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Abstract: Three conjugated polymers, in which the electron-donating (D) 5-alkylthiophene-2-yl-sub
stitued benzodithiophene was linked to three different electron-accepting (A) moieties, i.e.,
benzothiadiazole (BT), diphenylquinoxaline (DPQ), and dibenzophenazine (DBP) derivative via
thiophene bridge, were synthesized using the Stille coupling reaction. In particular, the strong
electron-withdrawing cyano (CN) group was incorporated into the A units BT, DPQ, and DBP
to afford three D–A type target polymers PB–BTCN, PB–DPQCN, and PB–DBPCN, respectively.
Owing to the significant contribution of the CN-substituent, these polymers exhibit not only low-lying
energy levels of both the highest occupied molecular orbital and the lowest unoccupied molecular
orbital, but also reduced bandgaps. Furthermore, to investigate the photovoltaic properties of
polymers, inverted-type devices with the structure of ITO/ZnO/Polymer:PC71BM/MoO3/Ag were
fabricated and analyzed. All the polymer solar cells based on the three cyano-substituted conjugated
polymers showed high open-circuit voltages (Voc) greater than 0.89 V, and the highest power
conversion efficiency of 4.59% was obtained from the device based on PB-BtCN with a Voc of 0.93 V,
short-circuit current of 7.36 mA cm−2, and fill factor of 67.1%.

Keywords: conjugated polymers; cyano group; polymer solar cells

1. Introduction

In the past few decades, polymer solar cells (PSCs) have attracted significant interest as a
promising clean and renewable energy resource, owing to their advantages, such as high flexibility,
facile processability, and cost-effectiveness [1–4]. Recent innovative efforts to improve PSCs have led
to a significant enhancement, over 10%, in their power conversion efficiency (PCE) [5–9]. A bulk
heterojunction (BHJ) configuration between polymeric electron donors and electron acceptors (usually
fullerene-based materials) in an active layer of PSCs is commonly utilized, which allows the generation
of bicontinuous interpenetrating networks with large interfacial areas for an efficient charge separation
and charge transport process [10,11]. For further improvement of their performances, the design
and synthesis of proper polymeric donor materials with strong light absorption, high charge carrier
mobility, and balanced electronic structure are of great importance [12]. Usually, the alternating
donor-acceptor (D–A) type copolymers between electron-donating and electron-accepting building
blocks are used for PSCs, because this configuration can reduce the band gap of polymers significantly
through the facile formation of the intramolecular charge transfer (ICT) state [13]. For example, the
electron-donating benzodithiophene (BDT), carbazole, and triphenylamine derivatives were widely
utilized for D components, whereas the electron-accepting benzothiadiazole (BT) and quinoxaline (Qx)
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units were often used for A moieties during the preparation of D–A type conjugated polymers for
PSCs [14–22].

Recently, the incorporation of electron-withdrawing groups, such as fluorine atoms specifically
onto the electron-accepting unit of D–A type polymers, has been regarded as a promising strategy to
enhance the photovoltaic performances of PSCs [23–27]. Upon addition of strong electron-withdrawing
groups, the energy levels of D–A type polymers, in both the lowest unoccupied molecular orbital
(LUMO) and the highest occupied molecular orbital (HOMO), are lowered without a serious interruption
in the bandgap. The low-lying HOMO energy level of polymeric donors can enhance the open-circuit
voltage (Voc) of the device, which can also trigger a sharp increase in PCE. Along with fluorine atoms,
other electron-withdrawing units, such as trifluoromethyl (–CF3), sulfonyl (–SO2), and cyano (–CN)
groups, were utilized during the preparation of D–A type conjugated polymers [28–30]. In particular,
the incorporation of the CN group into the chemical structures of D–A type polymers is beneficial for
achieving high-performance PSCs, because the CN unit can not only facilitate the charge separation
process in BHJ device through the generation of strong dipole moment, but also stabilize the LUMO
and HOMO energy levels of polymers [30,31]. For instance, D–A type polymers with CN substituents
on the electron-accepting BT and pyridine-fused triazole exhibit high PCEs of 6.55% and 8.37%,
respectively [30,32].

Inspired by these findings, we synthesized a series of D–A type polymers, in which the
electron-donating alkylthienyl-substituted BDT was connected to the electron-accepting units
possessing one CN group via a thiophene bridge. Three CN-substituted strong electron-accepting
moieties, i.e., BT, diphenylquinoxaline (DPQ), and dibenzophenazine (DBP), were used as building
blocks for the three target polymers PB–BtCN, PB–DPQCN, and PB–DBPCN, respectively (Figure 1).
Owing to the significant contributions of diverse electron-accepting moieties, discernible optical
and electrochemical properties were measured from these polymers. In addition, the photovoltaic
properties of the polymers were investigated by fabricating an inverted-type PSC with the structure of
indium tin oxide (ITO)/ZnO/active layer (Polymer:PC71BM)/MoO3/Ag. Interestingly, the photovoltaic
cells based on the three polymers show a high Voc, greater than 0.89 V, and the best PCE, of 4.59%, was
obtained from the device based on PB-BtCN with a Voc of 0.93 V, a short-circuit current (Jsc) of 7.36 mA
cm−2, and a fill factor (FF) of 67.1%.
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2. Experimental Section

2.1. Materials and Instruments

3-(2-octyldodecyl) thiophene (1), 4.7-dibromo-5-fluorobenzo[c] [1,2,5] thiadiazole (3), and
2,6-bis(trimethyltin)-4,8-bis(5-2-ethylhextyl)thiophene-2-yl)benzo[1.2-b:4,5-b’]dithiophene (9) were
synthesized according to the procedure described in previous literature [33–35]. (6,6)-Phenyl C71

butyric acid methyl ester (PC71BM) and (6,6)-Phenyl C61 butyric acid methyl ester (PC61BM) were
purchased from Nano-C, Inc.(Westwood, USA) All other chemicals and solvents were obtained from
Aldrich. 1H and 13C nuclear magnetic resonance (NMR) spectra were analyzed using a JEOL JNM
ECP-600 spectrometer (Tokyo, Japan). UV–visible spectra were measured using a JASCO V-530
UV-Vis spectrophotometer (Eastony, USA). Matrix-assisted laser desorption/ionization time-of-flight
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spectroscopy was performed using a Bruker Ultraflex spectrometer (Billerica, USA). Gel permeation
chromatography (GPC) was performed using an Agilent 1200 series instrument (Santa Clara, USA).
Cyclic voltammetry (CV) measurements were obtained using a VersaSTAT3 potentiostat (Princeton
Applied Research, Oak Ridge, USA) with tetrabutylammonium hexafluorophosphate (0.1M in
acetonitrile) as the electrolyte. A glassy carbon electrode coated with polymers, a platinum wire, and a
silver wire were used as the working electrode, counter electrode, and pseudo-reference electrode with
a ferrocene/ferrocenium external standard, respectively. The inverted-type PSCs, with a configuration
of ITO/ZnO/active layer (Polymer:PC71BM)/MoO3/Ag, were sequentially fabricated and analyzed by
following a previously reported procedure [36]. In particular, to fabricate inverted type photovoltaic
devices with indium tin oxide (ITO)/Zinc oxide (ZnO)/active layer (donor:acceptor)/MoO3/Ag, a
25 nm-thick ZnO film was deposited on an ITO surface by using a sol–gel process. The partially
crystalline ZnO film was prepared by thermal curing of pre-deposited ZnO precursors at 200 ◦C for
10 min. The solution of ZnO precursors was prepared by the dissolution of zinc acetate dehydrate
(0.1 g) and ethanolamine (0.025 mL) in methoxyethanol (1 mL) and stirring the mixture at 60 ◦C for 12
h prior to film deposition. Prior to spin-coating, the solution of ZnO precursors was filtered through
a 0.45 µm cellulose acetate membrane filter. The active layer was spin-coated by the chlorobenzene
(with 1, 8-diiodooctane) solution of polymeric donor and PCBM acceptor. The solution was prepared
by a concentration of 10 mg/mL based on a polymeric donor and blended at 70 ◦C for 12 h. Prior to
spin-coating, the blended solution was filtered through a 0.2 µm polytetrafluoroethylene membrane
filter. Finally, a 3 nm thick MoO3 layer and 100 nm thick Ag layer were consecutively deposited by
thermal evaporation at 1.5 × 10−6 Torr through a shadow mask with a device area of 0.12 cm2. The J–V
characteristics of devices were analyzed by using a KEITHLEY Model 2400 source-measure unit, under
AM 1.5G illumination at 100 mW/cm2 from a 150 W Xe lamp. The conditions of a solar simulation
were calibrated before the measurements by using a Si reference cell with a KG5 filter certified by the
National Institute of Advanced Industrial Science and Technology. Atomic force microscopy (AFM)
images were obtained using a Bruker (NanoScope V, Billerica, USA) micropore in tapping mode.

2.2. Syntheses of Monomers and Polymers

2.2.1. Synthesis of (4-(2-Octyldodecyl)thiophen-2-yl)tributylstannane (2)

After dissolving 3-(2-octyldodecyl)thiophene (1, 8.23 mmol) in tetrahydrofuran (THF, 20 mL),
n-butyllithium (8.23 mmol, 2.5 M in hexane) was slowly added at −78 ◦C under a N2 atmosphere.
The solution was stirred for 1 h and, subsequently, tributylchlorostannane (8.23 mmol) was added.
The mixture was stirred for 1 h at −78 ◦C and, thereafter, further reacted overnight at room temperature.
Once the reaction was completed, the mixture was poured into water and extracted with hexane.
The organic layer was dried over magnesium sulfate (MgSO4). The solvents were removed under
reduced pressure and, thereafter, the product (2) was used directly for the subsequent step without
further purification.

2.2.2. Synthesis of 5-Fluoro-4,7-bis(4-(2-octyldodecyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (4)

4,7-dibromo-5-fluorobenzo[c][1,2,5]thiadiazole (3, 2.50 mmol), 4-(2-octyldodecyl)thiophen-2-yl)t
ripropylstannane (2, 5.50 mmol), and Pd(P(Ph2)Cl2)(5 mol %) were dissolved in toluene (30 mL).
After N2 had been bubbled for 30 min, the mixture was heated to reflux and stirred for 24 h under a N2

atmosphere. After the reaction was completed, the mixture was cooled to room temperature and filtered
with celite to remove the palladium catalyst. The residue was purified via column chromatography
using n-hexane. Yield:46%. 1H NMR (600 MHz, CDCl3): δ (ppm) = 8.07 (s, 1H), 7.95 (d, 1H), 7.74 (d,
1H), 7.12 (s, 1H), 7.06 (s, 1H), 2.64 (dd, 4H), 1.69(d, 2H), 1.32–1.24 (m, 64H), 0.87 (t, 12H). 13C NMR
(600 MHz, CDCl3): δ (ppm) = 159.68, 158.00, 153.44, 149.74, 143.16, 142.06, 137.49, 132.09, 130.37,
125.76, 123.88, 123.59, 116.49, 111.23, 39.04, 35.07, 33.47, 32.10, 30.23, 29.87, 29.56, 26.80, 14.14.
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2.2.3. Synthesis of 4,7-Bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-5- fluorobenzo[c][1,2,5]th
iadiazole (5)

A mixture of 5-fluoro-4,7-bis(4-(2-octyldodecyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (4;
0.91mmol) and N-bromosuccinimide (NBS, 2.73 mmol) in THF (30 mL) was stirred at room temperature
for 12 h. The solution was poured into water and extracted with ethyl acetate. The organic layer was
dried with MgSO4 and filtered. The solvents were removed under reduced pressure and the residue
was purified via column chromatography using n-hexane. Yield:50%. 1H NMR (600 MHz, CDCl3):
δ (ppm) = 7.93 (s, 1H), 7.73 (s, 1H), 7.66 (d, 1H), 2.58 (dd, 4H), 1.75 (d, 2H), 1.35–1.23 (m, 64H), 0.86
(t, 12H). 13C NMR (600 MHz, CDCl3): δ (ppm) = 159.44, 157.76, 152.66, 149.10, 142.27, 141.32, 136.71,
131.92, 131.45, 129.15, 124.59, 115.50, 113.85, 110.42, 38.53, 34.04, 33.34, 31.95, 30.07, 29.74, 29.40, 26.55,
22.71,14.27.

2.2.4. Synthesis of
4,7-Bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole-5-carbonitrile (6)

A mixture of 4,7-bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-5-fluorobenzo[c][1,2,5]thiad iazole
(4, 0.60 mmol), KCN (1.98 mmol) and 18-crown-6 (0.20 mmol) was dissolved in a mixed solvent
of toluene (20 mL) and dimethylformamide (DMF, 4 mL). After N2 had been bubbled for 30 min,
the mixture was stirred and refluxed for 48 h. After the reaction was completed, the mixture was
poured into water and extracted with methylene chloride. Ammonia solution (28%) was poured
into the aqueous extracts to remove the residual cyanide. The organic phase was dried over MgSO4.
The product was purified via column chromatography using n-hexane/methylene chloride (20/1) (v/v).
Yield:60%. 1H NMR (600 MHz, CDCl3): δ (ppm) = 7.93 (s, 1H), 7.89 (s, 1H), 7.74 (s, 1H), 2.59 (dd,
4H), 1.75 (s, 2H), 1.31–1.23 (m, 64H), 0.89–0.84 (m, 12H). 13C NMR (600 MHz, CDCl3): δ (ppm) =

152.55, 152.45, 142.63, 142.07, 136.18, 133.79, 132.34, 129.62, 129.51, 126.75, 125.86, 118.68, 117.32, 114.26,
108.15, 38.54, 34.22, 34.12, 33.31, 31.90, 29.99, 29.65, 29.62, 29.34, 26.52, 22.67,14.11. MALDI-TOF MS:m/z
calculated, 1044.292; found, 1043.544 [M+].

2.2.5. Synthesis of 5,8-Bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-2,3-diphenylquinoxaline-6-
carbonitrile (7)

A mixture of 7-bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole-5-carbonitr
ile (6, 0.32 mmol) and zinc powder (6.40 mmol) was stirred in acetic acid (15 mL) at reflux temperature
for 3 h. After the reaction was completed, zinc powder was filtered and the filtrate was collected.
Benzil (0.32 mmol) was added to the filtrate and stirred overnight at reflux. After cooling to room
temperature, the mixture was poured into water and extracted with ethyl acetate. The organic layers
were collected and dried over MgSO4. The solvents were removed under reduced pressure. The crude
residue was further purified via column chromatography n-hexane/methylene chloride (20/1) (v/v).
Yield:43%. 1H NMR (600 MHz, CDCl3): δ (ppm) = 8.26 (s, 1H), 7.83 (s, 1H), 7.73 (d, 2H), 7.68 (d, 2H),
7.52(s, 1H), 7.46–7.37 (m, 6H), 2.58 (dd, 4H), 1.76 (s, 2H), 1.33–1.23 (m, 64H), 0.86–0.84 (m, 12H). 13C
NMR (600 MHz, CDCl3): δ (ppm) = 153.74, 153.24, 140.87, 137.92, 137.43, 137.40, 137.18, 135.31, 134.43,
133.17, 131.80, 131.32, 130.48, 130.41, 129.89, 129.73, 128.50, 128.45, 128.40, 127.95, 119.30, 117.98, 116.62,
109.53, 38.67, 38.61, 34.23, 34.16, 33.35, 31.91. 30.01, 29.68, 29.66, 29.34, 26.57, 22.68, 14.12. MALDI-TOF
MS: m/z calculated, 1190.450; found, 1190.682 [M+]

2.2.6. Synthesis of 10,13-Bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)dibenzo[a,c]phenazine-
11-carbonitrile (8)

The synthetic procedure of the product 8 was the same as the method for the preparation of the
product 7 described above. 9,10-Phenantherenequinone was used instead of benzil with the same
equivalence. Yield:48%. 1H NMR (600 MHz, CDCl3): δ (ppm) = 9.51 (d, 1H), 9.39 (d, 1H), 8.60 (t, 2H),
8.32 (s, 1H), 7.90–7.82 (m, 5H), 7.57 (s, 1H), 2.65 (dd, 4H) 1.83 (s, 2H) 1.38–1.23 (m, 64H), 0.86–0.82 (m,
12H). 13C NMR (600 MHz, CDCl3): δ (ppm) = 141.88, 141.65, 140.45, 140.22, 137.50, 136.87, 134.55,
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133.31, 133.06, 131.90, 131.65, 131.40, 130.88, 130.58, 129.81, 128.57, 128.35, 127.78, 127.65, 127.06, 126.67,
122.19, 119.47, 118.47, 116.79, 108.14, 38.87, 34.32, 34.26, 33.52, 33.49, 32.12, 32.09, 32.06, 30.33, 29.91,
29.87, 29.84, 29.55, 29.52, 26.79, 26.74, 22.86, 22.83, 22.81, 14.25. MALDI-TOF MS:m/z calculated,
1088.433; found, 1088.701 [M+].

2.2.7. Synthesis of PB-BtCN Via Palladium-Catalyzed Stille Reaction

A mixture of 4,7-bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole-5-carboni
trile (6, 0.12 mmol), 2,6-bis(trimethyltin)-4,8-bis(5-2-ethylhextyl)thiophene-2-yl) benzo[1,2-b:4,5-b′]dit
hiophene (9, 0.12 mmol), and Pd(PPh3)4 (3 mol %) was dissolved in dry toluene (5 mL). After N2

has been bubbled for 30 min, the mixture was stirred at 90 ◦C under N2 atmosphere for 48 h. At the
end of polymerization, 2-tributylstannylthiophene and 2-bromothiophene were subsequently added,
with an interval of 2 h. Once the polymerization was completed, the mixture was cooled to room
temperature and precipitated into methanol. The black solids were gathered and further purified via
Soxhlet extraction with methanol, acetone, hexane, and chloroform, in sequence. The final solution
was collected and the solvent was evaporated to concentrate the polymer solution. Subsequently, the
polymers were precipitated again using methanol. Finally, the polymer was dried overnight in vacuum
oven at 50 ◦C. Yield: 88%. 1H NMR (600 MHz, CDCl3): δ (ppm) = 8.08–7.97 (br, 2H), 7.82–7.80 (br, 2H),
7.48–7.43 (br, 1H), 7.38–7.34 (br, 2H), 7.10–7.08 (br, 1H), 6.98–6.94 (br, 1H), 3.02–2.90 (br, 8H), 1.80–1.73
(br, 4H), 1.45–1.43 (br, 16H), 1.31–1.19 (br, 64H), 0.98–0.92 (br, 12H), 0.85–0.83 (br, 12H). Molecular
weight by GPC: number-average molecular weight (Mn) = 18.52 KDa, polydispersity index (PDI) =

2.20. Elemental analysis: calculated (%) for C: 73.04, H: 8.75, N: 2.87, found: C: 72.71, H: 8.46, N: 2.65.

2.2.8. Synthesis of PB–DPQCN

The synthetic procedure of PB-DPQCN was the same as the method for the preparation of
PB–BtCN described above. Compounds 7 and 9 were used as monomers. Yield: 84%. 1H NMR
(600 MHz, CDCl3): δ (ppm) = 8.34 (br, 1H), 8.07 (br, 2H), 7.88–7.85 (br, 8H), 7.44–7.43 (br, 3H), 7.40–7.38
(br, 4H), 7.00 (br, 2H), 2.93 (br, 8H), 1.86–1.85 (br, 2H), 1.77–1.75 (br, 2H), 1.35 (br, 16H), 1.28–1.21 (br,
64H), 0.92–0.89 (br, 12H), 0.84 (br, 12H). Yield: 70%. Molecular weight by GPC: Mn = 25.47 KDa, PDI =

1.54. Elemental analysis: calculated (%) for C: 76.86, H: 8.58, N: 2.61, found: C: 76.86, H: 8.36, N: 2.45.

2.2.9. Synthesis of PB–DBPCN

The synthetic procedure of PB–DBPCN was the same as the method for the preparation of
PB–BtCN, described above. Compounds 8 and 9 were used as monomers. Yield: 89%. 1H NMR
(600 MHz, CDCl3): δ (ppm) = 8.64–8.52 (br, 1H), 8.34–8.22 (br, 1H), 8.17–8.1 (br, 2H), 7.92–7.82 (br, 4H),
7.69–7.55 (br, 4H), 7.43–7.36 (br, 1H), 7.23–7.15 (br, 1H), 7.08–7.03 (br, 3H), 3.07–2.79 (br, 8H), 1.88–1.84
(br, 4H), 1.4–1.35 (br, 16H), 1.28–1.22 (br, 64H), 0.98–0.89 (br, 12H), 0.84–0.80 (br, 12H). Yield: 95%.
Molecular weight by GPC: Mn = 12.48 KDa, PDI = 2.41. Elemental analysis: calculated (%) for C: 76.95,
H: 8.46, N: 2.61, found: C: 77.04, H: 8.28, N: 2.52.

3. Results and Discussion

3.1. Synthesis and Thermal Properties

The overall synthetic routes of the monomers and polymers are shown in Scheme 1. First,
compound 1 and tributylchlorostannane were reacted in the presence of n-butyllithium to produce
compound 2. Second, Stille reaction between compounds 2 and 3 yielded compound 4 and the
following bromination reaction of compound 4, using NBS, readily afforded the dibrominated
BT compound of 5. Third, the CN-substituted BT-based monomer 6 was obtained by replacing
fluorine atoms in compound 5 with the CN group. In addition to the BT-based monomer, two
reactions, i.e., a zinc (Zn)-mediated reduction of compound 6 and a condensation reaction of
ortho-diamine intermediated with the related α-diketone, were consecutively conducted to produce
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DPQ- and DBP-based monomers. The condensation reaction of benzil and 9,10-phenantherenequinone
produced two additional cyano-containing monomers, 7 and 8, respectively. Finally, polymerization
reactions between the alkylthienyl-substituted BDT-based electron-donating monomer 9 and the
electron-accepting CN-substituted monomers 6, 7, and 9 under Stille polycondensation condition
yielded three D–A type target polymers, PB–BtCN, PB–DPQCN, and PB–DBPCN, respectively.
Owing to the existence of multiple alkyl chains, these polymers exhibit good solubility in organic
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3.2. Optical and Electrochemical Properties

Similar to other D–A type polymers [36–38], the three CN-substituted polymers exhibit typical
two broad absorption bands (Figure 3). The absorption bands at the shorter wavelength are related to
the π–π* electron transition of the conjugated backbones, whereas those at the longer wavelength are
related to the ICT state between the D and A units of the polymers. The absorption maximums of
PB–BtCN, PB–DPQCN, and PB–DBPCN at the ICT region in a chloroform solution were observed
at 594, 557, and 662 nm, respectively (Figure 3a). The maximum ICT absorption peaks of all the
polymers in the film were red-shifted to 670, 629, and 682 nm, respectively, compared with those in
the solution (Figure 3b), which is attributed to the aggregation and ordering assembly of polymer
chains in the solid state. In addition, the absorption spectra of PB–BtCN, PB–DPQCN, and PB–DBPCN
show discernible patterns with different maximum values in both shorter- and longer-wavelength
regions, depending on the A units of the polymer backbone. The change from BT to DBP with more
planar phenanthrene moiety induces red-shifted absorption spectra, owing to the extension of the effect
conjugated length. However, the transition from BT to DPQ displays a blue shift of the absorption
spectra, owing to the reduction of conjugation length caused by the existence of the twisted two
benzene rings at 2,3-positions of the quinoxaline unit [39].
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The HOMO energy levels of PB–BtCN, PB–DPQCN, and PB–DBPCN were determined by the
onset of oxidation potential of the CV measurement following the relationship of EHOMO = −(Eox +

4.8 eV) and the values were −5.37, −5.41, and −5.30 eV, respectively (Figure 4a). The LUMO energy
levels of PB–BtCN, PB–DPQCN, and PB–DBPCN were also calculated from the onset of reduction
potential of the CV curve, using the equation ELUMO = −(Ere + 4.8 eV), and the values were −3.57,
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−3.53, and −3.57 eV, respectively. Therefore, the bandgaps of PB–BtCN, PB–DPQCN, and PB–DBPCN
were determined from the HOMO and LUMO energy levels to be 1.80, 1.88, and 1.73 eV, respectively.
All the polymers exhibit relatively low-lying HOMO and LUMO energy levels, owing to the presence
of CN-substituents in their structures. The optical and electrochemical characteristics of PB–BtCN,
PB–DPQCN, and PB–DBPCN are summarized in Table 1. In addition, the energy level diagrams
of the polymers, PC71BM, and other components required for fabricating an inverted-type PSC are
demonstrated in Figure 4b. Based on this energy level diagram, the facile operation of photovoltaic
devices is expected through the energetically favored charge separation and transport process.
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Table 1. Summary of the optical and electrochemical properties of the polymers.

Polymer λsolution
max (nm) a, (λfilm

max(nm) b) HOMO (eV) c LUMO (eV) d Bandgap (eV) e

PB-BtCN 406, 594, (442, 670) −5.37 −3.57 1.80
PB-DPQCN 391, 557, (434, 629) −5.41 −3.53 1.88
PB-DBPCN 441, 662, (452, 682) −5.30 −3.57 1.73

a Maximum wavelength of the solution; b Maximum wavelength of the film; c Estimated from the oxidation
onset potential; d Estimated from the reduction onset potential; e Determined by subtracting the highest occupied
molecular orbital (HOMO) energy from that of the lowest unoccupied molecular orbital (LUMO).

3.3. Photovoltaic Properties

To determine the photovoltaic properties of the polymers, inverted-type PSCs, with a
configuration of ITO/ZnO (25 nm)/Polymer:PC71BM(80 nm)/MoO3 (20 nm)/Ag (100 nm), were
fabricated. Various blend ratios between the polymer and PC71BM in the active layer were tested with
3 wt % 1.8-diiodooctane as a processing additive and the optimum blend ratios of 3:6, 3:5, and 3:4 were
determined for the devices with PB–BtCN, PB–DBPCN, and PB–DPQCN, respectively (Tables S1 and
S2 in Electronic Supporting Information (ESI)). In this study, PC71BM was used as an acceptor due
to its better performances in BHJ photovoltaic cells, compared to the devices with PC61BM (Table S2,
ESI) [40,41]. Figure 5a shows the current density–voltage (J–V) curves of the PSCs at the optimized
blend ratio, under AM 1.5G condition. Owing to the strong electron-withdrawing CN substituent
in the polymer backbone, all the PSCs based on three polymers show a high Voc greater than 0.89
V. The Voc values of the devices with PB–BtCN, PB–DPQCN, and PB–DBPCN are 0.93, 0.95, and
0.89 V, respectively, which is consistent with the trend in their HOMO energy levels (vide supra).
Moreover, the Jsc values of the PSCs are gradually decreased in the order of PB–BtCN, PB–DPQCN,
and PB–DBPCN, with the values of 7.36, 5.89, and 4.19 mA/cm2, respectively. The CN-substituted
D–A type polymer with BT as an electron-accepting unit could induce a significant increase in the
Jsc value of the PSCs, approximately 25% and 75% higher than those with DPQ and DBP moieties,
respectively, at the same position. Similarly, the device based on PB–BtCN exhibited the highest FF
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value of 67.1%, whereas the corresponding values for the devices with PB–DPQCN and PB–DBPCN
were limited to 58.8% and 58.3%, respectively. It is observed, from the Voc, Jsc, and FF values obtained
from the J–V curves, that the best PCE, of 4.59%, was achieved for the device based on PB–BtCN,
rather than for those based on DPQCN (3.29%) and PB–DBPCN (2.17%). As shown in Figure 5b, the
incident photon-to-current efficiency (IPCE) curves of all the devices exhibited good response within
the wavelength range 300–800 nm. As expected, the IPCE of the device based on PB–BtCN was higher
than those of the other devices fabricated with PB–DPQCN and PB–DBPCN, particularly in the longer
wavelength region (>600 nm). Therefore, this result confirms the highest Jsc value for the device based
on PB–BtCN. In addition, all the Jsc values calculated from the IPCE curves are consistent with those
observed from the J–V curves. Furthermore, the series resistance (Rs) of the devices was obtained
from the J–V curves under dark condition (inset of Figure 5a). The Rs of the device based on PB–BtCN
was 3.75 Ω cm2, which was smaller than those of the devices based on PB–DPQCN (4.34 Ω cm2) and
PB–DBPCN (9.96 Ω cm2). It is evident that the Rs values of the devices are also strongly correlated
with the trend in the photovoltaic properties of the polymers in inverted-type PSCs. The photovoltaic
parameters are summarized in Table 2.
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Figure 5. (a) Current density–voltage (J–V) curves of the PSCs and (b) the IPCE spectra of the PSCs
based on PB–BtCN, PB–DPQCN, and PB–DBPCN.

Table 2. Best photovoltaic parameters of the devices based on the polymer. The averages of the
photovoltaic parameters of each device are shown in parentheses.

Polymer Blend Ratio Jsc (mA/cm2) Voc (V) FF (%) PCE (%) Rs
a (Ω cm2)

PB–BtCN 3:6 7.36
(7.24 ± 0.18)

0.93
(0.94 ± 0.00)

67.1
(65.1 ± 1.51)

4.59
(4.40 ± 0.10) 3.75

PB–DPQCN 3:5 5.89
(5.89 ± 0.09)

0.95
(0.94 ± 0.01)

58.8
(57.2 ± 0.95)

3.29
(3.17 ± 0.07) 4.34

PB–DBPCN 3:4 4.19
(4.09 ± 0.13)

0.89
(0.89 ± 0.01)

58.3
(56.9 ± 0.72)

2.17
(2.07 ± 0.08) 9.96

a Series resistance (estimated from the corresponding best device).

Furthermore, the charge transporting properties of the polymers were analyzed by fabricating
hole- and electron-only devices with the structures of ITO/PEDOT: PSS/Polymer:PC71BM/Au and
ITO/ZnO/Polymer:PC71BM/LiF/Al, respectively. As shown in Figure 6, the J–V curves of all the
polymers show a typical space charge limited current behavior governed by the Mott–Gurney law [42].
The calculated hole mobilities of the devices based on PB–BtCN, PB–DPQCN, and PB–DBPCN are
4.66 × 10−3, 2.16 × 10−3, and 1.96 × 10−3 cm2 V−1 s−1, respectively, whereas their electron mobilities are
4.98 × 10−3, 2.07 × 10−3, and 2.09 × 10−3, respectively. Interestingly, the devices based on PB–BtCN
exhibit more than two times higher values of both hole- and electron-mobility than those based on
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PB–DPQCN and PB–DBPCN. These results can confirm the higher Jsc and FF values of the PSC based
on PB–BtCN, compared with those of the devices based on PB–DPQCN and PB–DBPCN.
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The surface morphologies of the active layers in the PSCs are of great importance to understand
the photovoltaic performances of the devices. AFM measurement in tapping mode was conducted to
determine the surface characteristics of the blended films, composed of polymers with PC71BM, and
the results are shown in Figure 7. The root-mean-square (RMS) values of the films based on PB–BtCN,
PB–DPQCN, and PB–DBPCN are 2.72, 2.50, and 6.88 nm, respectively. The high RMS value of the
active layer based on PB–DBPCN is ascribed to large aggregation, owing to its poor miscibility with
PC71BM (Figure 7c). However, those based on PB–BtCN and PB–DPQCN exhibit relatively uniform
and smoother morphology without noticeable aggregations, which can lead to the enhancement of the
Jsc and FF of PSCs through efficient charge dissociation and transport, together with a good interfacial
contact [43].
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4. Conclusions

In this study, a series of conjugated polymers, in which the electron-donating BDT moiety was
connected to the CN-substituted electron-accepting group via a thiophene bridge, were synthesized
under the Stille coupling condition. To clarify their effects on diverse properties of the polymers,
three distinct units, BT, DPQ, and DBP, were used as an electron-accepting component to afford three
target polymers, PB–BtCN, PB–DPQCN, and PB–DBPCN, respectively. Owing to the significant
contributions of the CN moiety on the electron-accepting units of the polymers, all the polymers
exhibit low-lying energy levels of HOMO and LUMO and reduced bandgaps. The photovoltaic
properties of the polymers were investigated by constructing inverted-type devices with the structure
of ITO/ZnO/Polymer:PC71BM/MoO3/Ag. The low-lying HOMO energy levels of the polymers led to
a high Voc greater than 0.89 V and the highest PCE, of 4.59%, was achieved for the device based on
PB-BtCN, rather than for the devices with PB–DPQCN (3.29%) and PB–DBPCN (2.17%). The better
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incident photon-to-current response at the longer-wavelength region, and higher hole and electron
mobilities with a low Rs value for the device based on PB–BtCN, can efficiently improve the Jsc and
FF values of the PSC. These findings suggest that the type of A unit in the CN-substituted D–A type
polymers plays a crucial role for determining the photovoltaic properties of the PSCs. Therefore, this
study can pave the way for optimizing the structure-property relationships of CN-substituted D–A
type conjugated polymers for photovoltaic cells.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/5/746/s1,
Table S1: the best photovoltaic parameters of the PSCs, Table S2: the photovoltaic parameters of the devices based
on PB-BtCN.
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