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Abstract: This work has been focused on the one-step fabrication by electrospinning of polyamide 6 (PA6)
nanofibre membranes modified with titanium dioxide nanoparticles (TiO2), where these TiO2

nanoparticles aggregates could induce a photocatalytic activity. The main potential application
of these membranes could be the purification of contaminated water. Thus, it is important to analyse
the contaminant degradation capability since in these membranes this is based on their photocatalytic
activity. In this work, the effect of the photocatalysis has been studied both on the degradation of an
organic model contaminant and on the removal of Escherichia coli and other coliform bacteria. As a result,
it was observed that these membranes present excellent photocatalytic activity when they are irradiated
under UV light, allowing a 70% reduction of an organic model pollutant after 240 min. In addition, these
membranes successfully removed Escherichia coli and other coliform bacteria in artificially inoculated
water after 24 h of contact with them. Moreover, the stand-alone structure of the membranes allowed for
the reusing of the immobilized catalyst. The experimental evidence indicated that developed nanofibre
membranes are a fast and efficient solution for polluted water decontamination based on photocatalysis.
Their use could contribute to guarantee a fresh water level and quality, mitigating the water scarcity
problem worldwide.

Keywords: membrane filtration; polymeric nonwoven nanofibres; needle-free electrospinning;
photocatalytic activity; TiO2 nanoparticles; decontamination; chemical hazards; bacteria

1. Introduction

Water covers 70% of our planet, however freshwater represents the 6% of the world’s water, and
two-thirds of that is in frozen glaciers, therefore fresh water is a scarce good. Moreover, due to the
rapid development of manufacturing technologies and inefficient environmental policy, wastewater is
becoming more contaminated and difficult to process [1]. Considering the difficulties to access to clean
water supplies that inhabitants of many countries face all-over the world, the water protection and the
contamination prevention or remediation is a global problem that needs to be solved urgently. For these
reasons, there is a considerable interest in the development of techniques to restore the water quality.
There are several physicochemical methods such as filtration, chemical and electrochemical oxidation
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or ozone treatment, among others, used to resolve this problem. Between them, heterogeneous
photocatalysis is considered an inexpensive, viable and effective alternative or complimentary method
for water and wastewater treatment [2]. In a photocatalytic process, the photons that possess higher
energy than the band-gap energy excite valence band electrons, enhancing the subsequent reaction of
photocatalysts with different molecules [3]. The illumination with sufficient energy for the catalyst
active sites produces positive holes (h+) in the valence band and generates electrons (e−) in the
conduction band. The positive holes oxidise either H2O or organic pollutants to induce hydroxyl
radicals [4]. Summarising, a catalyst harnesses the ultraviolet radiation (UV) (<385 nm) [5] and
non-selective and highly reactive species like hydroxyl radicals (·OH) are generated via specific
chemical reactions in aqueous mediums [6]. Hydroxyl radicals can destroy a wide variety of pollutants,
such as organic acids, pesticides, hormones, dyes, microorganisms and even inorganic compounds [7].

TiO2 nanoparticles are one of the most promising and widespread photocatalysts as: (1) the
nanometric size gives them a large specific area, increasing their reactivity; (2) they are commercially
available at large scale, abundant and thus inexpensive; (3) TiO2 is chemically stable and possesses a
high capability to catalyse degradation processes via the disruption of molecular bonds. However,
there is some concern about the negative impact of nanoparticles on human health and the environment
that prevent their use without being part of a composite material. In addition, the recovery of the
photocatalysts from the medium after the water remediation is still a challenge, and it could limit the
applicability of the photocatalytic technique. In this framework, the incorporation of the photocatalysts,
TiO2 nanoparticles in this case, anchored on a substrate could be considered a highly promising
alternative to overcome the recovery or other similar issues [6,8–13].

The use of TiO2 coated on a surface presents low catalytic activity due to the poor dispersion
of the catalytic particles and limited interactions between the contaminant and the catalyst [14,15].
Several studies described that catalysts could be more effective when they are attached to an adsorbent
surface such as powdered activated carbon [6], clays [16], expanded perlite [17] or SiC foams [18].
In this context, an electrospinning technique is a simple and cost-effective method to manufacture high
surface area materials with high porosity and small pore sizes from a large collection of materials,
from polymeric to ceramics, including complex composites [2,19–21]. In fact, it is possible to find an
air-filtering solution based on polymeric electrospun nanofibres, but their use in water applications is
still under development. Consequently, in the last decade, significant efforts regarding the formulation
and optimisation of materials incorporating TiO2, ZnO, carbon nanotubes or graphene, among
others [15,22–27], have been made. There are different ways of including these nanoadditives in the
membranes, mainly the direct addition of nanomaterials in the solution used as precursor of the
electrospun fibres, and the addition of the materials on membrane surfaces by their immersion in a
reactive formulation with the nanoadditives. Between them, the direct incorporation of nanoadditives
to the nanofibre material seems to improve the efficiency of the final filters as it is avoids the blocking
of the pores due to a subsequent coating of the filters [15].

For the present work, authors have studied the use of polyamide 6 (PA6), a polymer widely used
in water treatment, as a support for the TiO2 nanoparticles in order to develop micro/nanoporous
hybrid nonwoven membranes with excellent photocatalytic activity under UV light irradiation.
These membranes could be used as a one-step stand-alone membrane on filtration devices for water
purification from organic contaminants, but also for the efficient removal of bacteria. Currently,
the obtaining of antimicrobial membranes is being addressed through the inclusion of silver
nanoparticles or silver-based compounds in the membranes, and the use of TiO2 for photocatalysis
and antimicrobial properties has been poorly explored. The morphology and areal weight density of
the electrospun nanofibres membranes have been characterised using scanning electron microscopy
(SEM) and weight measurements, respectively. The presence of nanoparticles in the nanofibres
have been checked using SEM, Fourier transform infrared (FTIR) and thermogravimetric analysis
(TGA). In addition, the photocatalytic activity under UV radiation against a model organic pollutant,
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Remazol Black B (C.I. Reactive Black 5), and against Escherichia coli (E. coli) and other coliform bacteria
(ISO 7704: 1985), has been also evaluated.

2. Materials and Methods

2.1. Materials

For preparation of the nanofibre membranes, polyamide 6 has been selected as the polymeric
material as it is widely used in water treatment applications and presents a high mechanical performance,
with it being able to easily handle membranes and its direct use as filter in the decontamination
process. A PA6 Ultramid B24 N03 purchased by BASF (Tarragona, Spain) has been employed. Acetic
acid and formic acid employed for the PA6 solution have been purchased from Panreac AppliChem,
Barcelona, Spain. Titanium dioxide of analytical grade of purity (Aeroxide®P25 TiO2, < 25 nm) has
been obtained from Evonik Corporation (Essen, Germany). Sodium dodecyl sulfate (SDS, ≥98.5%,
Sigma-Aldrich, St. Louis, MO, USA) and poly(ethylene glycol) (PEG, number-average molecular
weight (Mn) = 400 g·mol−1, Sigma-Aldrich) have been employed as surfactants for TiO2 nanoparticles
dispersion. As a model organic pollutant, a commercial diazo reactive dye containing two vinyl
sulfones as reactive groups, Remazol Black B (C.I. Reactive Black 5) were employed. This dye has an
empirical formula C26H21N5Na4O19S6 and molecular weight 991.8 g/mol, and has been purchased
from Acros Organics (Morris, NJ, USA). All chemicals are analytical grade substances and have been
used without further purification.

2.2. PA6 and TiO2 Modified PA6 Electrospun Nanofibres Membranes Preparation

For the development of PA6 electrospun nanofibres membranes, a 12 wt% of polyamide 6 was
dissolved in a mixture 2:1 of acetic acid:formic acid via mechanical stirring vigorously (1200 rpm) for
2 h at 80 ◦C. The nanofibres have been produced using a multijet electrospinning setup Nanospider™
from Elmarco (Liberec, Czech Republic) [15,28]. This device allowed for producing large uniform
nanofibrous structures that were easy to scale to higher dimensions. Manufacturing conditions of
the membranes were optimized to achieve homogeneous diameter distribution and to avoid defects
presence (beads, excess solvent, etc.). These defects could affect to the physical adsorption capability
of the membranes. As a result, highly homogeneous nonwoven membranes were obtained without
defects. All nonwoven nanofibrous membranes were obtained at 23 ± 2 ◦C and 50 ± 5% relative
humidity (RH). In addition, the spinning rate was established at 6.7 rpm and the distance between
the collector and the cylinder was set at 170 mm. The voltage was adapted until it achieved a stable
process, in this case 75 kV. The stand-alone structures were electrospun onto an antistatic polypropylene
substrate. Following previous optimization [28], in order to avoid viscosity variations due to the
solvent evaporation, the electrospinning duration time was 60 min.

For the manufacturing of the veils modified with TiO2, the nanoparticles were added to the PA6
solution described above, obtaining a system with 25% by weight of nanoparticles with respect to
PA6. The stabilisation of the nanoparticles required the addition of SDS as a surfactant in a 1:1 weight
ratio with respect to the nanoparticle weight and the use of 30 min of ultrasound (US Sonics VCX
series, Sonic and Materials Inc, Newton, MA, USA) with a power of 750 W and an amplitude of
30%). The procedure for the selection of the surfactant can be found in the Supporting Information
(Figure S1, Table S1). Electrospinning process parameters remained similar to the employed parameters
for obtaining unmodified PA6 nanofibres.

2.3. PA6 and TiO2 Modified PA6 Electrospun Nanofibres Membranes Characterization

Scanning electron microscopy (SEM) was employed to analyse the morphology and topography of
the nanofibrous materials. A Carl Zeiss SMT Ultra Gemini-II microscope (Carl Zeiss, Thornwood, NY,
USA) was employed. Samples were analysed without being coated. The areal weight density of the
electrospun nanofibres membranes was determined by weighing a 10 × 10 cm area in a balance with
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an accuracy of 0.0001 g. To determine the presence of TiO2 nanoparticles on electrospun nanofibres,
a Fourier transform infrared spectroscope (FTIR 4700 JASCO, Easton, PA, USA) was employed. Spectra
were obtained using an attenuated total reflection accessory, PIKE GladiATR (Pike Technologies,
Madison, WI, USA). Twenty scans were averaged for each sample in the range of 400 cm−1 to 4000 cm−1

with a resolution of 4 cm−1. The presence of TiO2 nanoparticles on electrospun nanofibres was also
confirmed using thermogravimetric analysis (TGA) by using a SDT Q600 analyzer from TA instruments,
New Castle, DE, USA. The analysis was performed from room temperature to 800 ◦C under a nitrogen
atmosphere (100 mL/min) with a heating rate of 10 ◦C/min.

2.4. Photocatalytic Performance of Electrospun Nanofibres Membranes

To determine the photocatalytic performance of the TiO2 modified membranes and its possible
use for water treatment processes, the effect of the membranes in the decomposition of an organic
model pollutant was studied. In addition, the capability of these membranes to remove E. coli and
other coliform bacteria was analysed. For comparison purposes, the performance of PA6 electrospun
nanofiber membranes was also tested and used as a reference.

A synthetic diazo reactive dye containing two vinyl sulfones as reactive groups, Remazol Black B
(C.I. Reactive Black 5) was used as a model contaminant to study the absorption and photocatalytic
activity of the electrospun nanofibres membranes. Remazol Black B was selected because it is widely
used in the textile industry due to its high chemical stability and it does not entirely fix on the fabrics,
polluting water sources [29]. Moreover, once azo dyes enter wastewater, they become more stable and
are more difficult to biodegrade because of their complex chemical structures [30]. A stock solution
with 3 mg/L in distilled water was prepared. Samples of 4 × 4 cm were cut and two pieces were
immersed into 200 mL of the solution owing to Teflon frameworks. The membrane samples were kept
for 60 min in the dark to reach an adsorption–desorption equilibrium, and then they were irradiated by
two UV lamps with an emission maximum at 365 nm (UV lamp Vl-6-L, from Vilber Lourmat (Collégien,
France) for 4 h. The photocatalytic process was monitored by following the intensity decrease of the
dye absorbance at 597 nm with respect to the irradiation time using spectroscopy. UV–visible spectra at
the wavelength range 380–1000 nm were recorded with a Perkin Elmer (Waltham, MA, USA) Lambda
950 spectrophotometer. An aliquot was taken every 15 min. Initially, the stability of Remazol Black B
under the UV radiation was observed.

For testing the performance of electrospun nanofibres membranes in the photocatatytic removal
of E. coli and other coliform bacteria, first, deionized water was artificially inoculated with 1 µL
of sewage water to introduce a concentration of E. coli and other coliform bacteria suitable for
measurement. E. coli and the other coliforms were used in these experiments due to their widespread
use as a faecal indicator and its resistance to the bactericidal effects of light irradiation relative to other
bacteria [31]. Chromogenic coliform agar (CCA) was employed for the detection of Escherichia coli and
coliform bacteria in this medium. Coliforms were distinguished via the production of β-galactosidase,
an enzyme that reacts with the chromogenic substrate to generate a pink to red precipitate. E. coli
possesses β-galactosidase and 94–97% were also positive for β-glucuronidase. The presence of the
enzyme was revealed by a blue coloration. The simultaneous action of the two enzymes gave the
colonies of E. coli a purple colour. CCA Microinstant ®kits (Scharlab, Barcelona, Spain) that were
employed in this study complied with the formula described in the ISO 9308-1:2014 standard. An area
of 4 × 4 cm of PA6 and TiO2-modified PA6 electrospun nanofibres samples were cut and placed in
contact with 100 mL of the artificially inoculated water for 24 h, with and without UV light. After this
time, the water was filtered through a membrane of 0.45 µm pore diameter, validated according to
ISO 7704: 1985. The membrane used in this filtration process was inserted face up on a dish containing
the CCA. The dishes with membranes were incubated at 36 ± 2 ◦C. A photograph of the membranes
was taken after 24 h and 4 days of incubation.
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3. Results and Discussion

3.1. PA6 and TiO2-Modified PA6 Electrospun Nanofibres Membranes Characterization

Physicochemical characterization of the membranes was carried out by using FTIR and TGA
analysis. Initially, FTIR-ATR was used to characterise the membranes (Figure 1). For both electrospun
nanofibre membranes, the characteristic polyamide absorption bands were observed at 3300 cm−1

and were assigned to the N–H stretch of the amide group. The vibrations for C=O stretching
appeared at 1680 cm−1 and asymmetric and symmetric CH2 stretching vibrations were observed at
2919 and 2850 cm−1, respectively [32]. A band appeared around 1550 cm−1, which was ascribed to the
deformation of the N–H bond. The vibrational modes of amide were observed at 1270 cm−1 (C–N
stretching) and 620 cm−1 (C–N deformation), respectively. In the spectra corresponding to the TiO2

modified electrospun nanofibres, an increase in the contribution of the band centered at 550 cm−1 was
observed, which corresponds to Ti–O bonds [33], indicating the successful incorporation of the TiO2

on the PA6. However, similarly to other reported studies, the incorporation of TiO2 nanoparticles on
the nanofibers showed no significant changes in the FTIR spectrum due to the physical interactions
between the matrix and the nanoparticles not being strong enough to considerably distinguish the
characteristic peaks [34]. The spectra of the TiO2 nanoparticles was also included for clarification.
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Figure 1. FTIR spectra of TiO2 nanoparticles, PA6 electrospun nanofibres and PA6/25 wt.% TiO2

electrospun nanofibres.

The thermogravimetric analysis of PA6 electrospun nanofibres and PA6/25 wt.% TiO2 electrospun
nanofibres membranes under nitrogen atmosphere (Figure 2a) showed that both membranes had a
significant mass loss at temperatures close to 400 ◦C corresponding to the degradation of the polymeric
matrix. However, the nanofibers modified with 25% TiO2 presented an unexpected fall between 250
and 400 ◦C. This fall was ascribed to the presence of SDS used as a surfactant in the stabilisation of the
nanoparticles in the precursor solution during the membrane preparation. The TGA curve of the SDS
was also included in Figure 2a for clarification. The residue after degradation of the organic part for
PA6/25 wt.% TiO2 electrospun nanofibres was approximately 22–25% by weight, close to the amount of
nanoparticles initially included during membrane preparation. Moreover, TGA was employed to test
the homogeneity of the PA6/25 wt.% TiO2 electrospun nanofibres. The analysis of three different areas
of the membrane (the beginning, the end and an intermediate zone) showed that the concentration of
nanoparticles was similar along the membrane, so the preparation process employed was shown to be
adequate to achieve homogeneous membranes (Figure 2b).
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Figure 2. TGA thermograms of: (a) membranes made of PA6 electrospun nanofibres and PA6/25 wt.%
TiO2 electrospun nanofibers, and (b) three different areas of the PA6/25 wt.% TiO2 electrospun nanofibres.

In addition, scanning electron microscopy was used to investigate the morphology and topography
of developed membranes. In Figure 3, the SEM images of the electrospun nanofibres membranes made
of PA6 and PA6 modified with 25 wt.% of TiO2 nanoparticles are shown. The average diameter of the
nanofibers and the areal weight of both membranes are summarized in Table 1.
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Table 1. Average diameter and areal weight of the PA6 and PA6/25 wt.% TiO2 nanoparticle electrospun
nanofibre membranes.

Sample Average Diameter (nm) Areal Weight (g/m2)

PA6 60–100 1.94
PA6/25 wt.% TiO2 110–260 4.30

As it is observed in Figure 3a, a continuous and uniform nanofibre membrane without bead
formation was obtained using the selected electrospinning working parameters for the PA6 nanofibers.
The presence of aggregates of nanoparticles deposited on PA6 nanofibres can be observed in Figure 3b.
Considering the high concentration of nanoparticles employed in the developed electrospun nanofibres
membranes, it was estimated that most of the nanoparticles were inside the nanofibers, which was
corroborated by the significant increase in the diameters of the nanofibres from 60–100 nm for the
unmodified system to 110–260 nm for the modified one. Similarly, the areal weight increased from
1.9 g/m2 for the unmodified system to 4.3 g/m2 for the modified system. The use of this high amount
of nanoparticles resulted in some agglomerates in the external part of the nanofibres. However,
these aggregated nanoparticles on the nanofibres could provide the membranes with the desired
photocatalytic property.

3.2. Evaluation of the Photocalytic Activity of the Membrane

Photocatalytic performance of PA6/25 wt.% TiO2 nanoparticles electrospun nanofibers membranes
has been evaluated by studying the decomposition of a 3 mg/L solution of Remazol Black B as a model
pollutant. The photocatalytic process was monitored by measuring the decrease of dye absorbance
(at 597 nm) with respect to the irradiation time. Initially, it was found that Remazol Black B remained
stable and no decolouration was observed under UV irradiation as no reduction in dye absorbance at
597 nm was observed. The behaviour of a reference sample, PA6 electrospun nanofibers without TiO2

nanoparticles, was also monitored under UV radiation as a reference. The results in Figure 4 showed a
slight reduction in the absorption band characteristic of this dye at 597 nm, which was related to the
adsorption of Remazol Black B on the membrane, since PA6 membrane has no photocatallytic activity.
This adsorption capacity was due to the high surface area of the nanofibre nonwoven filter. Similarly,
when the modified membrane was not irradiated by UV light, the adsorption capacity for PA6/25 wt.%
TiO2 electrospun nanofibers membrane was also observed. In this case, after 240 min, the membrane
had absorbed a 40 wt.% of the dye. However, the reduction in dye concentration was clearly higher
when the system was irradiated with UV light, with half of the dye colour being photocatalytically
degraded within 120–150 min. A final 80% of dye was degraded after 240 min, indicating that the
phototocatalytic activity of the membrane was due to the presence of TiO2. In Figure 5, the variation
of the dye concentration after each of the processes under UV light was observed, highlighting the
significant contribution of photocatalysis to remove the 2-(4-Aminophenylsulfonyl)ethyl hydrogen
sulphate from the solution.

Moreover, reusability of PA6 and PA6/25 wt.% TiO2 nanoparticles electrospun nanofibre
membranes was tested by measuring their photocatalytic activity during three UV lamp irradiation
cycles. After each cycle, the materials were placed again in fresh Remazol Black B solution. The results
are shown in Figure 6. The results indicated that PA6/25 wt.% TiO2 nanoparticles electrospun nanofibre
membranes presented good stability and maintained its photocatalytic behaviour after three uses,
whereas the PA6 nanofibre membranes displayed a reduced absorption capability over multiple cycles.
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On the other hand, to determine the photocatalytic performance of PA6/25 wt.% TiO2 nanoparticles
electrospun nanofibres membranes with respect to the removal of E. coli and other coliform bacteria
present in water, samples of non-modified and modified membranes was put in a glass in contact with
100 mL of artificially inoculated water for 24 h. In some tests, the glasses were irradiated with UV light,
and in others, they were kept in the dark. After this period, the water in contact with the membranes
was evaluated with CCA Microinstant®kits in order to determine the presence of E. coli and other
coliform bacteria (ISO 7704: 1985). The photographs of the filters incubated at 36 ± 2 ◦C are shown in
Table 2. After 96 h of incubation in an oven, most of the filters presented purple-coloured colonies of
bacteria, indicating the simultaneous action of the enzymes present in E. coli and coliform bacteria.
However, the filter that was used to filter the water in contact with PA6/25 wt.% TiO2 nanoparticles
electrospun nanofibres membranes did not possess any bacteria when the system after being irradiated
by UV light. This fact was confirmed via the photocatalytic effect of the membranes.

Table 2. Photographs of the filters after 24 h or 4 days of incubation at 36 ± 2 ◦C.

Incubation
Time (h)

PA6 Electrospun
Nanofibre

Membranes

PA6 Electrospun
Nanofibre

Membranes

PA6/25 wt.% TiO2
Electrospun
Nanofibre

Membranes

PA6/25 wt.% TiO2
Electrospun
Nanofibre

Membranes

Without UV With UV Without UV With UV

24
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membranes were shown to be reliable for the purification of waters from organic pollutants and for 
the removal of E. coli and other coliform bacteria from water. The new developed membranes were 
shown to be a suitable and reliable alternative to guarantee fresh water level and quality, mitigating 
the water scarcity problem worldwide. 
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nanoparticles electrospun nanofibre membranes was tested during three cycles and maintained its
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membranes were shown to be reliable for the purification of waters from organic pollutants and for the
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