

Influence of Cyclodextrins on Thermosensitive and Fluorescent Properties of Pyrenyl-Containing PDMAA

Qiujing Dong ^{1,2,3}, Changrui Sun ^{1,2}, Fangyuan Chen ^{1,2}, Zheng Yang ^{1,2}, Ruiqian Li ^{1,2}, Chang Wang ^{1,2} and Chunhua Luo ^{1,2*}

- ¹ School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China; dongqj1980@163.com (Q.D.); sunchangrui1208@163.com (C.S.); cfy8861@qq.com (F.C.); zhengyang8402@qq.com (Z.Y.); liruiqian2008@163.com (R.L.); bigceleron@163.com (C.W.)
- ² Anhui Provincial Key Laboratory for Degradation and Monitoring of the Pollution of the Environment, Fuyang 236037, China
- ³ State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200433, China
- * Correspondence: ch-luo@fynu.edu.cn; lch197919@163.com; Tel.: +86-558-259-6249

Received: 31 August 2019; Accepted: 23 September 2019; Published: date

A PDMAA-5.7 PDMAA-5.7 PDMAA-7.5 PDMAA-7.5 PDMAA-7.5 PDMAA-8.4 PDMAA-8.4 PDMAA-8.4 PDMAA-8.4

1. Calculation of molar content of PyBEMA in copolymer by ¹H NMR

Figure S1. ¹H NMR spectra of PDMAA-5.7, PDMAA-7.5 and PDMAA-8.4 in CDCl₃.

"A" represents protons integral area of pyrene ring (a) and "B" represents protons integral area of N,N-dimethyl (k), CH-C=O (k) and CH₂ (f). Molar content of PyBEMA in copolymer x% is calculated as follow.

$x = \frac{\frac{n}{2}}{\frac{B - \frac{A \times 2}{\alpha}}{7}} \times 100$				
	PDMAA-5.7	PDMAA-7.5	PDMAA-8.4	PDMAA-12.7
А	1	1	1	1
В	13.073	11.254	9.557	6.509
х	6.1	7.1	8.3	12.4

2. Transmittance-Temperature Relationship Curves

Figure S2. Transmittance as function of temperature for 5 g/L PDMAA-5.7 copolymers aqueous solution in the presence of different amount of α -CD.

Figure S3. Transmittance as function of temperature for 5 g/L PDMAA-5.7 copolymers aqueous solution in the presence of different amount of β -CD.

Figure S4. Transmittance as function of temperature for 5 g/L PDMAA-5.7 copolymers aqueous solution in the presence of different amount of γ -CD.

Figure S5. Transmittance as function of temperature for 5 g/L PDMAA-7.5 copolymers aqueous solution in the presence of different amount of α -CD.

Figure S6. Transmittance as function of temperature for 5 g/L PDMAA-7.5 copolymers aqueous solution in the presence of different amount of β -CD.

Figure S7. Transmittance as function of temperature for 5 g/L PDMAA-7.5 copolymers aqueous solution in the presence of different amount of γ -CD.

Figure S8. Transmittance as function of temperature for 5 g/L PDMAA-8.4 copolymers aqueous solution in the presence of different amount of α-CD.

Figure S9. Transmittance as function of temperature for 5 g/L PDMAA-8.4 copolymers aqueous solution in the presence of different amount of β -CD.

Figure S10. Transmittance as function of temperature for 5 g/L PDMAA-8.4 copolymers aqueous solution in the presence of different amount of γ -CD.

Figure S11. Transmittance as function of temperature for 5 g/L PDMAA-12.7 copolymers aqueous solution in the presence of different amount of α -CD.

Figure S12. Transmittance as function of temperature for 5 g/L PDMAA-12.7 copolymers aqueous solution in the presence of different amount of β -CD.

Figure S13. Transmittance as function of temperature for 5 g/L PDMAA-12.7 copolymers aqueous solution in the presence of different amount of γ -CD.

3. Excitation Spectra of 10 µg/L PDMAA-12.7 Copolymers

Figure S14. Excitation spectra of 10 µg/L PDMAA-12.7 copolymers aqueous solution. Emission wavelength was fixed at 472 nm (black curve) and 378 nm (red curve) respectively.

Figure S15. Excitation spectra of 10 μg/L PDMAA-12.7 copolymers aqueous solution with equivalent α-CD. Emission wavelength was fixed at 472 nm (black curve) and 377 nm (red curve) respectively.

Figure S17. Excitation spectra of 10 μ g/L PDMAA-12.7 copolymers aqueous solution with equivalent γ -CD. Emission wavelength was fixed at 473 nm (black curve) and 378 nm (red curve) respectively.

Figure S18. Excitation spectrum of 10 μ g/L PDMAA-12.7 copolymers in ethanol. Emission wavelength was fixed at 376 nm.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).