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Abstract: Polyurethane (PU) foams are widely used as acoustic package materials to eliminate vehicle
interior noise. Therefore, it is important to improve the acoustic performances of PU foams. In this
paper, the grey relational analysis (GRA) method and multi-objective particle swarm optimization
(MOPSO) algorithm are applied to improve the acoustic performances of PU foam composites.
The average sound absorption coefficient and average transmission loss are set as optimization
objectives. The hardness and content of Ethylene Propylene Diene Monomer (EPDM) and the content
of deionized water and modified isocyanate (MDI) are selected as design variables. The optimization
process of GRA method is based on the orthogonal arrays L9

(
34), and the MOPSO algorithm is based

on the Response Surface (RS) surrogate model. The results show that the acoustic performances of
PU foam composites can be improved by optimizing the synthetic formula. Meanwhile, the results
that were obtained by GRA method show the degree of influence of the four design variables on the
optimization objectives, and the results obtained by MOPSO algorithm show the specific effects of
the four design variables on the optimization objectives. Moreover, according to the confirmation
experiment, the optimal synthetic formula is obtained by MOPSO algorithm when the weight
coefficient of the two objectives set as 0.5.

Keywords: grey relational analysis; multi-objective particle swarm optimization; acoustic
performances; Ethylene Propylene Diene Monomer; polyurethane foam composites

1. Introduction

Our living and working environment has been gradually perplexed by noise pollution due to
the rapid developments of modern industries and transportations. Vehicle noise is a major source of
noise pollution, which consists of interior noise and exterior noise. Recently, vehicle interior noise is
becoming one of the important indices for quality evaluation of vehicles because it not only imposes
danger on drivers and passengers’ health, but also decreases the comfort of driving [1,2]. Therefore,
with the development of social transportation, eliminating vehicle interior noise has involved current
and broad interests of automobile manufacturers. The use of acoustic package is an effective method to
reduce vehicle interior noise. Thus, the acoustic package design of automotive has become an important
research for the automobile industry.

There are mainly two kinds of acoustic package materials: sound absorption materials and sound
insulation materials. Sound insulation materials have a high surface density and can reflect sound
energy to the incident direction. However, the sound absorption materials are light and have a high
porosity, which makes the acoustic wave easily accessible to the interior of the materials [3]. It means
that the sound absorption ability and sound insulation ability of acoustic package materials are hard
to get the maximum value simultaneously. Polyurethane (PU) foam is a kind of effective sound

Polymers 2018, 10, 788; doi:10.3390/polym10070788 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0003-2789-4211
http://www.mdpi.com/2073-4360/10/7/788?type=check_update&version=1
http://dx.doi.org/10.3390/polym10070788
http://www.mdpi.com/journal/polymers


Polymers 2018, 10, 788 2 of 13

absorption material in automobile industry due to the effective sound damping and low-density
characteristics. It has been widely applied in interior components, such as seats, inner dash mats,
and other acoustic trim parts. The acoustic wave propagation in PU foams mainly dissipates as viscous
friction on interconnected pores and thermal heat exchange on solid-fluid boundary [4]. However,
pure PU foam only shows great sound absorption ability in high frequency region due to the special
pore morphologies. Previous studies have shown that the acoustic performances of PU foams can be
modified by adding functional particles to PU foams or adjusting the chemical compositions of PU
foams [5–11]. However, it not only cannot get the optimum acoustic performances, but also cause the
waste of materials, if the materials are simply mixed together. Thus, this paper improves the acoustic
performances of PU foam composites by optimizing the synthetic formula.

Recently, many researchers put their efforts to improve the acoustic performances of acoustic
package materials by different optimization methods. Jeon et al. [12] used particle swarm
optimization (PSO) algorithm for optimal bending design of vibrating plate to minimize noise radiation.
Chen et al. [13] applied the grey rational analysis (GRA) with Taguchi method to optimize the acoustic
performances of the sound package. Jiang et al. [14] employed the Taguchi method base on orthogonal
arrays to conduct the experiments to improve the acoustic behaviors of PU foams. He et al. [15] utilized
the GRA method and multi-objective particle swarm optimization (MOPSO) algorithm to optimize
the acoustic package materials of firewall and floor. Pan et al. [16] dealt with the optimization of the
sound package by using a genetic algorithm to satisfy acoustical targets and packaging requirements
in the vehicle design process. Grubeša et al. [17] applied the genetic algorithm to optimize the
acoustic performances and economic feasibility of barrier cross section. The materials and cross section
shapes of the barrier are considered in the optimization process. Kim et al. [18] applied acoustic
topology optimization for sound barrier with rigid and porous materials by the finite element method.
Considering the sound absorption ability and sound insulation ability are equally important to reduce
vehicle interior noise. Both of them should be simultaneously maximized, which is a multi-objective
optimization problem inherently. Therefore, this paper applies multi-objective optimization method to
optimize the synthetic formula of PU foam composites.

The MOPSO algorithm is one of the evolutionary algorithms that based on the social behavior
of flocks of birds that adjust their movement to find the best food position. It has been widely and
prevalently applied to solve engineering problems in different fields due to the advantages of relatively
fast convergence and good handle continuous, discrete, and integer variables types [19–21]. Normally,
the analysis models of the acoustic performances of acoustic package materials are complicated,
and the normal optimization processes are of extremely low optimization efficiency. In contrast,
the surrogate models are more efficient and they can easily bridge the gap among multi-objective
optimization. Therefore, it has been widely applied in multi-objective optimization design [21]. On the
other hand, GRA method is a branch of grey system theory, which can be effectively used to analyze
the complicated interrelationship among the designated performance characteristics. By combing the
entire range of performance criterion values into a quantified value of grey relational grade (GRG).
It can be used to identify the major influencing factor and the dominant or subordinate relationship
from various factors of multi criteria problems [22–26]. Therefore, both the GRA method and MOPSO
algorithm are applied in this paper to optimize the formulation of PU foam composites for good
acoustic performances. The optimization process of MOPSO algorithm is based on the surrogate
model, and the optimization process of GRA method is based on the orthogonal arrays.

A previous study shows that the acoustic performances of PU foam composites are changed
when filled with Ethylene Propylene Diene Monomer (EPDM) of different content and hardness.
Meanwhile, in the synthesis process of PU foam, modified isocyanate (MDI) is a matrix material and
deionized water is used as blowing agent. Both have an impact on the acoustic performances by
changing the pore morphologies and the density of PU foams. Moreover, the acoustic performances of
PU foam composites can be evaluated by the sound absorption coefficient and sound transmission
loss. Therefore, the sound absorption coefficient and sound transmission loss of PU foam composites
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are investigated in this paper by changing the content of MDI and deionized water, the content and
hardness of EPDM. The aim of this paper is to obtain a synthetic formula of a PU foam composite
with high sound absorption ability and sound insulation ability under the condition that the sound
absorption ability and sound insulation ability are equally important for reducing vehicle interior noise.
Therefore, this paper uses the GRA method and MOPSO algorithm to optimize the synthetic formula
of PU foam composites, and then the actual samples are prepared according to the optimization
results for comparison to determine the optimal synthetic formula. Meanwhile, synthetic formula
optimization can improve the utilization rate of PU foam composites preparation materials and reduce
environmental pollution that is caused by waste EPDM.

2. Materials and Methods

2.1. Materials

In this paper, PU foam is synthesized using MDI and polyether polyols by a one-step
polymerization process. The polyether polyols include 330 N (OH-value: 33–36 mg KOH/g) and 3630
(OH-value: 33–37 mg KOH/g). MDI (diphenylmethane 4, 4-diisocyanate,) is used as matrix material.
A1 (mixture of 70% 2-dimethylaminoethyl ether and 30% dipropylene glycol), A33 (solution of 33%
triethylenediamine) and Tri-ethanolamine (TEA) are chosen as the catalysts for the gelling reaction.
Silicone oil is used as the surfactant. Deionized water is used as a blowing agent to produce CO2 gases
and amine functionalities. The TEA is obtained from Guangdong Wengjiang Chemical Reagent Co.,
Ltd., Guangdong, China. The other chemical materials are obtained from Jining Huakai Resin Co., Ltd.,
Shandong, China. EPDM is used as a functional particle introduced into PU foams. The EPDM of the
same size have three different hardness: 65, 70 and 85 HA. It is obtained from Dongguan Zhangmutou
Hongfa Plastic Raw Materials Business Department, Guangdong, China.

2.2. Sample Preparation

The materials except for MDI and EPDM are gradually weighed in a paper cup and pre-mixed at
1500 rpm for 60 s by using a mechanical mixer equipped with two impellers. Secondly, the various
EPDM are added to the mixtures separately and stirred for 30 s. Finally, MDI is added to this mixture
and stirred for 15 s. Then, the mixture is poured rapidly into mold. After curing 30 min at 50 ◦C in
drying oven, the foams are removed and saved at room temperature for 24 h. Table 1 shows the raw
materials used to prepare pure PU foams.

Table 1. Pure polyurethane (PU) foam formulation.

Raw Materials Content (g)

Polyols (330 N, 3630) 330 N = 60, 3630 = 40
MDI 28–32

Catalyst (A1, A33, TEA) A1 = 0.05, A33 = 1, TEA = 3
Silicone oil 1.8

Deionized water 2.5–3.5

2.3. Experiment Design

In this paper, the content and hardness of EPDM, the content of MDI and deionized water are
selected as design variables. The average sound absorption coefficient and average transmission
loss are selected as the optimization objectives. The paper aims to simultaneously maximize the
average sound absorption coefficient and average sound transmission loss. Table 2 lists the four design
variables and their levels. The content level of MDI and deionized water are selected according to their
function in the synthesis process. The content and hardness level of EPDM are selected according to
the engineering experiences.
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Table 2. Design variables and their levels.

Variables Parameter Code
Level

1 2 3

Content of MDI/g A 28 30 32
Content of EPDM/g B 2 4 6

Hardness of EPDM/HA C 65 70 85
Content of deionized water/g D 2.5 3 3.5

The first two columns of Table 3 show the details of the experiment schemes. In order to reduce
the number of experiments and satisfy the requirements of the surrogate models, the 15 experimental
samples are prepared in this paper. The first nine experimental samples are obtained by the orthogonal
arrays L9

(
34), which are used for the optimization process of GRA method. The other samples are

obtained by random selection. All of the experimental data are used to construct the surrogate models
for MOPSO algorithm.

Table 3. Experiment design and experimental results.

Runs
Variables

Average Sound Absorption Coefficient Average Transmission Loss/dB
A B C D

1 28 2 65 2.5 0.614 12.705
2 28 4 70 3 0.577 14.385
3 28 6 85 3.5 0.573 16.792
4 30 2 85 3 0.511 20.887
5 30 4 65 3.5 0.574 16.298
6 30 6 70 2.5 0.580 13.991
7 32 2 70 3.5 0.521 22.272
8 32 4 85 2.5 0.557 18.445
9 32 6 65 3 0.524 19.826

10 28 4 65 3 0.607 10.762
11 28 6 65 2.5 0.637 9.789
12 30 4 85 3 0.543 19.906
13 30 6 70 3 0.519 21.445
14 32 6 85 3 0.528 20.175
15 32 4 70 3.5 0.507 24.570

2.4. Measurement Method

The sound absorption coefficient of PU foam is defined as the ratio of the absorbed acoustic
energy to the incident acoustic energy. However, the sound absorption coefficient is different with
the frequency change. Therefore, the average sound absorption coefficient is widely used in order
to evaluate the sound absorption ability in engineering practice. In this paper, the average sound
absorption coefficient is the average value of the sound absorption coefficient at the 1/3 octave band
on the 100–4000 Hz frequency band. It is calculated with Equation (1):

αa =
α100 + α125 + · · ·+ α3150 + α4000

6
(1)

where αa represents the average sound absorption coefficient. α100 ∼ α4000 represent the sound
absorption coefficients at 100, 125, . . . , 3150, and 4000 Hz, respectively.

Sound transmission loss, as an inherent characteristic of acoustic package materials, can be used
to evaluate the sound insulation ability. The average transmission loss is the average value of the
transmission loss at the 1/3 octave band on the 100–4000 Hz frequency band. It is expressed as
Equation (2):

TLa =
TL100 + TL125 + · · ·+ TL3150 + TL4000

17
(2)
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where TLa represents the average transmission loss. TL100 ∼ TL4000 represent the transmission loss at
frequencies of 100 Hz, 125 Hz, . . . , 3150 Hz, and 4000 Hz, respectively.

The sound transmission loss and sound absorption coefficient of PU foam composites are
measured with SCS90AT acoustic materials properties measurement system (SCS, Padova, Italy),
which is based on the standard of ISO 10534-2:2009(E) [27]. The sound absorption coefficient is
obtained by using a two-microphone impedance tube, and the sound transmission loss is measured
by four-microphone impedance tube. Cylindrical 30 mm thickness samples with 100 and 28 mm in
diameters are tested for the frequency ranges of 100–1500 Hz and 500–6300 Hz, respectively. Then,
the average sound absorption coefficient and average transmission loss are calculated through the
equations. The results are shown in the latter two columns of Table 3.

3. Results

3.1. GRA Method

3.1.1. Grey Relational Generation

Firstly, the first nine experimental results in the latter two columns of Table 3 are transformed to
dimensionless sequences. The linear normalization preprocess is using the larger-the-better criterion
with Equation (3):

x∗i (k) =
x0

i (k)−minx0
i (k)

maxx0
i (k)−minx0

i (k)
(3)

where x∗i (k) denotes the normalized value of the ith value in the kth origin sequence. x0
i (k) denotes

the original value of the ith value in the kth origin sequence. maxx0
i (k) and minx0

i (k) represent the
maximum and minimum values of the kth origin sequence, respectively. k is the number of quality
characteristics. i is the row label of the experiments.

The average sound absorption coefficient and average transmission loss of the PU foam composites
are set into origin sequence x∗0(k) = 1, k = 1, 2. The second column of Table 4 shows the results of the
normalized sequences.

Table 4. Calculation results of normalized sequences, grey relational coefficient and grey relational
grade (GRG).

Runs

Normalized Sequences Grey Relational Coefficient

GRGAverage Sound
Absorption
Coefficient

Average
Transmission

Loss

Average Sound
Absorption
Coefficient

Average
Transmission

Loss/dB

1 1.000 0.000 1.000 0.333 0.667
2 0.641 0.176 0.582 0.378 0.48
3 0.602 0.427 0.557 0.466 0.512
4 0.000 0.855 0.333 0.775 0.554
5 0.612 0.376 0.563 0.445 0.504
6 0.670 0.134 0.602 0.366 0.484
7 0.097 1.000 0.356 1.000 0.678
8 0.447 0.600 0.475 0.556 0.516
9 0.126 0.744 0.364 0.661 0.513

3.1.2. Grey Relational Coefficient

After grey relational generation, the grey relational coefficient (GRC) is calculated with
Equation (4). A high GRC reflects an intense relation between the origin sequence and the
normalized sequence.
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εi
(

x∗0(k), x∗i (k)
)
= ∆min+ζ·∆max

∆0i(k)+ζ·∆max

∆0i(k) = ‖x∗0(k)− x∗i (k)‖

∆min =
min
∀i

min
∀k

∆0i(k)

∆max =
max
∀i

max
∀k

∆0i(k)

(4)

where εi
(

x∗0(k), x∗i (k)
)

denotes the GRC. x∗0(k) is the origin sequence. x∗i (k) is the normalized sequence.
∆0i(k) is the deviation sequence of x∗i (k) and x∗0(k). ζ is the distinguishing coefficient.

In this paper, ζ is selected as 0.5 because the sound absorption ability and the sound insulation
ability are equally important to reduce noise. Meanwhile, it brings higher identification degree between
the two objectives [28]. The results are shown in the third column of Table 4.

3.1.3. GRG

GRG is an average sum of GRC and calculated with Equation (5). The results are listed in the last
column of Table 4.

γi(x∗0 , x∗i ) =
n

∑
k=1

wkεi(x∗0(k), x∗i (k)) (5)

where γi
(

x∗0 , x∗i
)

denotes the GRG. ∑n
k=1 wk = 1, wk is the weight of the kth quality characteristic. n is

the number of performance characteristics. In this paper, wk is set as 0.5 and n is 2.
In the GRA method, GRG shows the relation between the origin and normalized sequences.

Meanwhile, the average GRG can be used to evaluate the influence degree of design variables on
objectives. It is calculated with Equation (6) and the results are shown in Table 5.

GRGa =
∑n

i=1 GRGi

n
(6)

where GRGa is the average GRG of each level for different variables. i denotes ith level of the variables.
GRGi is the GRG of ith level of the variables. n is the level numbers of the variables.

Table 5. Calculation results of average GRG.

Variables
Average GRG

Range
Level 1 Level 2 Level 3

A 0.553 0.514 0.569 0.055
B 0.633 0.5 0.503 0.13
C 0.561 0.547 0.527 0.034
D 0.556 0.516 0.565 0.049

It can be seen in Table 5 that the biggest average GRG of the four design variables is 0.569,
0.633, 0.561, and 0.565, respectively. They are corresponding to level 3, level 1, level 1, and level 3
of the four design variables, respectively. It indicates that the PU foam composite has good acoustic
performances when the content of MDI is 32 g, the content of EPDM is 2 g, the hardness of EPDM is 65
HA, and the content of deionized water is 3.5 g. On the other hand, the column of “Range” in Table 5
denotes the deviation between the maximum GRGa and the minimum GRGa of the same variable.
The bigger range means the variable has a significant influence on acoustic performances of PU foam
composites [29]. Therefore, the influence degree of the four design variables on the optimization
objectives can be determined through comparing the range in Table 5. It can be observed that the
biggest range is 0.13 for variable B and the smallest range is 0.034 for variable C. Thus, the order of
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influence of the design variables is B > A > D > C. Accordingly, the content of EPDM has a significant
influence on the acoustic performances of PU foam composites and the hardness of EPDM has the least
influence. It means that the small change of the content of EPDM will cause a large change in acoustic
performances of PU foam composites. Meanwhile, variables A and D are the chemical compositions of
PU foams and the range is very close. It indicates that the two variables have a similar influence level
on the acoustic performances of PU foam composites.

3.2. MOPSO Algorithm

3.2.1. Surrogate Model

In this paper, in order to select an appropriate surrogate model to express the relation between
design variables and optimization objectives, the Response Surface (RS) and Kriging and Radial Basis
Function Neural Network (RBFNN) methods are first separately employed to construct the surrogate
models. Then, the better surrogate model is selected based on the fitting accuracy of the three models.
To evaluate the fitting accuracy of the surrogate models, such coefficients as Determination Coefficient
(DC), Relative Average Absolute Error (RAAE), and Relative Maximum Absolute Error (RMAE) are
adopted [30]. The accuracy of the models is evaluated by another five random points in Table 6.

Table 6. Experimental sample for accuracy evaluation of surrogate models.

Runs
Variables

Average Sound Absorption Coefficient Average Transmission Loss/dB
A B C D

1 30 2 65 3 0.567 15.912
2 30 6 65 3 0.551 17.914
3 30 4 70 3 0.533 19.635
4 30 4 65 3 0.561 16.212
5 32 2 85 3 0.481 23.801

The evaluation coefficients of the surrogate models are listed in Table 7. It can be found that the
DC of RS model of the average sound absorption coefficient and average transmission loss is 0.9507
and 0.9653, respectively. Both are the biggest and more than 0.95. Besides, the RAAE and RMAE values
of RS model are the smallest. In general, the higher DC values, the more accurate the approximation
models. The smaller the RAAE and RMAE values, the better the metamodel [30]. Thus, the RS model
has better fitting accuracy than the Kriging model and the RBFNN model in this paper. Therefore,
the RS model is adopted to construct the complex mapping between the optimization objectives and
design variables.

Table 7. Evaluation coefficients of the surrogate models.

Objectives Surrogate Models DC RAAE RMAE

Average sound absorption coefficient
RS model 0.9507 0.0664 0.1402

Kriging model 0.6440 0.1521 0.4399
RBFNN model 0.8073 0.1203 0.3115

Average transmission loss
RS model 0.9653 0.0583 0.0968

Kriging model 0.6793 0.1846 0.3280
RBFNN model 0.9229 0.0810 0.1695
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3.2.2. MOPSO Process

The formulation of the MOPSO algorithm in this paper is expressed as Equation (7):

Find : X = (XA, XB, XC, XD)

Max : Y = {y1(X), y2(X)}

Subject to :


28 ≤ XA ≤ 32

2 ≤ XB ≤ 6

XC = [65, 70, 85]

2.5 ≤ XD ≤ 3.5

(7)

where XA, XB, XC, and XD are the design variables, which represent the content of MDI, the content
of EPDM, the hardness of EPDM, and the content of deionized water, respectively. y1(X) and y2(X)

represent the average sound absorption coefficient and average transmission loss, respectively.
In MOPSO algorithm, the inertia weight coefficient is set as 0.5 to achieve a balance exploration

and development capability. The particle increment is selected as 0.9, which represents the weight
coefficient of the particle tracks its best solutions. The global increment is selected as 0.9, which
represents the weight coefficient of the particle tracks the best solutions for the group. To obtain better
convergence and faster calculation speed, the total number of particles and the maximum iteration
are set as 10 and 300, respectively. Both the failed run penalty value and the objective value are set
as 1 × 10−30. However, the hardness of EPDM in this paper is a discrete value, and only 65, 70,
and 85 HA can be selected. Besides, the MOPSO algorithm is a kind of stochastic algorithm. It means
the several runs have been performed before the good distribution uniformity of Pareto fronts is
obtained. Finally, the Pareto optimal solutions of each EPDM are obtained, as shown in Figure 1.
Both sound absorption ability and sound insulation ability of PU foam composites are impacted by the
hardness of EPDM. Meanwhile, the average sound absorption coefficient of the PU foam composites
has an opposite trend to the average transmission loss. The better the sound absorption ability of
PU foam composites, the worse the sound insulation ability. It agrees with the actual situation. Note
that the sound absorption ability and sound insulation ability are equally important in this paper.
According to rank the Pareto optimal solutions from best to worst, the optimum values of the design
variables are obtained. The best combination values of the variables are MDI of 32 g, deionized water
of 3.4 g, EPDM of 5.8 g, and the hardness of EPDM is 65 HA.
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3.2.3. Analysis of MOPSO Results

In this paper, EPDM is used as a functional particle to add to PU foam and not reacting with the
chemical compositions. Therefore, the interaction between the design variables exists only in chemical
compositions or functional particle. Figure 2 shows the specific effects of the four design variables on
sound absorption ability and sound insulation ability.
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The effects of the four design variables on sound absorption ability of PU foam composites are
shown in Figure 2a,b. When considering one variable at a time, Figure 2a shows that the content of
MDI has a larger influence on sound absorption ability than the content of deionized water on sound
absorption ability. The average sound absorption coefficient of PU foam composites is higher when
the content of MDI is taken the smaller value. The content of deionized water is located at the two
ends of the range also be advantageous for improving the sound absorption ability. Figure 2b shows
the average sound absorption coefficient of PU foam composites is higher when the content of EPDM
is taken the bigger value within the range of this paper. However, when the hardness of EPDM is
taken the intermediate value within the range of this paper, the average sound absorption coefficient
of PU foam composites is low. Figure 2c,d show the effects of the four design variables on the sound
insulation ability of PU foam composites. In Figure 2c, when the content of deionized water is smaller
and the content of MDI is bigger, the average transmission loss of PU foam composites is higher.
Meanwhile, it also can be observed that the content of deionized water has a significant influence on
the sound insulation ability. When considering one variable at a time, it can be found in Figure 2d
that the sound insulation ability is higher when the content of EPDM is located at two ends within the
range of this paper. However, when the hardness of EPDM is taken the bigger value in the range of
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this paper, the sound insulation ability is better. On the other hand, it can be found in Figure 2 that
the same values of chemical compositions and functional particle have opposite influence on sound
absorption ability and sound insulation ability. Therefore, to get the optimum sound absorption and
sound insulation ability simultaneously, the content and hardness of EPDM and the content of MDI
and deionized water should be taken the compromise values within the range of this paper.

4. Verification

Once the optimal formulation of the PU foam composites is determined, it is important to verify
whether the results of the optimization methods are appropriate. The optimum PU foams are not
included in the prepared samples. Thus, the validation samples are prepared, according to the
optimization results of the GRA method and MOPSO algorithm, respectively. Then, the transmission
loss and sound absorption coefficient are measured. After that, the average transmission loss and
average sound absorption coefficient are calculated. Table 8 shows the results of simulation and actual
experimental. The rows of “Experiment” and “Simulation” denote the actual experimental results
and simulation results, respectively. The row of “Error” denotes the results deviation between the
simulation and actual experiments.

It can be seen from Table 8 that the simulation results of MOPSO algorithm are approximately
the same as the experimental results. It indicates that MOPSO algorithm has higher accuracy than
the GRA method to guarantee the effectiveness of the acoustic package design. According to the
comparison, the optimum values for the content of EPDM and deionized water are different. Because
the design variables are discrete values in the GRA method and are continuous values in the MOPSO
algorithm. Referring to Figure 2, it can be seen that the differences in formulation are responsible for
the GRA method having a better sound absorption coefficient and poorer transmission loss than the
MOPSO algorithm.

Table 8. Optimization results of simulation and actual experimental.

Methods Content
of MDI/g

Content of
EPDM/g

Hardness of
EPDM/HA

Content of
Deionized

Water/g

Average Sound
Absorption
Coefficient

Average
Transmission

Loss/dB

GRA
Experiment 32 2 65 3.5 0.552 20.221
Simulation 32 2 65 3.5 0.532 21.666

Error —— —— —— —— −0.02 1.445

MOPSO
Experiment 32 5.8 65 3.4 0.519 25.764
Simulation 32 5.8 65 3.4 0.512 25.85

Error —— —— —— —— −0.007 0.086

In addition, Figure 3 shows the acoustic performances curves of the optimized PU foam
composites and two initial samples. In Figure 3, “MOPSO” means the PU foam composite prepared
according to the formulation that was obtained by the MOPSO algorithm, and “GRA” means the PU
foam composite prepared according to the formulation as obtained by the GRA method. Sample 11 has
the best average sound absorption coefficient and sample 15 has the best average sound transmission
loss. The change trends of the sound absorption coefficient and transmission loss are similar. It can be
seen from the results comparison between the MOPSO and sample 15, the average sound absorption
coefficient of MOPSO is increased by 2.4% and the average transmission loss is increased by 4.86%.
This is possibly due to the optimum values for the content of deionized water, the content and hardness
of EPDM are different. However, the difference for the content of deionized water is smaller. Referring
to Figure 2, it can be found that the acoustic performances differences of PU foam composites are
mainly affected by the content and hardness of EPDM. It agrees with the results that were obtained by
GRA method. Moreover, it can be seen that the GRA sample shows better sound absorption coefficient
than the MOPSO sample, and the deviation of the sound absorption coefficient of the two samples
increase with an increasing frequency. However, the transmission loss of the two samples appears
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the opposite trend. As shown in Figure 2, 2 g EPDM and 3.5 g deionized water are advantageous
for improving the sound absorption ability, and 5.8 g EPDM and 3.4 g deionized water are good for
improving the sound insulation ability. In this paper, in order to find the compromise values for these
conflicting objectives, the weight coefficient of the two objectives is set as 0.5. Therefore, the optimum
formulation of PU foam composites is obtained by the MOPSO algorithm. The optimum values of the
four design variables are MDI of 32 g, deionized water of 3.4 g, EPDM of 5.8 g, and the hardness of
EPDM is 65 HA.Polymers 2018, 10, x FOR PEER REVIEW  11 of 13 
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5. Conclusions

In this paper, both GRA method and MOPSO algorithm are used to optimize the synthetic formula
of PU foam composites to improve the acoustic performances. The average sound absorption coefficient
and average transmission loss are selected as the optimization objectives. The content of MDI and
deionized water, the content and hardness of EPDM are selected as design variables. The optimization
process of GRA method is based on the orthogonal arrays L9

(
34), and the optimization process of

MOPSO algorithm is based on the surrogate model. According to the fitting accuracy comparison,
the RS surrogate model is adopted in this paper to express the relation between the optimization
objectives and design variables. The results show that the acoustic performances of PU foam composites
can be improved by optimizing the formulation of PU foam composites. Meanwhile, the results that
were obtained by GRA method show the degree of influence of the four design variables on the
optimization objectives. The major influence factor on acoustic performances is the content of EPDM,
and the hardness of EPDM has the least influence. The results that were obtained by MOPSO algorithm
show the specific effects of the design variables on optimization objectives. However, since the GRA
method is usually used to search the optimal solution in discrete spaces, it cannot guarantee the
solution is globally optimal solution. Therefore, the optimal results that were obtained by the two
optimization methods are different. In this paper, the weight coefficient of the optimization objectives
is set as 0.5. By confirmation test, the optimum formulation of PU foam composites is obtained by the
MOPSO algorithm. The optimal parameters of the four design variables are MDI of 32 g, deionized
water of 3.4 g, EPDM of 5.8 g, and the hardness of EPDM is 65 HA. Certainly, the weight coefficients of
the sound absorption ability and sound insulation ability can be set as various values in the range of 0
to 1 to meet different operating conditions requirements.

Author Contributions: S.C. and Y.C. lead the development of the multi-objective optimization process and
analysis the acoustic performances of PU foam composites. W.Z. synthesized the PU foam composites and
measured the acoustic performances.



Polymers 2018, 10, 788 12 of 13

Funding: This study was supported by the National Natural Science Foundation project (No. 51575222) and
Special Project of Jilin Province-University Joint Construction Plan (SXGJSF2017-2-1-5).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chang, H.S.; Lee, K.S.; Lee, K.S.; Oh, S.M.; Kim, J.H.; Kim, M.S.; Jeong, H.M. Sound damping of
a polyurethane foam nanocomposite. Macromol. Res. 2007, 15, 443–448.

2. Chen, S.M.; Jiang, Y.; Chen, J.; Wang, D.F. The effects of various additive components on the sound absorption
performances of Polyurethane foams. Adv. Mater. Sci. Eng. 2015, 2015, 317561. [CrossRef]

3. Park, J.H.; Yang, S.H.; Lee, H.R.; Yu, C.B.; Pak, S.Y.; Oh, C.S.; Kang, Y.J.; Youn, I.R. Optimization of low
frequency sound absorption by cell size control and multiscale poroacoustics modeling. J. Sound Vib. 2017,
397, 17–30. [CrossRef]

4. Mosiewicki, M.A.; Soto, G.; Arms, A.; Iasi, F.; Vechiatti, N.; Castro, A.; Marcovich, N.E. Biobased porous
acoustical absorbers made from polyurethane and waste tire particles. Polym. Test. 2017, 57, 42–51.

5. Saetung, A.; Rungvichaniwat, A.; Campistron, I.; Klinpituksa, P.; Laguerre, A.; Phinyocheep, P.; Doutres, O.;
Pilard, J.-F. Preparation and physico-mechanical, thermal and acoustic properties of flexible polyurethane
foams based on hydroxytelechelic natural rubber. J. Appl. Polym. Sci. 2010, 117, 828–837. [CrossRef]

6. Sung, G.; Kim, J.W.; Kim, J.H. Fabrication of polyurethane composite foams with magnesium hydroxide
filler for improved sound absorption. J. Ind. Eng. Chem. 2016, 44, 99–104. [CrossRef]

7. Kim, J.M.; Kim, D.H.; Kim, J.; Lee, J.W.; Kim, W.N. Effect of graphene on the sound damping properties of
flexible polyurethane foams. Macromol. Res. 2017, 25, 190–196. [CrossRef]

8. Chen, S.M.; Jiang, Y. The acoustic property study of polyurethane foam with addition of bamboo leaves
particles. Polym. Compos. 2016, 39, 1370–1381. [CrossRef]

9. Lin, J.H.; Lin, C.M.; Huang, C.C.; Lin, C.C.; Hsieh, C.T.; Liao, Y.C. Evaluation of the manufacture of sound
absorbent sandwich plank made of PET/TPU honeycomb grid/PU foam. J. Compos. Mater. 2011, 45,
1355–1362. [CrossRef]

10. Koruk, H.; Genc, G. Investigation of the acoustic properties of bio luffa fiber and composite materials.
Mater. Lett. 2015, 157, 166–168. [CrossRef]

11. Yin, G.G.; Oweimreen, T.S.; Jan, L. Varying the Polyurethane Foam Ratio for Better Acoustic Performance and Mass
Savings; SAE Technical Paper 2011-01-1736; SAE International: Warrendale, PA, USA, 2011. [CrossRef]

12. Jeon, J.Y.; Okuma, M. Acoustic radiation optimization using the particle swarm optimization algorithm.
JSME Int. J. Ser. C Mech. Syst. Mach. Eleme. Manuf. 2004, 47, 560–567. [CrossRef]

13. Chen, S.; Chen, G.; Wang, D.; Song, J. Multi-Objective Optimization of Sound Package Parameters for Interior
High Frequency Noise of Heavy-Duty Truck Using Grey Theory. Int. J. Automot. Technol. 2015, 16, 947–957.
[CrossRef]

14. Jiang, Y.; Chen, S.M.; Wang, D.F.; Chen, J. Multi-Objective Optimization of Acoustical Properties of
PU-Bamboo-Chips Foam Composites. Arch. Acoust. 2017, 42, 707–714. [CrossRef]

15. He, Y.S.; Zhang, H.; Xia, X.J.; Lai, S.Y.; He, Z.Q. Multi-objective optimization analysis of a passenger car’s
interior sound package. Mech. Sci. Technol. Aerosp. Eng. 2017, 36, 455–461.

16. Pan, J.; Semeniuk, B.; Ahlquis, J.; Caprioli, D. Optimal Sound Package Design Using Statistical Energy Analysis;
SAE Technical Paper 2003-01-1544; SAE International: Warrendale, PA, USA, 2003. [CrossRef]
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