Supporting Information

Covalently crosslinked nanogels: NMR study of the effect of monomer reactivity on composition and strucutre

Pengfei Liu, Charles M. Pearce, Rozalia-Maria Anastasiadi, Marina

Resmini* and Ana M. Castilla*

Department of Chemistry and Biochemistry, SBCS, Queen Mary University of London, Mile End Road E1 4NS, London, United Kingdom. Email: m.resmini@qmul.ac.uk, a.m.castilla@qmul.ac.uk

1. Supporting Tables

Feed compositions for all nanogels: moles (n) of each monomer and AIBN, and volume (V) of solvent, were calculated using the following equations:

$$n_{comonomer} = n_{monomer} \times \frac{comonomer \%}{monomer \%} \qquad (Eq.S1)$$

$$n_{MBA} = n_{monomer} \times \frac{MBA \%}{monomer \%} \qquad (Eq.S2)$$

$$n_{AIBN} = (n_{monomer} + n_{comonomer} + 2n_{MBA}) \times AIBN\% \qquad (Eq.S3)$$

$$V_{DMSO} = \left(\frac{mass_{TOTAL\ monomers} \times (1 - C_M)}{C_M}\right) \times \frac{1}{\rho_{DMSO}} \qquad (Eq. S4)$$

where C_M = total monomer concentration (%*w*/*w*)

Table S1. Monomer conversion data obtained from six repeats of the polymerisation of NIPAM (80 mol%) and MBA (20 mol%) in DMSO- d_6 at 70 °C for 24h. 1% of AIBN and a total monomer concentration (C_M) of 1% was used in all cases. These six entries indicate good reproducibility for the nanogel synthesis and calculation of monomer conversions.

	Feed Com	position	M	onomer Conver	sion ^a
Entry	NIPAM	MBA	NIPAM	MBA	Overall
no.	% mol m	onomer	%)	%
1^b	80	20	88.7	98.2	91.0
2 ^{<i>b</i>}	80	20	89.7	98.0	91.0
3 ^b	80	20	88.6	97.9	90.5
4 ^c	80	20	89.0	98.0	90.8
5 ^d	80	20	89.0	99.0	91.0
6 ^{<i>e</i>}	80	20	87.8	97.5	90.0

^{*a*}Calculated from ¹H NMR analyses of initial and final polymerisation mixtures. ^{*b*}Experiment conducted by the same researcher. ^{*b*}C, *d*</sup>Experiments conducted by three different researchers. ^{*e*}NMR internal standard (2-ethylnaphtalene) added to the prepolymerization mixture.

					Monomer Conversion ^a					
Nanogel	AIBN	См	Т	time	NIPAM	MBA	Overall	\mathbf{Y}^{b}	$d_h^c(\mathbf{PdI})^d$	VPTT ^e
n°	mol%	% w/w	°C	h	%	%	%	%	nm	°C
N1	1				68	89	72	75	9.8±3.5 (0.239)	38
N2	5	1	60	24	88	98	90	68	9.4±1.6 (0.267)	39
N3	10				90	99	92	59	5.2±0.5 (0.275)	40
N4	1				77	94	80	п	п	п
N5	5	1	60	48	92	99	93	n	n	n
N6	10				95	99	96	n	n	n
N7	1				87	98	89	83	9.3±1.3 (0.261)	39
N8	5	1	70	24	91	99	93	68	5.8±1.5 (0.316)	40
N9	10				94	99	95	62	7.9±0.5 (0.363)	40
N10	1				89	99	91	п	п	n
N11	5	1	70	48	92	99	93	n	n	n
N12	10				95	99	96	n	n	n
N13	1				77	94	80	72	22.5±8.5 (0.251)	36
N14	5	2	60	24	93	99	94	70	19.2±8.0 (0.204)	37
N15	10				95	99	96	48	25.6±4.5 (0.206)	37
N16	1				94	99	95	73	25.6±12.0 (0.239)	36
N17	5	2	70	24	91	99	93	68	15.9±7.4 (0.212)	37
N18	10				97	99	97	57	6.9±0.8 (0.206)	37

Table S2. Characterisation data and monomer conversions and chemical yield data obtained from high dilution radical polymerisations of NIPAM (80 mol%) and MBA (20 mol%) in DMSO($-d_6$).

^aMonomer conversions were calculated from ¹H NMR analyses of initial and final polymerisation mixtures. ^bY is nanogel polymerisation yield. ^cd_h is hydrodynamic diameter by number as calculated by DLS. ^dPdI is polydispersity index. ^eMeasured at a concentration 1 mg/mL. n = not measured

Monomer	Monomer Conversion ^a
MBA	99%
NIPAM	80%
NPAM	60%
A-Pr-OH	98%
AMPS	36%
AMPS+Im ^b	14%
4VI	9%
AM	65%

Table S3. Monomer conversions calculated for the homopolymerisation of each of the monomers used in this work.

Polymerisation conditions: 12h, 70 °C, DMSO- d_6 and $C_M = 1\%$. ^aConversions were calculated from ¹H NMR analyses of initial and final polymerisation mixtures. ^bIn the presence of 1 equivalent of imatinib free base.

		Feed Co	mposition			
Nanogel	NIPAM	NPAM	MBA	A-Pr-OH	\mathbf{Y}^{a}	$d_h^b(\mathbf{PdI})^c$
n°	mol%	Mol%	mol%	mol%	%	nm
N19	95	0	5	0	82	5.4±0.2(0.5)
N20	90	0	10	0	77	4.1±0.2(0.5)
N21	0	95	5	0	51	107.2±6.5(0.1)
N22	0	90	10	0	61	6.2±2.1(0.3)
N23	0	80	20	0	75	6.1±1.2(0.6)
N24	92.5	0	5	2.5	81	3.0±0.2(0.4)
N25	87.5	0	10	2.5	84	2.7±0.4(0.5)
N26	77.5	0	20	2.5	95	2.6±0.2(0.8)
N27	0	92.5	5	2.5	76	90.4±15(0.2)
N28	0	87.5	10	2.5	80	5.4±0.2(1.0)
N29	0	77.5	20	2.5	89	4.1±0.2(1.0)

Table S4. Chemical yield and DLS data for nanogels N19 - N30

Polymerisation conditions: 24 h, 70 °C, DMSO(-d₆) and $C_M = 1\%$. ^aY is nanogel polymerisation yield. ^bd_h is hydrodynamic diameter by number as calculated by DLS. ^cPdI is polydispersity index.

		Fe	eed Compos	sition		Μ	lonomer Co	onversior	h ^b	
Nanogel	AMPS	NIPAM	MBA	AIBN	AMPS:Im ^a	AMPS	NIPAM	MBA	Overall	Y ^c
n°	mo	ol%	mol%CL	mol%	mol equiv	%	<u>⁄</u> 0	%	%	%
N30					-	70	92	99	92	62
N31	20	20	60	1	1:1	54	56	79	70	n
N32					1:1	53	78	96	84	п
N33					-	72	92	99	92	75
N34	20	20	60	3	1:1	63	84	98	85	n
N35					1:1	70	75	94	85	n
N36					-	78	94	99	94	71
N37					1:1	81	83	97	91	n
N38	20	20	60	5	1:1	68	89	98	90	n
N39					2:1	81	90	99	94	п
N40					3:1	81	89	99	93	п

Table S5. Monomer conversion and chemical yield data for nanogels N30 - N40

Polymerisation conditions: 24 h, 70 °C, DMSO and $C_M = 1\%$. ^aN31, N34 and N437 were templated with imatinib mesylate and N32, N35 and N38 - N40 with imatinib free base. ^bConversions were calculated from ¹H NMR analyses of initial and final polymerisation mixtures. ^cY is nanogel polymerisation yield. n = not measured (the yield for templated polymers was not calculated as imatinib could not be completely washed out).

	Fee	d Comp	osition			Monomer Conversion ^a																
Nanogel	4VI	AM	MBA	См	AIBN	4VI	AM	MBA	Overall	\mathbf{Y}^{b}												
n°	mo	1%	mol%	% % mol%		%		%	%	%												
N41	10	40	50	0.5	2	59	32	37	37	6												
N41-T ^c	10	40	40	40	40	40	40	40	40	40	40	40	40	40	50	0.5	2	61	35	38	39	7
N42	10	40	50	1	2	86	35	58	52	41												
N43	10	40	50	0.5	-	100	59	82	75	40												
N43-T ^c		40	50	0.5	5	100	63	82	76	50												
N44	10	40	50	51	5	100	75	90	85	81												

Table S6. Monomer conversions and chemical yields for nanogels N41-N44

Polymerisation conditions: 70 °C, 24 h in DMSO(- d_6). ^aConversions were calculated from ¹H NMR analyses of initial and final polymerisation mixtures. ^bY is nanogel polymerisation yield. ^cIn templated nanogels 1 mol% of caffeine with respect to the amount of 4VI was present in the polymerisation mixture.

2. Supporting Figures

Figure **S1**. Partial ¹H NMR (400 MHz, 298 K, DMSO- d_6) spectra of the polymerisation mixtures for the preparation of nanogel **N29** as a representative example for all polymerisations with A-Pr-OH. a) Spectrum acquired immediately after preparation of the polymerisation mixture, b) spectrum acquired after heating at 70 °C for 24 h. Peaks integrated to calculate conversions (Table 1 and Table S4) are indicated. 1,2,4,5-tetramethylbenzene was used as internal standard (IS). Intensities have been scaled for clarity.

Figure S2. Partial ¹H NMR (400 MHz, 298 K, DMSO- d_6) spectra of the polymerisation mixtures for the preparation of nanogel **N36** as a representative example for all polymerisations with AMPS. a) Spectrum acquired immediately after preparation of the polymerisation mixture, b) spectrum acquired after heating at 70 °C for 24 h. Peaks integrated to calculate conversions (Figure 3 and Table S6) are indicated. 2-ethylnaphtalene was used as internal standard (IS). Intensities have been scaled for clarity.

Figure **S3**. Partial ¹H NMR (400 MHz, 298 K, DMSO- d_6) spectra of the polymerisation mixtures for the preparation of nanogel **N42** as a representative example for all polymerisations with 4VI. a) Spectrum acquired immediately after preparation of the polymerisation mixture, b) spectrum acquired after heating at 70 °C for 24 h. Peaks integrated to calculate conversions (Figure 4 and Table S6) are indicated. 2-ethylnaphtalene was used as internal standard (IS). Intensities have been scaled for clarity.

Figure S4. ¹H NMR (400 MHz, 298 K, DMSO- d_6) spectra of a mixture of imatinib free base and AIBN in DMSO- d_6 a) after preparation and b) after heating to 70 °C for 24 h. The fact that no new peaks appear on the second spectra show that imatinib does not degrade in the presence of the radicals formed upon AIBN decomposition. Intensities have been scaled for clarity.

Figure S5. Dynamic light scattering of nanogels N19

Figure S7. Dynamic light scattering of nanogels N7

Figure S8. Dynamic light scattering of nanogels N1, N2 and N3 (measurement were performed in triplicate but only one is shown for clarity)

Figure S9. Dynamic light scattering of nanogels N8 and N9 (measurement were performed in triplicate but only one is shown for clarity)

Figure S10. Dynamic light scattering of nanogels N13, N14 and N15 (measurement were performed in triplicate but only one is shown for clarity)

Figure S11. Dynamic light scattering of nanogels N16, N17 and N18 (measurement were performed in triplicate but only one is shown for clarity)

Figure S12. Dynamic light scattering of nanogels N21, N22 and N23 (measurement were performed in triplicate but only one is shown for clarity)

Figure S13. Dynamic light scattering of nanogels N24, N25 and N26 (measurement were performed in triplicate but only one is shown for clarity)

Figure S14. Dynamic light scattering of nanogels N27, N28 and N29 (measurement were performed in triplicate but only one is shown for clarity)

Figure S15. Transmittance change with increasing temperature for nanogels N1 - N3, N7 - N9, N13 - N29. Transmittance was measured at 500 nm at a polymer concentration of 1 mgmL⁻¹ in deionised water.

Figure **S16.** Representations of the kinetic profile for polymerisation **N7**: 80 mol% NIPAM, 20 mol% MBA, $C_M = 1\%$, 1% AIBN, T = 70 °C, t = 24 h. (a) Change in monomer conversions with time; (b) Change in weighted monomer conversions with time; (c) Change in polymer composition with time.

Figure S17. Representations of the kinetic profile for polymerisation N26: 2.5 mol% A-Pr-OH, 77.5 mol% NIPAM, 20 mol% MBA, $C_M = 1\%$, 1% AIBN, T = 70 °C, t = 24 h. (a) Change in monomer conversions with time; (b) Change in weighted monomer conversions with time; (c) Change in polymer composition with time.

Figure **S18**. Representation of the changes in weighted monomer conversions with time corresponding to the kinetic profiles for polymerisations **N29** (2.5 mol% A-Pr-OH, 77.5 mol% NPAM and 20 mol% MBA), **N36** (10 mol% 4VI, 40 mol% AM and 50 mol% MBA) and **N44** (20 mol% AMPS, 20 mol% NIPAM and 60 mol% MBA). Polymerisation conditions: $C_M = 1\%$, 1% (**N29**) or 5% (**N36**, **N44**) AIBN, 70 °C, 24 h.