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Abstract: Femtosecond laser induced multi-photon polymerization technique can be applied to
fabricate an ultracompact polymer optical fiber interferometer which was embedded in a section
of hollow core fiber. The production of the photoresin, used in this work, is described. Such a
device has been used for temperature measurement, due to its excellent thermal properties.
Transmission spectrum, structural morphology, and temperature response of the polymer optical
fiber interferometer are experimentally investigated. A high wavelength sensitivity of 6.5 nm/◦C
is achieved over a temperature range from 25 ◦C to 30 ◦C. The proposed polymer optical fiber
interferometer exhibits high temperature sensitivity, excellent mechanical strength, and ultra-high
integration. More complex fiber-integrated polymer function micro/nano structures produced by this
technique may result in more applications in optical fiber communication and optical fiber sensors.
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1. Introduction

Multiphoton polymerization (MPP), induced by femtosecond (Fs) laser, is a novel 3D
microprinting technology. This method therefore pushes the ongoing trend of miniaturization forwards.
Direct laser writing, with highly transparent photoresists, enables 3D microprinting to enter the
realm of manufacturing optical elements at the micro/nanometre scale [1–4]. Thus, this precise
fabrication of complex optical elements on demand becomes possible, such as microfluidic devices,
micro-electromechanical systems (MEMS), and metamaterials [5–7]. Fiber interferometer, which has
advantageous of excellent strain, temperature sensitivity, and compact structure, is another reliable
fiber sensor configuration, compared to fiber Bragg grating (FBG) [8,9]. However, traditional silica
fiber interferometers are limited by its low thermal expansion coefficient (~5.5 × 10−7/◦C) and
therefore cannot achieve high temperature sensitivity (typically ~10 pm/◦C for silica fibers) [10,11].
Polymer optical fiber interferometers (POFI) with high thermal expansion coefficient (~10−4/◦C) of
the polymer material that composes the waveguide are considered as a better alternative for high
sensitivity temperature sensor [12]. In 2009, Dong C.H. et al. provided a high-Q polydimethylsiloxane
optical microsphere for thermal sensing, and it achieved a sensitivity of 245 pm/◦C [13]. In 2017,
Han Y.G. reported on a polymer-overlaid Microfiber Mach-Zehnder interferometer and achieved a
temperature sensitivity of 18.3 pm/◦C [14].
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In this communication, we report an ultracompact POFI microprinted by Fs laser in a silica
hollow core fiber for temperature measurements [15]. The output will generate mode interference
in one certain polarization input, due to rectangular waveguide [16]. The temperature sensitivity
of ~6.4 nm/◦C was achieved over the temperature range from 25 ◦C to 30 ◦C and the maximum
operating temperature of this device is found to be 80 ◦C. This POFI exhibits a high temperature
sensitivity, high mechanical strength and ultracompact fiber-integrated structure. As such, the device
may be beneficial for high-precision biological temperature measurements, and this fabrication method
presents a new generation of research for complex polymer fiber-integrated device [17,18].

2. Materials and Methods

Generally speaking, polymethyl methacrylate (PMMA) and polydimethylsiloxane (PDMS)
are typical materials for polymerization [19]. However, these solid photoresin are not suitable
for fabricating fiber-integrated polymer micro-structure, thus a liquid photoresin with better
mechanical property has been investigated. The photoresin used in this work is prepared, as follows:
Photo-initiator (IGR-369, Ciba-Geigy) with a mole ratio of 2.5%, trifunctional monomer SR444
(Pentaerythritol Triacrylate, from Sartomer, Figure 1) with a mole ratio of 40%, trifunctional monomer
SR368 (Tris (2-Hydroxy Ethyl) Isocyanurate Triacrylate, from Sartomer, Figure 1) with a mole ratio
of 30%, trifunctional monomer SR454 (Ethoxylated3 Trimethylolpropa-ne Triacrylate, from Sartomer,
Figure 1) with a mole ratio of 25%, were first mixed and dissolved in acetone. To guarantee sufficient
dissolve, the mixture was heated at 50 ◦C for 1 h. Then, 4-Hydroxyanisole (MEHQ, from Sigma
Aldrich, Saint Louis, MI, USA, Figure 1) used for polymerization inhibitor was added in the mixture
with a mole ratio of 0.5%. After a complete dissolving of MEHQ, the mixture was heated to 120 ◦C.
Then, tetraethylthiuram disulphide (TED, from Sigma Aldrich) with a mole ratio of 2.0% was adopted
as an accelerator promoter and the mixture was kept at 120 ◦C for at least 10 mins. A centrifuge is
used to remove any undissolved chemicals. The mixture is vacuumed to remove residual acetone.
The final photoresin is heated at 60 ◦C for 1 h. SR368 was used to improve the chemical reactivity
for high photosensitivity and mechanical strength against the damage and the shrinkage during the
developing process. SR444 was introduced to keep the viscosity from decreasing the photoinhibition
efficient. SR454 was used to improve the mechanical strength of the photoresin. TED was used to
further improve its mechanical strength [20]. The single-photon absorbance spectrum of the photoresin
was shown in Figure 1.

As illustrated in Figure 2, a polymer optical fiber (POF) is microprinted in a silica hollow core
fiber, which has been opened by Fs laser ablation. Both ends of the POF are stably connected with two
pieces of thin-core fibers (TCFs). A pair of bases are microprinted to improve to the connection strength
of polymer structure with quartz wall, while the jacket tube protects the polymer structure from
external contaminations and makes the device much more robust compared with a bare air-cladding
microfiber. The POF is suspended by means of a grating structure to provide a contamination-free
platform for the light-matter interaction through the evanescent field. Due to the rectangular size of
the POF, high-order modes mainly exist in Y direction. In Figure 2, the dotted and solid lines denote
the high-order and fundamental modes, respectively. Two kinds of mode recombine at right-TCF,
resulting in a interference pattern. The output intensity of POFI can be described as [21]:

I = I1 + I2 + 2
√

I1I2 cos(2π∆(nL)/λ), (1)

while the I1 and I2 represent the beam power of fundamental mode and high-order mode, λ is
the wavelength, and ∆(nL) is the optical path difference (OPD) between two interference beams.
The interference dip appears at the wavelength:

λdip = 2∆(nL)/(2m + 1), (2)
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where m is an integer. The free spectral range (FSR) of the interference fringe dip is determined by OPD, as:

FSR = λ2/(∆(nL)). (3)
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Figure 1. The single-photon absorbance spectrum of the photoresin used in this work. The monomers
used in the photoresin are SR368, which was used to improve the chemical reactivity for high
photosensitivity and mechanical strength against the damage and the shrinkage during the developing
process, and SR444, which was introduced to keep the viscosity from decreasing the photoinhibition
efficient, and SR454, which was used to improve the mechanical strength of the photoresin.
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The device fabrication mainly follows four-step processes: As Figure 3a shows, a section of
hollow core fiber (internal/external diameter of 30/120 µm, HCF) is spliced between two TCFs,
by using optimized splicing parameters (−10 bit for 400 ms in FUJIKURA 80S fiber fusion splicer).
Then, as shown in Figure 3b, the middle of HCF was directly opened by focused Fs laser beam
with a 20× objective (NA = 0.4). The Fs laser used in this step has 800 nm center wavelength
and 1 kHz repetition rate. The laser power before entering the objective was adjusted to be 6 mW.
After washing out the residual debris generated in ablation step, the opened HCF was filled with
self-made photoresin (PR). Then, the designed POFI structure was microprinted in the HCF by Fs
laser induced multi-photon polymerization. As shown in Figure 3c: Firstly, a pair of bases were
polymerized along the inner HCF surface to enhance cohesive strength, between the HCF and the
polymer micro-structure, with a 50× objective (NA = 0.7) and a speed of 4 mm/s. Then, the suspended
POF held by a series of supported grateing (SG) were polymerized by a 63× oil objective (NA = 1.4) and
a speed of 0.2 mm/s. The polymer structure was printed in the hollow core fiber by use of a line-by-line
and layer-by-layer scanning method. The Fs laser used in this step has 1026 nm center wavelength,
220 kHz repetition rate, and 250 fs pulse width and the power before entering the oil objective was
adjusted to 1.80 mW, thus the intensity/irradiance in W/cm2 per pulse for polymerization can be
calculated as 3.28 × 1012 W/cm2 [22]. Finally, the sample was immersed in acetone for 30 min to clean
the residual liquid PR and Figure 3d shows the final diagram [23].
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Figure 3. (a) A hollow core fiber (HCF) was spliced between two thin-core fibers (TCFs), and (b) the
HCF was opened by Fs laser ablation. (c) The designed POFI structure was microprinted in the HCF
using MPP. (d) The residual liquid photoresin (PR) in the HCF was cleaned using acetone.

3. Results

The light-guiding property of the POFI was experimentally investigated by a polarization
controller (PC) connection. The input light from an ASE (Amplified Spontaneous Emission) light
source (1250–1650 nm, from Fiber Lake Co., Ltd., Shenzhen, China) was send to the POFI through a PC,
which is used to adjust the polarization component of input light. The output signal was detected by an
optical spectrum analyzer (OSA, YOKOGAWA, AQ6370C). Figure 4a shows the transmission spectra
of one POFI with a polymer fiber length of 0.8 mm and a section-size of 1.0 × 1.6 µm2. When the
polarization of input light was adjusted to perpendicular to the major axis of the POF cross section,
by rotating the half-wave plate of the PC, it shows a large insertion loss of ~−18 dB at 1360 nm, and no
obvious interference pattern can be found as black line shown (low contrast). When the polarization of
input light was adjusted to parallel to the major axis of the POF cross section, it exhibited a much lower
insertion loss of ~−5 dB at 1360 nm, and an apparent interference spectrum can be obtained as red
line shown (high contrast). It can be shown that the high-order mode with perpendicular polarization
has large transmission loss and the coupling loss is mainly resulting from the mode field mismatch
between TCF and POFI. To reduce the FSR, a longer sample (~1.6 mm) with the same fiber dimension
has been fabricated and its transmission spectrum, shown in Figure 4b, where the FSR is decreased
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to be 45 nm. The modes which make interference are simulated by finite element method, and the
simulated mode fields are shown in Figure 4b. The corresponding mode effective refractive index is
1.39 (@LP01) and 1.36 (@LP11). The simulated result is in good agreement with the measured FSR.Polymers 2018, 10, x FOR PEER REVIEW  5 of 8 
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The temperature response of the POFI has been investigated using a controllable furnace.
The supported grating (grating pitch = 1.6 µm; pitch number = ~1100) is microprinted perpendicular
to the rectangular POF. An interference dip (@1376.3 nm at 25 ◦C) was used to monitor temperature
changes in the experiment. The temperature was gradually increased from 25 ◦C to 30 ◦C with
a step size of 1 ◦C, and maintained for 15 min at each step. Figure 5a demonstrates the spectral
evolution of transmitted light as the ambient temperature was increased. The clearly red-shift in the
interference dip marked by arrows is clearly evident in this process. Figure 5b shows the linear fitting
relationship between the dip wavelength and ambient temperature. There is a small deviation between
the measured data and the fitting line that may be caused by measurement error of the interference dip.
It is noted that a high temperature sensitivity of ~6.4 nm/◦C is achieved by the high thermal expansion
of the polymer that induces extra OPD between high-order and fundamental modes. In the experiment,
the temporal response was estimated as millisecond, which is similar to the results in Reference [24].
Figure 5c shows the scanning electron microscope (SEM) image for the sample with a polymer width of
1.6 µm and a gating pitch of 1.6 µm. The glass transition temperature (Tg) of the used resin is ∼100 ◦C,
which is demonstrated in the Sartomer product manual. Experimentally, the maximum operating
temperature of this device is found to be 80 ◦C.

From Equation (2), the wavelength drift is proportional to the change of refractive index difference,
and thermal-optical effect and thermal expansion effect both contribute to the material refractive index
change when the ambient temperature is rising. In general, the thermal-optical coefficient of polymer is
a negative value resulting in the spectral blue shift as temperature rises and the temperature response
reported is ~−0.1 nm/◦C [25,26]. Thus, we believe thermal expansion effect plays a main role for the
wavelength drift in this experiment. The difference of the mode effective refractive index will increase
because of the broadening of the POF dimension caused by thermal expansion. However, as the
thermal expansion coefficient of polymer material is mostly on the order of 10−4/◦C, the temperature
sensitivity is mainly due to the optical path difference between fundamental mode and high-order
mode. Thus, temperature sensitivity can be improved by increasing the length and cross-section ratio
of the cured polymer waveguide.
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4. Conclusions

Fs laser induced MPP has been successfully employed to fabricate an ultracompact POFI,
embedded in a HCF for temperature measurement. Such a method offers broad tuning of the
waveguide diameter and length. To realize the suspended POF configuration, the PR with a
strong mechanical property has been proposed and the fabrication process has been introduced.
The high-order modes mainly propagate in a certain direction due to the rectangular-like cross-sectional
shape. Thus, its light-guiding properties were explored by means of a PC connection. Finally, a linear
thermal response was achieved with a high sensitivity of 6.4 nm/◦C within the temperature range
from 25 ◦C to 30 ◦C, which is much higher than common fiber temperature sensors. In real application,
to avoid the humidity influence, the POFI can be inserted into a section of glass tube having an interior
diameter of 250 µm and the glue is applied to seal the device. Such a highly integrative POFI offers
a new design route for fiber sensor systems, as well as optical fiber integrative micro-systems with
multi-functions. In sum, the novel method has laid a foundation work for subsequence research on
complex fiber-integrated polymer system—even in fiber chip integration technique.

Author Contributions: C.L. performed the experiments and wrote the the manuscript. C.R.L. guided this work
and corrected the manuscript. Z.G. provided the photoresin. J.W. and Y.W. corrected the manuscript.
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