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Abstract: Using fully-atomistic models, tens-microseconds-long molecular-dynamic modelling was
carried out for the first time to simulate the kinetics of polyimides ordering induced by the presence
of single-walled carbon nanotube (SWCNT) nanofillers. Three polyimides (PI) were considered
with different dianhydride fragments, namely 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA),
2,3′,3,4′-biphenyltetracarboxylic dianhydride (aBPDA), and 3,3′,4,4′-oxidiphthalic dianhydride
(ODPA) and same diamine 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene (diamine P3). Both
crystallizable PI BPDA-P3 and two amorphous polyimides ODPA-P3 and aBPDA-P3 reinforced
by SWCNTs were studied. The structural properties of the nanocomposites at temperature close
to the bulk polymer melting point were studied. The mechanical properties were determined for
the nanocomposites cooled down to the glassy state. It was found that the SWCNT nanofiller
initiates’ structural ordering not only in the crystallizable BPDA-P3 but also in the amorphous
ODPA-P3 samples were in agreement with previously obtained experimental results. Two stages of
the structural ordering were detected in the presence of SWCNTs, namely the orientation of the planar
moieties followed by the elongation of whole polymer chains. The first type of local ordering was
observed on the microsecond time scale and did not lead to the change of the mechanical properties of
a polymer binder in considered nanocomposites. At the end of the second stage, both BPDA-P3 and
ODPA-P3 PI chains extended completely along the SWCNT surface, which in turn led to enhanced
mechanical characteristics in their glassy state.

Keywords: polyimides; structural ordering; crystallization; mechanical properties; nanocomposites;
molecular dynamics

1. Introduction

Semi-crystallizable polymers are widely used in different industrial applications due to their
enhanced mechanical properties. The investigation of the polymer crystallization process still remains
one of the most complex and intriguing problems in soft matter physics. The structural ordering of such
polymers have been intensively studied recently, both experimentally [1–4] and theoretically [5–11].
The classical Hoffman–Lauritzen cluster model [12,13] postulates that the crystallization of polymer
chains is a single-step kinetic process involving only nucleation. However, the coarse-grained computer
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simulations of n-alkanes and polyethylene melts show [9–11,14,15] that the crystallization process
could be more complicated. Yamamoto et al. simulated the crystallization of the polyethylene-like
polymers using the united-atoms model [9–11]. They showed that polymer chains containing ~130,000
beads each are oriented within rather long few tens of nanoseconds simulation runs. The picture can
be even more complex if the external mechanical deformation (as shear flow, for example) has been
considered. Anwar et al. [14,15] have shown that the process of crystal growth in the melts of the short
n-alkane chains, with and without mechanical shear, is completely different. In general, it was found
that there exist two stages that polymers pass through during the crystallization process. First, only
the local ordering of small chain fragments is observed. Later, the polymer chains unfold and orient
along the same direction during some time. These two stages together could be considered as some
initial pre-crystallization process.

The incorporation of the carbon nanofillers in a polymer melt shows a good ability to initialize and
even accelerate crystallization, as has already been confirmed for polyethylene [16–18], nylon [19–21],
and for some polyimides (PIs) [22–24]. In this case, the difference between the homogeneous and the
heterogeneous crystallization is that the carbon nanofiller acts as the crystallization nucleus, where
the fragments of the polymer chains begin to order. This ordering is followed by the unfolding of
the polymer chains, and, finally, by their layer-by-layer orientation along the nanofiller surface. The
experimental methods still could not unambiguously shed light on the polymer structural ordering
during the crystallization process. At the same time, the modern computer simulations definitely are
cheaper, more convenient, and rather promising to investigate the behavior of polymer chains during
the structural ordering and the change of the corresponding polymer mechanical properties.

Hegde et al. [25,26] have experimentally investigated three PIs with different
dianhydride fragments, namely 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 2,3′,3,4′-
biphenyltetracarboxylic dianhydride (aBPDA), and 3,3′,4,4′-oxidiphthalic dianhydride (ODPA) and
same diamine 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene (diamine P3). Both crystallizable PI
BPDA-P3 and two amorphous polyimides aBPDA-P3 and ODPA-P3 have been studied (see Figure 1).
The main difference in chemical structure of these polyimides is the additional ether group in the
dianhydride fragment of ODPA-P3. The difference between BPDA-P3 and aBPDA-P3 is disparity
in the bonding between phthalimide moieties that lead to the formation of a kink in the aBPDA-P3
monomer unit.Polymers 2018, 10, x FOR PEER REVIEW  3 of 14 
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Figure 1. The chemical structure of the repeating units of the polyimides simulated in the present
study: ODPA-P3 (a), aBPDA-P3 (b), and BPDA-P3 (c). The arrow marks vector P directed along the
phthalimide planar moieties of the polyimide chains; its orientation relative to the nanotube axis was
investigated. For clarity the vector P is shown only for the ODPA-P3 PI; for aBPDA-P3 and BPDA-P3
these vectors have been directed along the same fragments. Reproduced from [34] with permission,
copyright Wiley, 2018.
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The authors [25,26] showed that the initially amorphous ODPA-P3 crystallizes in the presence
of the carbon nanotubes, that, in turn, leads to the improvement of its mechanical properties.
Hegde et al. [26] found that the structural ordering of the ODPA-P3 PI is even more pronounced
as compared to that for the crystallizable BPDA-P3. Despite the fact that the difference between
the mechanical characteristics of the unfilled aBPDA-P3, BPDA-P3, and ODPA-P3 samples is rather
small, the experimental studies [25,26] have sounded that the embedding of a carbon nanofiller leads
to an enhancement of some mechanical properties, such as Young’s moduli and the yield stress for
the crystallizable polyimides ODPA-P3 and BPDA-P3 in the glassy state. The improvement of the
mechanical properties for both PIs might be caused by the arising of the structural ordering of PI
chains induced by the carbon nanotubes. The origin of the effect still remains unclear.

Our recent simulations [27–29] have shown that the planar moieties of the crystallizable
PI R-BAPB based on the 1,3-bis(3′,4-dicarboxyphenoxy)benzene (dianhydride R) and 4,4′-bis(4′ ′-
aminophenoxy)biphenyl (diamine BAPB) form some ordered structures near both carbon nanotube [28]
and graphene [27,29] surfaces. This structural ordering was considered as an initial stage of
crystallization (so-called pre-crystallization) of the polymer matrix. In case of graphene-filled
nanocomposites, it was shown [27] that the polymer mechanical properties were improved drastically
after the appearance of the structural ordering of planar moieties. The anisotropy of the mechanical
properties of the R-BAPB polyimide near the graphene surface, depending on the direction of the
applied deformation, has been observed as well. Despite rather long simulations reaching the
microseconds time scale, the second stage of the chains ordering, i.e., the unfolding and the consequent
orientation of the chains as a whole, was not observed. One could expect that much longer simulation
times will be required to observe the second pre-crystallization stage, especially in case of long
polymer chains with a complex chemical structure. It still remains unclear how the specific stage of
the thermoplastic PI crystallization near the surface of the carbon nanofiller (carbon nanotube, for
example) can affect their mechanical properties in the glassy state.

However, the two stages of the pre-crystallization process were clearly shown in the simulations
using the relatively simple coarse-grained polymer models [9–11,14,15]; the insights into the similar
process but for polymers having complex chemical structure are of great importance. For example,
the additional π–π interactions could influence significantly the crystallization process in case of
polyetherimides [30]. The atomistically-detailed simulations of all the pre-crystallization stages could
provide an opportunity to determine the specific features of this process in various systems that differ
in respect to the nature of the polymer matrix and the nanofiller chemical structure.

The structural properties of aBPDA-P3 and ODPA-P3 polyimides in the presence of a single-walled
carbon nanotube (SWCNT) were investigated in our previous study [30]. To describe accurately a
difference in the chemical structures of these PIs and to take into account the polymer-nanofiller
interactions, the detailed all-atom models were used. The length of the microseconds-long
simulations [30] was long enough to qualitatively reproduce the experimental difference between
the structural properties of both aBPDA-P3 and ODPA-P3. The simulations have been carried out
at T = 600 K, close to the melting temperature (Tm ≈ 580 K) of the ODPA-P3-based nanocomposite
filled with 0.1 vol % of SWCNT [25,26]. After the three µs-long simulations, we were able to observe a
structural ordering of the planar moieties of this polyimide near the SWCNT surface. Such ordering
was absent in the simulated aBPDA-P3 samples. Particularly, our findings revealed that the ordering
of the ODPA-P3 planar moieties depends mainly on the π–π interactions between the carbon atoms in
their heterocyclic fragments and the SWCNT aromatic rings. However, the influence of the SWCNT
presence on the mechanical properties of the resulting nanocomposites was not investigated.

The two stages of the pre-crystallization process have been confirmed by the coarse-grained
simulations of different n-alkanes by Yamamoto et al. [9–11] and Anwar et al. [14,15]. One could expect
that rather significant changes of the polymer mechanical properties should be observed at the end of
the pre-crystallization process, and the full unfolding and the orientation of the PI chains along the
SWCNT surface will take place. For such structurally complicated systems as nanocomposites based



Polymers 2018, 10, 1245 4 of 14

on the heterocyclic aromatic polyimides, the transition from the local ordering state (the initial stage of
the pre-crystallization) to the state where the polymer chains are completely unfolded and are oriented
along the nanofiller (the second stage of the pre-crystallization) has not been simulated. The main
challenge to atomistically model such a transition is its extremely slow rate, which requires extremely
long simulation runs exceeding — by orders of magnitude — the typical nanosecond time scale of
the molecular dynamics. In the present study we extend the results of Reference [30] and simulate
the structural ordering of the thermoplastic PIs with the main goal to observe the above mentioned
possible second stage of the pre-crystallization process and the transition to the state where PI polymer
chains are unfolded and oriented.

Based on the previously acquired knowledge, we expect that such kind of the chain orientation
and ordering could be observed at temperatures slightly higher than (but close to) the corresponding
polymer melting temperature. On the other hand, the simulation timescales required to observe
the second pre-crystallization stage are expected to be at least an order of magnitude larger (tens of
microseconds) than those (several microseconds) used by us earlier. Such a project demanded more
than two-years long continuous modelling using 64 CPU cores on Kurchatov (Intel Xeon E5450) and
Lomonosov-2 (Intel Haswell-EP E5-2697v3) supercomputers. As will be shown below, the simulations
of such length allow for almost complete unfolding and orientation of PI chains along the SWCNT
surface. To the best of our knowledge, such time-consuming all-atom molecular-dynamics simulations
have not been performed yet in materials science.

The rest of the paper is organized as follows. The investigated polyimides and the details of the
simulation parameters are presented in the Section Models and Simulation Methods. The obtained
data are discussed in the Results and Discussions Section. The outputs of the study are summarized in
the Conclusions section.

2. Models and Simulation Methods

The initial configurations of the ODPA-P3, aBPDA-P3, and BPDA-P3 melts were created using the
approach developed previously [29,31,32]. To begin, 27 polymer chains were randomly placed into a
periodic cell with rather low overall density. The periodic boundary conditions have been used in all
three directions. Each polymer chain consisted of Np = 8 repeating units. Note that the chosen degree
of polymerization of the PIs corresponded to the beginning of the polymer regime for the heterocyclic
polyetherimides [31]. After that, the SWCNT with a chirality of (5, 5), diameter of 0.7 nm, and length of
4.7 nm was embedded to the center of the simulation cell. The SWCNT model was similar to that used
in our previous study and consisted of 420 atoms [28]. Thus, nanocomposites based on aBPDA-P3,
BPDA-P3, and ODPA-P3 had 18186, 18186, and 18402 atoms, correspondingly.

The initial nanocomposite samples were compressed to the experimental densities and annealed
during three cycles of the stepwise temperature decrease and increase from 800 to 300 K [32]. The total
time length of annealing was 72 ns. After that, the melts were cooled down instantly from T = 800 to
600 K, and further simulations were performed during additional 20 µs at T = 600 K. The simulated
temperature was close enough to the experimental melting point (Tm ≈ 580 K) of the ODPA-P3-based
nanocomposite filled with 0.1 vol % of SWCNT [25,26]. At this temperature the ordering of the polymer
chains does not break due to the thermal fluctuations. Still, the polymer chains are rather mobile, which
allows one to investigate the possible structural transformations [27–30]. The Berendsen thermostat
and barostat [33] were used to keep the temperature and the internal pressure constant with τt = 0.1 ps
and τp = 0.5 ps for the thermostat and for the barostat relaxation times, respectively. All simulations
were carried out in NpT ensemble with time step 1 fs.

To investigate the influence of the chain orientation on the mechanical properties of the
nanocomposites based on aBPDA-P3, ODPA-P3, and BPDA-P3 polyimides, several simulated samples
were chosen at different simulation times depending on the polymer chain orientation state. Their
initial configurations were chosen from the different parts of the simulated trajectory. Every 150 ns of
simulation, seven samples were chosen in the interval from 3 to 4 µs, and another seven configurations



Polymers 2018, 10, 1245 5 of 14

were chosen in the interval from 19 to 20 µs. The step-wise cooling of the chosen samples was carried
out from the initial temperature T = 600 K to the room temperature T = 290 K with the cooling rate
γc = 1.5 × 1011 K/min [31,34–37].

To calculate the mechanical properties, the simulated PI samples were deformed uniaxially at
T = 290 K using the approach developed earlier [38,39]. All the deformation experiments were carried
out with the fixed deformation rate of γd = 1.8 × 108 s−1 [27,38,40]. The transversal box directions
were kept at atmospheric pressure during the deformation procedure.

The diagonal components of the stress tensor Pi, i = {x, y, z} and the dimensions Li of the periodic
cell were calculated every picosecond. These values were used to produce the stress-strain dependence
as [39]

σ = −Pi,
ε = Li−L0i

L0i
,

(1)

where L0i is the cell dimension at the beginning of the deformation (t = 0). Initially, the dependence σ(ε)
was very close to linear. This linear elastic regime was clearly observed up to ~2% of the deformation
ε [39] and was used to extract the Young’s modulus E as

σ = Eε. (2)

The yield stress value σy was determined from σ(ε) as the average stress value where the
plastic deformation occurs without a significant increase in a load (i.e., without significant change of
stress value).

The Gromacs MD software package (version 5.0.5) [41,42] was used to perform all the simulations
with the help of the Gromos53a5 force field [43,44]. In our previous studies it was shown that this force
field allows to investigate the structural and thermomechanical properties of different thermoplastic
PIs. The simulated results were in a good agreement with the experimental data [28,31,32,34,38]. It
was also shown previously that the partial charges have no significant influence on the structural and
mechanical properties of the considered thermoplastic PIs [30,34]. To speed up the simulations, the
electrostatic interactions have not been taken into account in the current study; the corresponding
partial charges were put to zero.

3. Results and Discussions

In the previous studies [27–30], we analyzed the orientation of the phthalimide planar moieties in
the PI chains. This orientation was represented by the P vector (see Figure 1) relative to the nanofiller
surface and was used to characterize the local ordering of the polyimide chains in the vicinity of the
carbon nanofiller surface. The orientation angle θ between the vector P directed along the phthalimide
moiety and the carbon nanotube axis was determined, and the corresponding order parameter S(r)
was calculated

S(r) =
3
2

〈
cos2 θ(r)

〉
− 1

2
, (3)

where r is the distance from the nanotube axis to the polymer chain planar moiety.
To determine how the local orientation ordering possibly changes during very long simulation

run, in the present simulations we calculated the order parameters at different simulation times,
Figure 2.
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Figure 2. The order parameter S(r) for the orientation angle θ of the polymer-chain planar moieties
relative to the single-walled carbon nanotube (SWCNT) axis in nanocomposites based on aBPDA-P3
(a), ODPA-P3 (b), and BPDA-P3 (c) at T = 600 K as functions of the distance from the nanotube axis
after different simulation times shown in the legends. The results for the ODPA-P3 and aBPDA-P3
polyimides (PIs) calculated after 3 µs of simulation are taken for comparison from our previous
study [30].

After 3-µs simulation run the order parameters S(r) showed that planar moieties of BPDA-P3 and
ODPA-P3 were oriented along the axis of SWCNTs in the vicinity of nanotube surface, and the slow
decrease of the S(r) dependence was observed with the increase of the distance from the nanotube axis.
In all nanocomposites the first peak in the S(r) dependence corresponds to the relatively high ordering
of the planar moieties along the SWCNT surface in the vicinity of the nanofiller surface (so called
subsurface layer). Contrast to that, in the nanocomposite samples based on the amorphous aBPDA-P3,
the order parameter is close to zero everywhere except the subsurface layer. This means that in
aBPDA-P3-based nanocomposite no long-range order exists, and the polymer remains amorphous.
These results are in full agreement with the experimental data of Hedge et al. [25,26]. After three
microseconds of the simulation the second peak that corresponds to the ordering of planar moieties
further from the SWCNT surface was observed only for ODPA-P3. This might indicate that ODPA-P3
monomers have a larger degree of orientation near the SWCNT surface, as compared even to that
for the crystallizable BPDA-P3. The results obtained confirm that after 3-µs simulations, only the
initial crystallization stage is observed and only rather small fragments of polymer chains form some
oriented structures.

In the course of the production run, beyond 3 µs of simulation, the gradual increase of the
order parameter takes place for both BPDA-P3 and ODPA-P3. The first peak that corresponds to
the subsurface polymer layer increases slightly with time, but the more pronounced growth of the
order parameter was found for the distances r > 1 nm far from the SWCNT surface. After 19 µs of
simulations the order parameters S(r) in nanocomposites based on BPDA-P3 and ODPA-P3 preserve
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almost constant values close to 0.8 upon increasing the distance from the SWCNT surface, Figure 2.
This allows us to conclude that the distribution of the orientation and the ordering of the planar
moieties of PI chains across the simulation cell occurs on this time scale. The obtained results are
in good qualitative agreement with experimental data of Qiang et al. [45,46], where the increase of
Herman’s orientation factor upon increase of time has been found for different block copolymers
during aligning.

The obtained results are supported by the analysis of the distribution of the orientation angle θ
between the vector P and the SWCNT axis. After 3 µs of simulation, the orientation angle distributions
(see Figure 3a,c) demonstrate that the planar moieties of PI chain in ODPA-P3 and BPDA-P3-based
nanocomposites were stacked parallel to each other only near the surface of the SWCNT nanofiller.
Note that the distributions in Figure 3 show the fraction of planar moieties of PI chains that have given
θ value at given r value. So, the values in the legends in Figure 3 are dimensionless.
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Figure 3. The distribution of the orientation angles θ for the vector P relative to the SWCNT axis
in nanocomposites based on ODPA-P3 (a,b) and BPDA-P3 (c,d) after 3 µs (a,c) and 19 µs (b,d) of
simulation. The results for ODPA-P3 have been calculated after 3 µs of simulation and are taken for
comparison from our previous study [30].

After 19 µs of simulation, both BPDA-P3 and ODPA-P3 exhibited the maxima in the distribution
diagrams of the angles θ in the range of 5–15 degrees. Meanwhile, the structural ordering of the
planar moieties extended to a distance of about 3 nm from the SWCNT axis (Figure 3b,d), that is
approximately half of the periodic cell size. The similar character of distributions of the orientational
angles for the nanocomposites based on ODPA-P3 and BPDA-P3 is due to the structural similarity of
the planar moieties of both PI chains that were chosen to determine θ.

The analysis of the instant configurations of the composites after 3 and 19 µs of simulation
(Figure 4) suggests that BPDA-P3 and ODPA-P3 chains change their conformation from the coiled
one to some extended shape upon development of the ordering in these nanocomposites, i.e., PI
chains start their unfolding which correspond to the chain orientation along the SWCNT surface. At
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the same time, the amorphous aBPDA-P3 polymer chains do not change neither conformation, nor
orientation near the SWCNT surface, Figure 4. Thus, aBPDA-P3 stays amorphous in the corresponding
nanocomposites in full agreement with the experimental [25,47] and the simulation [30] results.Polymers 2018, 10, x FOR PEER REVIEW  8 of 14 
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Figure 4. The instant configurations of a single periodic cell of the SWCNT-PI nanocomposites based on
aBPDA-P3 (top), ODPA-P3 (middle), and BPDA-P3 (bottom) after 3 and 19 microseconds of simulation.
The periodic boundary conditions were removed and polymer chains are drawn continuously to show
the conformation of PI chains in each system. For the systems where polymer chains are unfolded
and oriented, two additional periodic images of SWCNT are shown which are in contact with the PI
chains depicted. Each polymer chain is shown in its own color. The SWCNT is shown in yellow on all
the snapshots.

The average end-to-end distance (He-e) and the nematic chain order parameter SN of three
considered PIs have been calculated (Figure 5) to confirm the unfolding and orientation of the PI chains
during the 20 µs-long simulation. SN is determined as the largest eigenvalue of the order tensor Sαβ

Sαβ =
1

Nch

Nch

∑
i=1

3
2

uiαuiβ −
1
2

δαβ, (4)

where Nch is the number of chains for which the calculation is performed, ui is the unit vector parallel
to the end-to-end vector of i-th chain, δ is the Kronecker delta, and α, β = x, y, or z.
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Figure 5. The time dependence of (a) the end-to-end distance (He-e) and (b) the nematic order parameter
SN for aBPDA-P3, ODPA-P3, and BPDA-P3 in nanocomposites with SWCNT.

The end-to-end distance He-e for all three considered polyimides in composites behave almost
identically up to simulation times close to ~4 µs. It grows from relatively small values corresponding
to the collapsed state after the initial compression and annealing procedures to the values close to the
theoretical predictions for He-e of a polymer coil in melt [32]. However, it should be noted that the
end-to-end distances He-e for ODPA-P3 and BPDA-P3 polyimides are slightly higher than those for
aBPDA-P3. This is due to the local ordering of ODPA-P3 and BPDA-P3 chains in nanocomposites that
leads to the change of the average size of PI chains in the systems considered.

In case of the amorphous aBPDA-P3, no further increase of the polymer chain size was observed
after 3 µs of simulation. However, for ODPA-P3 and BPDA-P3 the value of He-e starts to increase
further after ~4 µs of simulation till He-e reaches the value close to the theoretical end-to-end distance
for a fully unfolded chain (26 and 27 nm for BPDA-P3 and ODPA-P3, correspondingly).

At the same time, the significant increase of the nematic order was observed in the nanocomposites
based on the ODPA-P3 and BPDA-P3. This allows us to conclude that in these systems, the
corresponding polymer chains unfold and orient simultaneously in the direction of the SWCNT axis.
Such behavior can be considered as the polymer “pre-crystallization” stage following the orientation of
the planar moieties near the CNT surface, as was shown in our previous study [30]. The unfolding and
the orientation of the polymer chains finish after about 15 µs of simulation, and the order parameter
SN values become larger than 0.9. After that time, the end-to-end distance and the nematic order
parameter do not change much during rather long simulation time (at least of the order of 5 µs).

It should be noted that some fluctuations observed on the curves at Figure 5 are mostly due
to thermal motion of polymer chains in the systems studied. Fluctuations in the region where
transition from the coiled conformations of chains to extended ones happen (from 4 to 15 µs in case
of nanocomposites based on ODPA-P3 and BPDA-P3 polyimides) could be related to nonstationary
character of this process.

The results obtained confirm the proposed two-stage model of polymer pre-crystallization. During
the first stage only the local ordering of some planar moieties of PI chains occur in the vicinity of
the nanofiller surface. At this stage the polymer chains preserve a coiled conformation and are not
oriented as a whole. This state lasts for several microseconds before unfolding and orientation of the
chains started. The second stage is the transition of the PI chains to the unfolded and oriented state
that occurs during approximately 10 µs for the chains of the simulated polymerization degree Np = 8
at the simulated temperature of T = 600 K. At this second stage, the order degree in the system grows,
and the ordering of the polymer chains spreads across the whole simulation cell.

We turn to the second question of the present study, and the influence of the structural ordering
stage in the considered nanocomposites on their mechanical properties in a glassy state were studied
next. To determine the mechanical properties of nanocomposites with different ordering, we considered
samples taken after 3 µs of simulation time where only the orientation of the PI chain fragments were
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observed and after 19 µs of simulation where all the PI chains are unfolded and are oriented along
the SWCNT.

Again, seven different configurations of three PIs have been chosen from the simulation trajectory
in two intervals from 3 to 4 µs and from 19 to 20 µs to determine the corresponding mechanical
properties. These time intervals correspond to the two stages of the pre-crystallization process observed
in the ODPA-P3 and BPDA-P3-based nanocomposites.

These samples have been cooled down from T = 600 K to T = 290 K with a cooling rate
γc = 1.5 × 1011 K/min. The simulated density in a glassy state for a crystallizable BPDA-P3 and
for an amorphous ODPA-P3 was slightly higher than that for the samples of the same polyimides but
taken before unfolding and orientation of the PI chains started, i.e., the transition to unfolded and
oriented state leads to the additional compaction of a polymer matrix in the nanocomposites. At the
same time, no difference between the densities of amorphous BPDA-P3 samples that were cooled
down after 3 µs or after 19 µs was observed.

The cooled down samples were deformed at T = 290 K. The stress-strain curves of the samples
after 3 µs (before PI chains unfolding) and after 19 µs (after unfolding and orientation of the chains
as a whole) of simulation were obtained, Figure 6. The Young’s moduli and yield stress values have
been calculated and summarized in Table 1. The yield stress values were calculated as average stress
in the region of load (from 0.1 to 0.2 of strain). The mechanical properties of the unfilled polyimides
obtained in our previous study [34] are shown there for comparison. It should be noted that the
deformation procedure was performed for the systems that comprise polymer matrix and SWCNT.
As in the present simulations, the relatively short nanotubes were used, and they did not impede the
simulation of deformation, in contrast to the graphene nanoflake of infinite size that was used in our
previous study [29]. In the latter case, some additional steps had to be performed to determine the
mechanical properties of the polymer matrix in a nanocomposite, including graphene removal and the
additional compression of a polymer matrix.
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Table 1. The Young’s moduli and yield stress values for the simulated PIs aBPDA-P3, ODPA-P3, and
BPDA-P3 after 3 and 19 µs of simulations (before and after the structural transition to the unfolded
states). The results for the unfilled samples (without SWCNT) were calculated using the samples
obtained in our previous study [34].

PI

Young’s Modulus, GPa Yield Stress, MPa
w/o

SWCNT
(After 3 µs)

with
SWCNT

(After 3 µs)

with
SWCNT

(After 19 µs)

w/o
SWCNT

(After 3 µs)

with
SWCNT

(After 3 µs)

with
SWCNT

(After 19 µs)

aBPDA-P3 3.0 ± 0.1 3.1 ± 0.2 2.7 ± 0.6 178 ± 6 168 ± 6 169 ± 6
ODPA-P3 3.1 ± 0.2 3.2 ± 0.1 4.5 ± 0.6 182 ± 5 189 ± 5 368 ± 18
BPDA-P3 3.1 ± 0.2 3.1 ± 0.2 5.0 ± 0.6 177 ± 8 187 ± 6 362 ± 10

The analysis of the obtained mechanical properties suggests that the Young’s moduli and the
yield stress values increase significantly only after the transition to the state which is characterized by
the entirely unfolded and oriented PI chains in nanocomposites based on ODPA-P3 and BPDA-P3. At
the same time, there is no difference in the simulated stress-strain behavior for all three PIs after 3 µs
of simulation, as well as no difference in the mechanical properties of the aBPDA-P3 after 3 µs and
19 µs of simulation time. Moreover, the comparison of the mechanical properties of nanocomposites
with those for the unfilled samples [34] show no difference between the properties of pure polymers
and the corresponding nanocomposites in the first pre-crystallization stage before the transition to the
unfilled and oriented state of chains, as could be seen from Table 1.

Thus, we can conclude that the local structural ordering of the planar moieties of PI chains near the
SWCNT surface (i.e., the first stage of the pre-crystallization process) does not influence significantly
the mechanical properties of the simulated nanocomposites. The Young’s moduli and the yield stress
values for the samples after 3 µs of simulation (only local segmental ordering is found at this stage)
were similar for all the nanocomposites considered and were close to the values obtained for the
amorphous unfilled samples of all three PIs. The second stage of crystallization was characterized
by the unfolding and orientation of PI chains and occurred in nanocomposites based on ODPA-P3
and BPDA-P3 polyimides, making a big difference, and the corresponding mechanical characteristics
increased drastically.

4. Conclusions

In the present study, 20-microsecond molecular-dynamic simulations were performed to
investigate the structural and mechanical properties of nanocomposites based on the polyetherimides
BPDA-P3, ODPA-P3, and BPDA-P3 filled with single-walled carbon nanotubes.

For the first time, the two distinguished stages of a polymer matrix structural ordering were found
using the fully-atomistic models for the description of such complex systems at temperatures slightly
above the corresponding experimental melting point. At the first stage observed on the microsecond
time scale, local segmental ordering was confirmed. At this stage, only relatively short PI chains
fragments were oriented along the SWCNT axis in the vicinity of the nanofiller surface. During this
stage, the polymer chains had coiled conformations and were not oriented as a whole in the direction
of the SWCNT axis. This kind of ordering could be considered as the initial stage of the polymer matrix
pre-crystallization in the simulated nanocomposites.

The second stage of the pre-crystallization starts when the individual polymer chains unfold and
orient in the same direction. These orientation and ordering effects are accompanied by the increase
of the chains end-to-end distance and the increase of the chain nematic order parameter. During this
stage, all chains in the periodic cell form highly ordered structures and align in the direction of the
SWCNT axis. The time of the unfolding and of the orientation of polymer chains as a whole is of the
order of 10 µs for the considered PI polymerization degree and simulated temperature. This time is
several times longer than what is necessary to observe the local ordering of the planar PI moieties near
the SWCNT surface.
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The analysis of the simulated data has shown that the local orientation of the planar moieties
near the SWCNT surface does not result in the change of the mechanical properties, as compared to
those for the corresponding unfilled PI samples. It is the unfolding and the orientation of PI chains as
a whole in the BPDA-P3 and ODPA-P3-based nanocomposites that leads to the large increase of the
Young’s moduli and the yield stress values for the materials studied. Thus, we could suggest that the
embedding of carbon nanotubes may initiate the structural ordering of heterocyclic polymers on the
scale of the whole chains. This large-scale structural ordering plays the main role in the improvement
of the mechanical properties of nanocomposites reinforced by the carbon nanotubes.

It should be noted that the highest ordering degree possible in nanocomposites simulated at the
temperatures higher than polymer matrix melting point was obtained in the present study. It is not
likely that the further simulation will lead to additional change of polymer chains ordering and overall
mechanical properties of nanocomposites. However, the ordering observed does not correspond to
the crystalline structure of polyimides considered and the crystallization of a polymer could lead to
the higher mechanical properties than those obtained in the presented study. In order to observe the
crystallization of a polymer and its influence on the nanocomposite mechanical properties it would be
necessary to decrease the simulation temperature well below the melting point, and perform additional
simulation on the tens of microseconds timescale. Such a work could be the subject of the future study.
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