

Reconfigurable Shape Memory and Self-Welding Properties of Epoxy Phenolic Novolac/Cashew Nut Shell Liquid Composites Reinforced with Carbon Nanotubes

Pornnapa Kasemsiri ^{1,*}, Narubeth Lorwanishpaisarn ¹, Uraiwan Pongsa ², and Shinji Ando ^{3,*}

Figure S1. FE-SEM image of CNTs.

Figure S2. Preparation of EPN/CNSL composites.

Figure S3. DSC curves of EPN/CNSL after curing process.

Figure S4. The shape recovery performance test, where, θ_0 was the original storage angle of the specimen in the storage state during the first bending cycle at S (X_0 , Y_0). θ_N was the residual angle in the recovery state during the *N*-th thermo-mechanical bending cycle (N = 1, 2, 3, ...) at $R(X_N, Y_N)$.

Figure S5. Configuration of sample for T-peeling test.

Figure S6. FT-IR spectra of CNSL, EPN monomer, and EPN/CNSL composites with different CNT contents in the range of (**a**) 800–3500 cm⁻¹ and (**b**) 1500–1900 cm⁻¹, and (**c**) those of EPN/CNSL matrix in the range of 1550–1900 cm⁻¹ at various temperatures.

Figure S7. Stress relaxation of EPN/CNSL composites.

CNT content (wt %)	First peak (°C)	Second peak (°C)
0	168	189
0.1	166	193
0.3	166	199
0.5	166	203

 Table S1. Curing temperature of EPN/CNSL composites.

Table S2. Absorpti	on bands and	their assignme	ents in FT-IR spectra.

Wavenumber (cm ⁻¹)			
EPN	CNG	EPN/CNSL film at 0–0.5 wt %	Assignment
monomer	CINJL	CNT	
-	912 and 1007	-	Phenol group at meta position
915	-	915	C–O of epoxide ring
-	-	1130	C–O–C ether linkage
-	1152 and 1258	-	C=C
1239	-	1239	C–O stretching vibration of aromatic
1453	-	1453	CH2 stretching vibration of epoxide ring
1582	-	1582	C=C stretching vibration of aromatic
-	1650	-	C=O of anarcardic acid
-	-	1750	C=O–O–C ester linkage
	2850 and 2992		CH₃ stretching
2864		2864	CH stretching

Table S3. Shape memory properties of EPN/CNSL composites activated by NIR light.

 $\hfill \odot$ 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).