
were fed into a filter holder and passed through a filter with an effective area of 100 cm2. All NaCl
aerosol tests were conducted at room temperature at a continuous face velocity of 14 cm/s.

Quality factors (QF) were generally used as the comprehensive parameter to evaluate the filtration
performance of the filter. QF were defined as QF = − ln(1 − η)/∆p, where η and ∆p refer to the
filtration efficiency and the pressure drop, respectively.

2.4.6. Antibacterial Activity

The antibacterial activity of the composite PLA/chitosan fibrous membranes against Escherichia
coli and Staphylococcus aureus was evaluated using a viable cell-counting method, which is described
below, according to GB/T 20944.3-2008. Here, both E. coli and S. aureus bacterial species were first
activated with a fresh nutrient agar medium, before being incubated overnight (18–24 h) at 37 ◦C.
Subsequently, the typical colonies were placed in 20 mL of nutrient broth and were incubated at
37 ◦C with gentle shaking (130 rpm) for 18–20 h. After this, the bacterial solution was diluted to
a concentration of approximately 4 × 105 CFU/mL. Typically, the sterilized PLA/chitosan fibrous
membranes with a weight of 0.75 g were exposed to the bacterial solution for 24 h at 24 ◦C under
visible light. The bacterial solutions were then inoculated in Petri dishes containing the nutrient agar
after ten-fold dilutions at 37 ◦C for 24 h. The average number of surviving bacteria was determined by
counting the colonies on the three incubated agar plates for each sample. The antibacterial activity was
evaluated based on

Antibacterial activity =

(
Ncontrol − Nsample

)
Ncontrol

(1)

where Ncontrol and Nsample are the quantities of the visual bacterial colonies on the standard cotton
fabric and the tested PLA/chitosan composite fibrous membranes, respectively.

2.4.7. Air Purification Performance

In order to evaluate the air purification performance, a filter element for a car air purifier (HS3122,
Husum Technology Co. Ltd., Shanghai, China) was prepared using the membrane, with the area
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maintained at a consistent value with the filter included with the purifier. A polluted environment
was created with cigarettes in a confined space with a volume of 0.125 m3, before the vehicle filter was
placed in the polluted space. The PM2.5 concentration was tested by an air quality detector (MEF-550,
Sensology Institute, Michigan, MI, USA). The time taken for the concentration of PM2.5 to decrease to 0
µg/m3 from 999 µg/m3 was recorded, which was an indication of the air purification performance of
the fibrous membranes.

All the membranes used for through-pore size, filtration and air purification performance tests
were prepared under the same conditions, including the spinning time (6 h) and the humidity.

3. Results and Discussion

3.1. Morphologies of PLA/Chitosan Porous Nanofibres

3.1.1. Effect of Concentration on Morphology of PLA/Chitosan Fibres

Concentration has a significant influence on the morphology of fibres. The FE-SEM micrographs
of PLA/chitosan nanofibres fabricated from the PLA/chitosan solutions (the weight ratio of chitosan
to PLA was 1:4) under 45% humidity are presented in Figure 1. Bead-on-string fibres were obviously
observed when the mass fractions of PLA in the mixtures were 4%, 5% and 6% (Figure 1a–f).
The number of the beads gradually decreased and the wrinkles on the beads smoothened as the
concentration increased. When the concentration of PLA in the solution reached 8 wt %, the fibres
became even with no beads present (Figure 1i,j). The reason for this phenomenon was that the increased
solution concentration led to changes in the properties of the solutions, especially viscosity. As shown
in Figure 2a, the viscosity increased with the increase in the concentration of polymers, which was
the main factor resulting in changes to the fibre morphology. As clearly displayed in Figure 1b,d,f,h,j,
many mesopores and macropores (with a width ranging from 29 nm to 107 nm) were distributed on
the surface of the beads and bead-less fibres, which resulted from the phase separation and breath
figure induced by the rapid solvent evaporation and vapor penetration and condensation [40]. It is
generally accepted that the pores on the surface of fibres affect the specific surface area and the
nanoporous structure of the resultant fibrous membranes [24,41,42], which ultimately affect the air
filtration efficiency and purification performance [43]. Additionally, no chitosan NPs were observed on
the surface of the fibres in Figure 1 (×4k, 5k and 10k) and it was speculated that the chitosan NPs could
be broken up into smaller particles under the high-voltage electric field during the electrospinning
process, before being distributed on PLA fibres [15].
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Figure 1. FE-SEM images of the PLA/chitosan fibrous membranes prepared at different concentrations:
(a,b) 4 wt % PLA, 1 wt % CS; (c,d) 5 wt % PLA, 1.25 wt % CS; (e,f) 6 wt % PLA, 1.5 wt % CS;
(g,h) 7 wt % PLA, 1.75 wt % CS; and (i,j) 8 wt % PLA, 2 wt % CS.
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Figure 2. Viscosity of the solutions: (a) solutions with different concentrations; and (b) solutions of 8%
PLA containing various ratios of chitosan.

3.1.2. Effect of Humidity on Morphology of PLA/Chitosan Fibres

Water droplets are most likely to be the cause of pore formation on the fibre surface so humidity
may significantly affect the nanopore size and number because much more vapor will distribute into
the air when the relative humidity is high. To determine the effects of humidity on the nanopores and
the properties of the fibrous membranes, fibres with different pore structures (Figure 3) were fabricated
with a solution at a PLA/chitosan mass ratio of 8:2. In this experiment, we varied the humidity from
15% to 60% while the other parameters were kept constant. As seen in Figure 3a, the surface of the
fibres prepared at a humidity of 15% was nearly smooth with an average fibre diameter of 0.91 µm
(Table 2). When the humidity increased to 30%, many pores were discovered and the average diameter
increased to 1.15 µm. Under 45% and 60% humidity, the nanopores became denser and deeper, while
the diameters increased to 1.34 µm and 1.50 µm, respectively. As displayed in Table 2, the average
surface nanopore width increased from 46.0 nm to 65.8 nm and the surface nanopore coverage ranged
from 18.13% to 32.72% when the humidity was varied from 30% to 60%.
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Table 2. Characterisation of fibres prepared under various levels of humidity.

Humidity/% Diameter/µm Coverage of Pores/% Width of Pores/nm

15 0.91 ± 0.14 / /
30 1.15 ± 0.12 18.13 46.0 ± 12.8
45 1.34 ± 0.28 26.91 58.1 ± 14.8
60 1.50 ± 0.26 32.72 65.8 ± 15.9

All the results above show that the humidity had a significant effect on the formation of nanopores
on the fibre surface, which is consistent with the conclusions of previous reports [24]. It could be
interpreted that a high relative humidity would result in much more vapor in the air and thus, a large
number of water droplets form on the surface of the solution jets and penetrate the jet fluid [44–46].

3.1.3. Effect of Mass Ratios of PLA and Chitosan on Morphology of Fibres

As reported previously [47], the type of additive may have an effect on the morphology of the
polymer fibres. For instance, chitosan dissolved in the solution could increase the charge density of
the polymer jet, resulting in a smaller diameter of the fibres [14]. In order to identify whether the
chitosan NPs affected the morphology of the fibres or not, PLA/chitosan fibres with different chitosan
(CS) contents (the ratios of chitosan NPs to PLA were 0:8, 1:8, 1.5:8, 2:8 and 2.5:8) were prepared and
analysed by FE-SEM. As reported in Table 3, the diameter of the PLA/chitosan fibres was larger than
that of pure PLA fibres. However, the morphologies of fibres with different levels of chitosan showed
no obvious distinction, including in the surface nanopore width and coverage. This shows that the
increase in the chitosan content had little effect on the viscosity (Figure 2b) of the solutions, as reflected
by the fewer changes in morphology. Moreover, dispersing the chitosan NPs into the solution to
fabricate the electrospun fibres made the process simple and easy to control.

Table 3. Characterization of fibres fabricated with different mass ratios.

Samples Diameter/µm Width of
Pores/nm

Coverage of
Pores/%

Mean Flow
through-Pore Size/µm

0 wt % CS + 8 wt % PLA 1.21 ± 0.21 58.52 ± 18.97 23.22 4.50
1 wt % CS + 8 wt % PLA 1.34 ± 0.34 63.72 ± 18.02 23.85 7.25

1.5 wt % CS + 8 wt % PLA 1.31 ± 0.26 64.97 ± 16.32 24.46 7.53
2 wt % CS + 8 wt % PLA 1.35 ± 0.28 59.52 ± 20.57 23.81 7.92

2.5 wt % CS + 8 wt % PLA 1.35 ± 0.26 53.19 ± 20.39 23.57 7.72

3.2. Dispersion of Chitosan NPs and Element Contents

The TEM image of the PLA/chitosan fibres is displayed in Figure 4. It can be observed that when
the chitosan concentration was 20% in the fibre, the chitosan NPs were evenly inlaid on the surface
of the fibre without agglomeration. It is important to note that the chitosan NPs were very small,
with sizes of just tens of nanometres. This proved that the hypothesis in Section 3.1.1 is reasonable.
SEM-EDX analysis was used to investigate the chemical composition and relative distribution of
chitosan on the surface of PLA/chitosan fibrous membranes. Figure 5 shows that the pure PLA fibres
contained carbon (C) and oxygen (O), but no nitrogen (N). When the chitosan was added to the
membranes, N was also detected. The membranes contained 2.75 wt % of N as the content of chitosan
was up to 20 wt % in PLA/chitosan fibres (Table 4), which also confirmed that the chitosan NPs were
successfully loaded onto the PLA fibres. The EDX mapping (with the red colour corresponding to C,
the white colour corresponding to N and the purple colour corresponding to O) in Figure 4d–f shows
the distribution of N on the fibres, indicating that the chitosan particles were uniformly distributed
along the PLA fibres.
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Table 4. EDX analysis of the element contents in the materials.

Samples C/wt % N/wt % O/wt %

100% PLA 70.13 0 29.87
100% chitosan 51.97 8.86 39.17

80% PLA/20% chitosan 60.45 2.75 36.50
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3.3. Through-Pore Size and Distribution

The through-pore size and through-pore size distribution of the nanofibre membranes are very
important parameters in determining the air filtration performance of the fibrous filter. The results
shown in Table 3 clearly indicated that the addition of chitosan increased the mean flow through-pore
size of the fibrous membranes from 4.5 µm to more than 7 µm, while the distribution of the
through-pore size became slightly broader (Figure 6). However, the mean flow through-pore sizes
between the membranes varied slightly with any further increase in the chitosan contents, which was
the same as in the case of the fibre diameter.Polymers 2018, 10, x FOR PEER REVIEW  10 of 16 
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3.4. Filtration Efficiency

The filtration efficiency and pressure drop of the fibrous membranes are the main properties that
are important for air filtration. They were evaluated by filtering NaCl aerosol particles with a mass
median diameter of 260 nm, which is shown in Table 5. The commercially available filter element
FY3107 (NanoProtect filter Pro S2, FY3107, Royal Philips Electronics of the Netherlands, Netherlands)
was tested as a control. It can be observed that the filtration efficiency of nanofibre membranes is
significantly greater than that of the filter purchased (89.18%). This result could be because of the
high specific surface area and the small through-pore size of nanofibre membranes. Compared to
the pure PLA membrane (99.90%), the filtration efficiency of PLA/chitosan fibrous membranes was
slightly lower at 98.10–98.99%, whereas the chitosan content had almost no effect on the filtration
efficiency. However, the pressure drop of pure PLA membrane was 335.90 Pa and it decreased to
167.05 Pa when the mass ratio of chitosan to PLA was 1:8. These phenomena can be attributed to the
variation of fibre diameter and through-pore size of the membranes (Table 3). As the fibre diameter and
the through-pore size increased, the corresponding filtration efficiency and pressure drop decreased.
According to the quality factor, when the mass ratio of chitosan to PLA was 2.5:8, the quality factor
(up to 0.0312) was the highest, which indicated the best filtration performance.

Table 5. Filtration performance of fibrous membranes fabricated with different mass ratios.

Samples Thickness/mm Filtration Efficiency/% Pressure Drop/Pa Quality Factor

FY3107 1.152 89.18 71.67 0.0310
0 wt % CS + 8 wt % PLA 0.215 99.90 335.90 0.0207
1 wt % CS + 8 wt % PLA 0.196 98.10 167.05 0.0237

1.5 wt % CS + 8 wt % PLA 0.198 98.78 162.35 0.0271
2 wt % CS + 8 wt % PLA 0.206 98.26 147.00 0.0276

2.5 wt % CS + 8 wt % PLA 0.202 98.99 147.60 0.0312
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3.5. Antibacterial Activity

E. coli is a gram-negative bacterium while S. aureus is a gram-positive bacterium. Both were used as
model pathogenic bacteria to evaluate the effect of chitosan contents on antibacterial activity according
to the national standard. As shown in Table 6, the antibacterial activity of nanofibre membranes was
significantly enhanced with an increase in the chitosan content. PLA fibrous membranes without
chitosan had a weak bacteriostatic effect, while the antibacterial activity of the PLA/chitosan membrane
containing 1 wt % chitosan in the electrospinning solution increased remarkably. This is due to
the presence of positively charged NH2 groups carried by chitosan, which are known to hinder
biosynthesis and energy transport through the cell wall in order to kill bacteria [48]. It could be seen
that when the mass ratio of chitosan to PLA was 2.5:8, the PLA/chitosan fibrous membrane exhibited
an inhibition of 99.4% and 99.5% against E. coli and S. aureus, respectively, which is demonstrated
in Figure 7. The results confirmed that the PLA/chitosan fibrous membranes exhibited excellent
antibacterial capabilities.

Table 6. Antibacterial performance of fibrous membranes fabricated with different mass ratios.

Samples
Antibacterial Rate/%

S. aureus E. coli

0 wt % CS + 8 wt % PLA 10.1 4.6
1 wt % CS + 8 wt % PLA 79.0 57.8

1.5 wt % CS + 8 wt % PLA 72.5 48.2
2 wt % CS + 8 wt % PLA 87.5 92.8

2.5 wt % CS + 8 wt % PLA 99.5 99.4
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3.6. Air Purification Performance

Fibrous membranes will eventually be applied in the field of air purification. In order to
study the air purification performance in a real polluted environment, a filter element for a car
air purifier was prepared using the membrane (the apparatus is displayed in Figure 8). An artificially
polluted environment was created by burning cigarettes in a confined space with a volume of
0.125 m3. The PM2.5 concentration tested by an air quality detector was initially over 999 µg/m3.
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The PM2.5 concentration decreased to 0 µg/m3 (PM2.5 removal efficiency of 100%) in 33 min when the
PLA/chitosan fibrous membrane (the mass ratio of PLA to chitosan was 8:2.5) filter was used to purify
the air. For comparison, the original filter included with the purifier required 44 min to achieve the
same effect, which shows a purification efficiency that is 33% lower than that of the PLA/chitosan
fibrous membrane. As shown in Figure 9, a large amount of particulate matter was deposited in the
through-pores and on the surface of the fibres. Hence, the PLA/chitosan fibrous membrane could be
used as an air filter medium with excellent purification performance.Polymers 2018, 10, x FOR PEER REVIEW  12 of 16 
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4. Conclusions

In summary, an easy strategy for the preparation of porous composite fibrous air purification
materials with excellent filtration and antibacterial performance has been demonstrated in this study.
The porous PLA/chitosan fibrous membranes with different concentrations or different mass ratios
of PLA to chitosan were prepared by dispersing the chitosan NPs in PLA/(DCM/DMAC) solutions.
The solution concentration had a significant influence on the structure of the fibres. The fibres fabricated
with low-concentration solutions consisted of bead-on-string structures. When the concentrations
of PLA and chitosan were 8% and 2%, the fibres became even with no beads. A large number of
nanopores was distributed on the surface of the fibres fabricated at over 30% humidity, while the width
of the pores increased with the humidity. The different chitosan contents in the PLA solutions seem
to have little impact on the morphology and through-pore structure, leading to a similar filtration
efficiency and pressure drop. The membranes containing more chitosan certainly exhibited better
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antibacterial performance. The PLA/chitosan fibrous membranes (with a mass ratio of chitosan to
PLA of 2.5:8) exhibited a high filtration efficiency of 98.99% and a relatively low pressure drop of
147.60 Pa. In addition, these membranes showed a high antibacterial activity of 99.4% and 99.5%
against E. coli and S. aureus, respectively. The purification experiment further demonstrated that
the fibrous membranes could form promising materials for air purification and consequently, other
filtration applications.
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