Supplementary Information

Injection molding of highly filled polypropylene-based biocomposites. Buckwheat husk and wood flour filler: a comparison of agricultural and wood industry waste utilization

Jacek Andrzejewski*, Mateusz Barczewski, Marek Szostak*

Polymer Processing Division, Institute of Materials Technology, Faculty of Mechanical Engineering and Management, Poznan University of Technology, Piotrowo 3, 61-138, Poznan, Poland

*Corresponding author: jacek.andrzejewski@put.poznan.pl, marek.szostak@put.poznan.pl

Keywords: Biocomposite, Particle reinforcement, Polypropylene, Mechanical properties, Injection molding,

Natural fillers characteristics and sample appearance

Figure S1. The appearance of buckwheat husk particles: as received (A), grounded husk (B), and SEM pictures at high and low magnification (C, D)

Figure S2. The appearance of wood flour particles: as received powder (A), and SEM pictures at high and low magnification (B, C)

Figure S3. Particle size distribution of the grounded buckwheat husk particles. Analysis was performed using the vibratory sieve shaker Analysette 3 (Fritsch, Germany).

Figure S4. Thermogravimetric thermograms for BH and WF filler, the plots presents TG and corresponding DTG curves. Measurements performed under nitrogen atmosphere, heating rate 10 °C/min, temperature range 30-800°C.

Figure S5. The appearance of the injection molded samples, rectangular bars for impact resistance tests. General view for samples with the addition of wood flour (A) and buckwheat husk (B), and magnification presenting the view of the sample surface.

Table S1. Extrusion and injection molding parameters

Parameter							
Extrusion							
Temperature profile	[°C]	180(die)-190-190-190-180-175-170-165-160					
Screw speed	[rpm]	100					
Injection molding							
Temperature profile	[°C]	190(nozzle)-190-190-190-180					
Injection pressure	[bar]	1200					
Holding pressure	[bar]	750					
Holding time	[s]	5					
Clamping force	[kN]	200					
Cooling time	[s]	30					
Screw speed	[rpm]	150					
Screw back pressure	[bar]	10					
Mold temperature	[°C]	40					

Mechanical properties

Table S2. Mechanical test obtained from the static tensile test and Izod notched impact test

		Izod test					
	Tensile	Tensile	Elongation	Elongation	Impact strength		
Sample	Modulus	Strength	at yield	at break			
	[MPa]	[MPa]	[%]	[%]	$[kJ/m^2]$		
Unmodified samples							
РР	1400 (±176)	36.0 (±4.0)	11.0 (±1.5)	530.0 (±77)	4.1 (±0.1)		
PP/WF10	1725 (±175)	29.0 (±1.0)	5.0 (±0.5)	24.0 (±12.0)	2.4 (±0.1)		
PP/WF30	2520 (±95)	26.0 (±0.5)	2.5 (±0.3)	4.0 (±0.7)	2.3 (±0.2)		
PP/WF50	3020 (±345)	25.0 (±1.0)	2.0 (±0.2)	2.5 (±0.4)	1.9 (±0.1)		
PP/BH10	1365 (±65)	23.0 (±1.0)	5.0 (±0.5)	16.0 (±6.0)	2.1 (±0.3)		
PP/BH30	1570 (±145)	18.5 (±1.0)	3.0 (±0.5)	6.0 (±1.5)	2.3 (±0.3)		
PP/ BH50	1690 (±175)	20.0 (±1.0)	2.5 (±0.4)	4.5 (±1.0)	2.4 (±0,3)		
MAPP modified composites							
PP/WF10(MAH)	1820 (±65)	32.5 (±1.0)	5.0 (±0.5)	12.5 (±3.5)	2.4 (±0.3)		
PP/WF30(MAH)	2190 (±240)	35.5 (±1.0)	3.5 (±0.2)	5.5 (±0.6)	2.3 (±0.1)		
PP/WF50(MAH)	2830 (±170)	38.5 (±1.0)	3.0 (±0.2)	3.5 (±0.4)	2.4 (±0.1)		
PP/BH10(MAH)	1315 (±155)	30.0 (±0.5)	6.5 (±1.0)	60.0 (±35.0)	1.7 (±0.4)		
PP/BH30(MAH)	1620 (±195)	29.0 (±1.0)	3.5 (±0.2)	5.0 (±1.0)	1.8 (±0.1)		
PP/BH50(MAH)	2420 (±390)	36.5 (±3.5)	2.5 (±0.2)	2.5 (±0.2)	2.2 (±0.1)		

Rheological analysis

Figure S6. Comparison of storage modulus G' (A) and complex viscosity η^* (B) curves for pure PP resin and MAH modified polypropylene. Strain sweep measurements were performed at constant deformation frequency $\omega=1$ rad/s, while frequency sweep test at constant strain $\gamma=5$ %.

Figure S7. Frequency sweep analysis, comparison of G' and G" plots buckwheat husk and wood flour-based composites: unmodified (A, B), and after MAH addition (A', B'). For clarity, the graphs present the results for matrix resin and samples with 10 and 50 % filler content.