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Abstract: In the present study, a novel sulfur/lithium-ion full battery was assembled while using
ternary sulfur/polyacrylonitrile/SiO2 (S/PAN/SiO2) composite as the cathode and prelithiated
graphite as the anode. For anode, Stabilized Lithium Metal Powder (SLMP) was successfully
transformed into lithiated graphite anode. For cathode, scanning electron microscopy (SEM) and
transmission electron microscopy (TEM) revealed that SiO2 was uniformly distributed on S/PAN
composites, where SiO2 served as an effective additive due to its ultra high absorb ability and
enhanced ability in trapping soluble polysulfide. The tested half-cell based on S/PAN/SiO2 composite
revealed high discharge capacity of 1106 mAh g−1 after 100 cycles at 0.2 C. The full cell based on
prelithiated graphite//S/PAN/SiO2 composite system delivered a specific capacity of 810 mAh g−1

over 100 cycles.

Keywords: sulfur/lithium-ion full battery; prelithiated graphite anode; stabilized lithium metal
powder; ternary sulfur/polyacrylonitrile/SiO2 composite; electrochemical performance

1. Introduction

Battery storage systems have been widely used in various applications, such as wind and
solar energy storage, emergency back-up power, peak shaving, load-leveling, and transportation
electrification [1,2]. Lithium-ion secondary batteries are widely used in mobile communications,
notebook computers [3,4], digital cameras, and other small electronic devices due to several interesting
features [5], including high energy storage density, long service life, and elevated rated voltage [6].
However, the energy densities of lithium-ion batteries do not currently meet the demand, hence the
development of new energy storage systems becomes important [7–12]. Lithium/sulfur (Li/S)
batteries have high theoretical energy densities reaching up 2600 Wh kg−1, making them the most
promising energy chemical power systems. In regard to this, elemental sulfur as cathode has
low cost when combined with its environmental friendliness and high theoretical specific capacity
(1672 mAh g−1) [13–18]. However, despite these criteria, the development of Li/S batteries still faces
numerous challenges. Elemental sulfur is electrically insulating and the polysulfide generated during
charging and discharging processes (Li+S8→Li2Sx (4 ≤ x ≤ 8)) is highly soluble in electrolytes [19,20].

The above issues could be solved by adding various types of conductive carbon materials [21–23].
Also, some polymer and oxide additives might enhance the structural stability of composites and
improve the conductivity of matrix materials. On the other hand, it is important to suppress the
“shuttle effect” of polysulfides [24].
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Among composites, sulfur/polyacrylonitrile (S/PAN) showed high sulfur utilization with
elevated initial capacity [21,25]. However, the poor electrical conductivities of S/PAN binary
composites render the cycling and rate performances hindered. To this end, the Li/S battery exhibits
enhanced electrochemical performance due to the different types of additives in the sulfur cathode,
which results in a change in morphology and/or absorbing properties. The additive has the advantages
of small dose and remarkable effect. Therefore, the use of additives in Li/S cells to change the
morphology of S composite is one of the effective methods to improve the battery performance [26,27].

A method of containment at the cathode is to provide additives in the cathode matrix that
can attract and hold polysulfides so that it does not diffuse to the negative electrode. To employ
this concept [28], our previous study showed that the morphology of S/PAN composite greatly
changed by adding small amounts of additives. Also, the composition morphology has been
transferred from smooth to rough, effectively improving the electrochemical reaction at the electrode.
In this work, we successfully synthesized S/PAN/SiO2 composites as cathode materials by wet
ball milling, followed by heat treatment. The addition of small amounts of SiO2 nanoparticles
was found to be beneficial for optimizing the surface morphology and favoring the homogeneous
distribution of individual components. The above studies were based on traditional Li/S battery
system, employing lithium metal foil as anode characterized by safety hazards, possible dendrite
formation, short-circuiting, and cell thermal runway [29].

To improve the safety concerns of large-scale production of lithium/sulfur batteries, one promising
strategy is to develop pre-lithiated commercial graphite anodes while using stabilized lithium metal
powders (SLMP). In previous studies, some studies investigated the potential use of SLMP for
overcoming the irreversible capacities of various anode systems [30,31]. Herein, we developed a
novel sulfur/lithium-ion battery with pre-lithiated graphite anode, and the performances of the
resulting pre-lithiated graphite//S/PAN/SiO2 composite battery were discussed.

2. Materials and Methods

The ternary cathode materials were prepared by first mixing 8 g sulfur (Shanghai Huzheng Nano
Technology Co., Ltd., Shanghai, China), 2 g polyacrylonitrile (PAN) (Sigma-Aldrich, Shanghai, China),
and 0.5 g SiO2. Anhydrous ethanol (Aladdin, Shanghai, China) was then added to the mixture for wet
ball milling at 600 rpm and 2 h. Next, the obtained ball-milled product was dried and heat-treated
under protective N2 atmosphere at 450 ◦C for 6 h. For comparison, S/PAN binary composite was also
prepared while using the same experimental conditions.

The samples were characterized by X-ray diffraction (XRD, Bruker D8, Bruker, Karlsruhe,
Germany), scanning electron microscopy (SEM, ZEISS, SUPRA, Jena, Germany), X-ray photoelectron
spectroscopy (XPS, ESCALAB, 250Xi, Thermo Fisher, Waltham, MA, USA), transmission electron
microscopy (TEM, JEOL, Tokyo, Japan), and Fourier transform infrared (FTIR, Bruker, Ettlingen,
Germany) spectroscopy. The surface area was calculated using the Brunauer-Emmett-Teller (BET,
ASAP 2020, Micromeritics, Atlanta, GA, USA).

The S/PAN/SiO2 and S/PAN electrodes were prepared by evenly grinding 80 wt % S/PAN/SiO2

(S/PAN) composites, 10 wt % Super P, and 10 wt % PVDF (50 mm diameter, Shanghai Xingya, Shanghai,
China). The mixture was then dropwise added to NMP to yield a slurry, which was coated on nickel
foam and dried in 60 ◦C oven for 12 h. the obtained platforms were then cut into circular electrodes.
The graphite anode was comprised of graphite, Super P, and PVDF at the mass ratio of 90:3:7. A surface
application technique was employed to apply SLMP suspended in xylene slurry onto the prefabricated
graphite anodes. An SLMP: graphite molar ratio of 11:60 was utilized to compensate for the irreversible
capacity and lithiating the graphite. Upon solvent evaporation, the anode sheets were calendered
using manual rolling mill at 3 MPa. The cathode loading of each cell was 2.5 mg cm−2 and the graphite
active material loading was about 3 mg cm−2.

The assembled 2025 button cell was completed in an argon-filled glove box. In half cells,
a lithium chip was used as anode. In full cells, lithium was substituted by the lithiated graphite
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anode. The electrolyte was composed of 1M LiPF6 (Li zhiyuan, Shanghai, China) solution dissolved
in ethyl carbonate (EC), dimethylcarbonate (DMC), and diethyl carbonate (DEC) at volume ratio of
1:1:1. Coin cells were assembled and pre-conditioned for 24 h at room temperature. The galvanostatic
charge/discharge tests were conducted at different current densities (1 C = 1672 mA g−1) and voltage
of 1.0–3.0 V Li+/Li.

3. Results and Discussion

Figure 1a represents the XRD patterns of S/PAN/SiO2 composite. The characteristic Fddd
orthorhombic crystal structure peaks of elemental sulfur vanished from the XRD patterns of S/PAN
composite. This could be due to trapping of S in the internal structure of the composite to form highly
dispersed state, with crystalline sulfur and PAN most likely being converted to amorphous sulfurized
PAN by heat-treatment [10,20]. Comparison of the characteristic bands between S/PAN/SiO2 and
S/PAN composites revealed a broad peak at 23◦, which can be indexed to mixed peaks of S/PAN and
amorphous SiO2 [32,33]. The latter was probably induced by the dispersion of SiO2 on the S/PAN
surface and a slight shift in characteristic peaks of the ternary composites to the left. It also shows that
SiO2 and other components did not react during ball milling and heat treatment. Chemical analysis
has shown that the sulfur content in the S/PAN/SiO2 ternary composite was 45 wt %.

In order to determine the various functional groups in the S/PAN/SiO2 composite, the FTIR
analysis of the sample presents in Figure 1b. The characteristic peaks at 805, 1252, 1365 and 1502 cm−1

indicated the presence of C=C and C=N bonds in the composite [30]. The peaks at 882 cm−1

can be attributable to the S-S bonds, and those at 1046 and 1092 cm−1 can be assigned to the
C-S stretching. The presence of the three peaks suggested that sulfur particles and PAN formed
sulfurized-polyacrylonitrile [34]. The peak at 1116 cm−1 was associated with the asymmetric stretching
vibration of Si-O-Si in SiO2 [33].
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Figure 1. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) images of S/PAN
(S/PAN/SiO2) ternary composite.

The microscopic morphologies of S/PAN/SiO2 composites were revealed by SEM. The surface
morphology of S/PAN binary composite underwent remarkable changes in the presence of small
amounts of SiO2 nanoparticles. The typical S/PAN nanostructure depicted in Figure 2a was
composed numerous agglomerated particles. The S/PAN composite showed a bulk structure with
very compact particles and smooth surface (Figure 2b). By comparison, the S/PAN/SiO2 ternary
composite consisted of nanosized primary particles (Figure 2c,d), resulting in a rough surface of
the ternary composite. The BET specific surface area of S/PAN/SiO2 composite was estimated to
33.75 m2 g−1, which was significantly higher than those of S/PAN binary composites that were
published previously [20,31]. Therefore, the surface area was increased significantly by adding the
additive with a nano structure. This should facilitate the contact between the electrolyte and electrodes.
Moreover, the ternary composite contained many nano-sized particles, creating a three-dimensional
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(3D) porous nanostructure, it is beneficial to ion diffusion in Li/S battery and the SiO2 suppresses the
separation and agglomeration of active materials in the composite. The TEM image of S/PAN/SiO2

composite were shown in Figure 2e,f, the “dark dots” were the amorphous SiO2 particles well-dispersed
in the composite bulk, which agrees well with the wide peaks in the XRD patterns. The as-prepared
ternary composite was enabled to maintain the homogeneous distribution of its components and
unchanged morphology during discharge-charge cycling, and retain the reactive sites in its nanosized
structure [35].
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To further determine the chemical bonds in the S/PAN/SiO2 composite, the XPS analysis of the
sample is shown in Figure 3a–d. The C 1s, S 2p, and Si 2p peaks were all detected in the spectra.
Figure 3b revealed the presence of a high-resolution peak of C 1s, as well as two peaks corresponding to
C-C (284.6 eV) and C-N/C-S. The XPS C 1s spectra of S/PAN/SiO2 composite confirmed the presence
of a distinct peak at 285.8 eV, corresponding to the C-S/C-N bonds. This indicated the existence of
certain chemical bonding between S and PAN in the S/PAN/SiO2 composite. Figure 3c reveals the
high-resolution S 2p peak. The S 2p3/2 peak located at 161.4 and 163.3 eV were associated with C-S
bond, attributed to single C-S bond and C-S bond in short-chain sulfide. The S 2p1/2 peak at 164.6 eV
was assigned to the S-S bond [21]. In XPS spectrum of Si 2p (Figure 3d), the peak at 104.8 eV was also
present in the characteristic peak of SiO2 [36]. These data were in accordance with the XRD patterns.
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To figure out the electrochemical performances, the Li/S half cells were assembled while
using lithium metal as anode, S/PAN/SiO2 composites as cathode, and 1M LiPF6 as electrolyte.
Figure 4a shows the discharge/charge curves of S/PAN/SiO2 half batteries. A method of containment
at the cathode is to provide additives in the cathode matrix that can attract and hold polysulfides
so that they do not diffuse to the negative electrode. We utilized SiO2 as an additive to S/PAN
electrode. The main interaction that the polysulfides have with the additive is through surface sorption,
and therefore the surface area is increased significantly by synthesizing the additive with a nano
structure. the SiO2 additive was able to sorb polysulfides during the intermediate discharge and
release them near the end of discharge so that they could be further reduced in the S/PAN matrix with
most of the sulfur being reversibly sorbed in the SiO2. The kinetics improvement and the polarization
decrease achieved in the system by the addition of SiO2 could be very beneficial for the utilization
of the low-conductive sulfur active material in the composite cathode, and consequently improved
the energy and power density of the battery [20,30]. The initial discharge curve consisted of a rapid
drop curve around 2.4 V and flat discharge curve around 1.6 V. The initial charge-discharge process
was typical of lithium-sulfur battery reactions [10]. During the following two cycles, the discharge
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curve was mainly composed of two lines with different inclinations. The first part of the curve
looked relatively flat (from 2.2 V to 1.6 V) and the second was steep (from 1.6 V to 1.0 V). The two
curves indicated the available capacity of about 1266 mAh g−1. Figure 4b confirmed a coulombic
efficiency of binary and ternary composite electrode half cells close to 100%. However, the S/PAN/SiO2

half-cell showed a higher specific discharge capacity, which can be attributed to added nanosized
SiO2. Moreover, the S/PAN/SiO2 electrode maintained a discharge capacity of 1106 mAh g−1 at 0.2 C
after 100 cycles. The S/PAN/SiO2 half-cell exhibited specific discharge capacities of 1268, 969, 806,
and 622 mAh g−1 at current densities of 0.2, 0.5, 1 and 2 C, respectively (Figure 4c). By comparison,
the S/PAN half-cell was also tested under the same conditions and the data are gathered in Figure 4d.
Obviously, the cell with the S/PAN/SiO2 composite cathode showed an enhanced rate capability. This
is, again, due to the significant improvement of the charge transfer properties of the composite cathode
and its stability by the SiO2 additive that was observed in this work [37].
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As shown in Figure 5, the prelithiated graphite//S/PAN/SiO2 composite system exhibited
an initial capacity of 804 mAh g−1 and specific capacity of 810 mAh g−1 after 100th cycle.
Hence, extremely low capacity decay rate was registered. Figure 5a depicts the coulomb efficiency of
the full cell, which was close to 100%. The cycling curve of the full cell indicated a slight decrease
from the initial cycle up to the 10th cycle then slowly increased up to 100th cycle. Although the
amorphous S/PAN can provide good mechanical support for SiO2 spheres, the structural stability
cannot be guaranteed due to repeated volume changes during cycling. This led to decrease in capacity.
Meanwhile, the added amorphous nano-sized SiO2 absorbed more electrolyte and polysulfide on the
surface of rough ternary composite. The discharge capacity also gradually increased in subsequent
cycles, which is may due to that the pre-lithiated graphite was not fully lithiated, meaning that the
electrode underwent slow activation. When the electrode was in contact with the electrolyte, the SLMP
in the anode released lithium ions, making it slow to activate. As the battery cycles increases, the anode
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side of the graphite was completely lithiated, and the battery exhibited a gradual increase in discharge
specific capacity [28,29,38].

When compared to other related work (Table 1), our S/PAN/SiO2 composite exhibited superior
electrochemical performance.
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Figure 5. (a) Discharge/charge performance of S/PAN/SiO2 full-cell at 0.2 C between 0.1 V and 3 V.
(b) Cycling performance and coulombic efficiency of S/PAN/SiO2 full-cell at 0.2 C.

Table 1. Literature comparison of the electrochemical performances of cathode materials for lithium
sulfur batteries.

Cathodes Sulfur Loading
(wt %)

Current
Density

Initial Discharge
Capacity (mAh/g)

Discharge
Capacity (mAh/g)
(After nth Cycle)

References

S/DPAN 48 0.2 C 1550 1050 (80) [10]

S/PAN/Mg0.6Ni0.4O 38.5 0.1 C 1540 1200 (100) [20]

S@pPAN 37.64 200 mA/g 2200 1700 (100) [32]

S@pPAN 40.9 0.5 C 1510 1100 (100) [38]

S/PAN/Graphene 47.3 0.1 C 719 612 (10) [39]

S@pPAN // Prelithiated SiOx/C 87 0.36 C 850 600 (100) [40]

MesoC/Sulfur // Prelithiated Graphite - 0.1 C 608 405 (105) [41]

S/PAN/SiO2 // Prelithiated Graphite 45 0.2 C 804 810 (100) This work

4. Conclusions

Sulfur/lithium-ion full batteries were assembled while using ternary S/PAN/SiO2 composite as
cathode and a prelithiated graphite as anode. SLMP was successfully applied to lithiation of graphite
anode. Nano-sized SiO2 was found to be uniformly distributed on S/PAN composites, which served as
an effective additive due to its ultra high absorbtion ability and enhanced trapping soluble polysulfide.
The S/PAN/SiO2 composite cathode half-cell showed a high discharge capacity of 1106 mAh g−1 after
100 cycles at 0.2 C. The pre-lithiated graphite//S/PAN/SiO2 composite full cell system delivered a
specific capacity of 810 mAh g−1 over 100 cycles. These findings look promising for future use in
energy conversion and storage devices.
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