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Abstract: The polymer blend technique was used to improve amorphous phases of a semicrystalline
polymer. A series of solid polymer blend films based on polyethylene oxide (PEO) and methylcellulose
(MC) were prepared using the solution cast technique. X-ray diffraction (XRD), Polarized optical
microscope (POM), Fourier transform infrared (FTIR) and electrical impedance spectroscopy (EIS)
were used to characterize the prepared blend films. The XRD and POM studies indicated that
all polymer blend films are semicrystalline in nature, and the lowest degree of crystallinity was
obtained for PEO:MC polymer blend film with a weight ratio of 60:40. The FTIR spectroscopy was
used to identify the chemical structure of samples and examine the interactions between chains of
the two polymers. The interaction between PEO and MC is evidenced from the shift of infrared
absorption bands. The DC conductivity of the films at different temperatures revealed that the
highest conductivity 6.55 × 10−9 S/cm at ambient temperature was achieved for the blend sample
with the lowest degree of crystallinity and reach to 26.67 × 10−6 S/cm at 373 K. The conductivity
relaxation process and the charge transport through the hopping mechanism have been explained by
electric modulus analysis. The imaginary part of electrical modulus M” shows an asymmetrical peak,
suggesting a temperature-dependent non-Debye relaxation for the PEO:MC polymer blend system.

Keywords: polymer blend films; crystallinity; optical micrographs; impedance spectroscopy;
electrical modulus

1. Introduction

Polymeric materials have been receiving great research attention due to their advantages, such
as light-weight, low-cost, high flexibility, good mechanical properties, and ease of fabrication in
thin film form [1]. These properties make them ideal materials for a broad range of applications
in optical, biomedical, and electronic devices [2]. It has been established that the features of the
polymeric materials depend mainly on the composition and attachment of monomers; therefore, many
research groups have attempted to manipulate the characteristics of polymers to create materials with
specific chemical, physical, and biological properties for a particular application [3]. Currently, the
research interests have been focused on the solid polymer electrode-based films, because of the possible
application in organic solar cells, sensors, and electrochemical devices [4–6].

Investigations on solid polymer electrolytes have focused mainly on the improvement of the ionic
conductivities at ambient temperature [7]. However, polymeric materials possess some restrictions
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such as unsatisfactory mechanical properties, inferior thermal stability, and degradation at low
temperature [8]. To overcome these limitations, some strategies have been employed, such as
copolymerization, chemical modifications (grafting) and physical mixture (blending), plasticization,
and the addition of micro/nanofillers [9,10].

In order to obtain a variety of chemical and physical properties from the constituent polymers, the
blending of the polymers has been used as an economical technique, and the gain of new properties
depends mainly on the degree of compatibility or miscibility of the polymer pairs at the molecular
level [11]. In miscible polymer blends, the particular interactions between functional groups in the
polymer segments caused a decrease of the Gibbs energy of mixture [12]. The final properties of a
polymer blend commonly depend on the properties of the constituent polymers and their composition,
as well as the miscibility of the polymer blend components. The main advantages of polymer blending
are simplicity in preparation, economically low cost, and easy control of physical properties by
compositional change [13,14].

Among the numerous reported studies of polymer blend electrolytes, blends of poly(ethylene
oxide) (PEO) with an amorphous polymer have attracted academic interest. The ion conductivity
in solid polymer electrolyte-based PEO is believed to take place in the amorphous phase, while the
crystalline phase is insulating [15,16]; thus, by blending PEO with an amorphous polymer, the degree
of crystallinity is reduced, and the conductivity of the PEO-based polymer electrolyte can be enhanced.
The degree of crystallinity of PEO upon blending is dependent on the concentration of the amorphous
polymers, such as methylcellulose (MC), starch, or poly(vinyl chloride) (PVC) [12,17].

PEO is a semicrystalline synthetic polymer and has the general molecular structure (CH2CH2O)n.
PEO, as a commercially noticeable thermoplastic polymer, has broad application in many fields due
to its high crystallinity, water-solubility, biocompatibility, and low toxicity [18]. In addition, the
flexible structure of C–O–C stretching in the backbone of the PEO chain provides the material with
excellent toughness [19]. On the other hand, MC is particularly interesting due to its abundance in
nature, very low cost, water-solubility, nontoxicity, biocompatibility and biodegradability [20,21]. MC
is a water-soluble long-chain substituted cellulose with excellent film-forming characteristics [22].
According to its degree of substitution, MC has a wide variety of uses in industry [23].

More research efforts have been directed toward the attainment of polymeric films containing large
and stable amorphous phases at ambient temperature in order to increase the flexibility of the polymer
chains which are responsible for the ion conduction in solid polymer electrolyte systems [24]. Polymer
blending can avoid the difficulties related to the low ionic conductivity of solid polymer electrolyte
materials with properties that cannot be attained with the use of a single polymer [25]. Kadir et al. [26]
reported that the degree crystallinity of PEO decreases as chitosan content increases to 60 wt.% in the
PEO–Chitosan blend. Ramly et al. [27] reported that a PEO–Starch blend with a ratio of 3:7 exhibits
minimal crystallinity; thus, this composition was chosen in the preparation of polymer electrolyte
films. This work is devoted to enhancing the conductivity of the PEO:MC blend-based polymer, by
enhancing the formation of amorphous phases. Therefore, the structural, morphological, and electrical
properties of different weight ratios of PEO:MC polymer blend films have been investigated, and the
composition for this system has been optimized.

2. Experimental Details

2.1. Sample Preparation

In this article, no additional purification has been done for the chemicals which have been
used throughout the experiment. Poly(ethylene oxide) (PEO) with molecular weight 106 g/mol was
purchased from Alfa Aesar (Shanghai, China), and methylcellulose (MC) of molecular weight 14,000
g/mol was provided by Merck KGaA (Darmstadt, Germany) and used as raw materials to prepare the
PEO:MC blend films with different composition ratios (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100) based
on the solution cast technique. In the present work, 2 g of PEO was dissolved in 120 mL of distilled



Polymers 2019, 11, 853 3 of 18

water, and 2 g of MC was dissolved in 240 mL of distilled water separately, at room temperature using
magnetic stirrer. The two solutions are stirred continuously overnight to obtain homogeneous viscous
solutions. After completely dissolving the two polymers, the obtained solutions were mixed together
in the desired weight ratio under stirring for 30 min, to achieve completely homogeneous solutions.
Finally, the obtained solutions were poured into different plastic Petri dishes, placed in a dust free
chamber with silica gel, and allowed to dry at ambient temperature for the film to form. Prior to
characterization, the films were kept in a desiccator with blue silica gel for further drying.

2.2. Sample Characterization

X-ray diffraction patterns of PEO:MC polymer blend films have been obtained using X’Pert Pro
diffractometer (PanAnalytical, Almelo, The Netherlands) at the fixed operating voltage and current of
45 kV and 40 mA, respectively. The samples were scanned by Cu-kα1 monochromatic beam, having
the wavelength 1.5406 Å, and the glancing angles were arranged in the range of 10◦ ≤ 2θ ≤ 70◦.
Surface morphologies of pure polymers and different compositions of the PEO:MC polymer blends
were examined by digital polarized optical microscopy (AmScope 3.7 (Irvine, CA, USA)) under 10×
magnification. The images were taken with software M41403 (USB 2.0).

The Fourier transform infrared (FTIR) spectrum was recorded using a PerkinElmer Frontier
spectrometer (Waltham, MA, USA). The molecular spectroscopic properties of the samples were
analyzed in the wavenumber range of 400–4000 cm−1 with spectral resolution of 1 cm−1. The electrical
properties of the samples were measured using a precision LCR Meter (KEYSIGHT E4980A, Agilent
Inc., Santa Rosa, CA, USA) in the frequencies ranging from 100 Hz to 2 MHz, and in the temperature
ranges between 303–373 K. Two aluminum electrodes with diameter of 2 cm were used as blocking
electrodes for this study. The samples were inserted between them after cutting the samples to suitable
shape and size. The measurements were carried out in a temperature-controlled closed chamber, and
the temperature was measured using T-type thermocouple. The impedance data were presented in
Argand plot, in which the sample thickness was smaller than 150 µm.

3. Results and Discussion

3.1. XRD Analysis

Figure 1 shows the X-ray diffraction (XRD) patterns of PEO, MC, and PEO:MC blend films. It
can be observed that the XRD pattern of pure PEO (Figure 1a) has two sharp Bragg peaks at 19.15◦

and 23.35◦, which indicates the semicrystalline nature of this polymer [28]. The XRD pattern of pure
MC (Figure 1f) shows a broad hump around 20.15◦, which, according to the literature, indicates an
amorphous phase with some order in the intermolecular structure of MC [23].
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From Figure 1b–e, it can be seen that with incorporation of different concentrations of MC in PEO
to form blending, the intensity of the semicrystalline peaks of PEO decreased, indicating the increase
in the amorphous phase due to the destruction of the ordered arrangements of the PEO chains. The
amorphous enhancement in the PEO:MC polymer blends system will affect the conductivity of the
samples. The amorphous phase obtained causes a reduction in the energy barrier of polymer chain
segmental motion. Thus, the conductivity increases with an increase in the amorphous domain of the
sample [29]. It can be predicted that the specimen with the maximum amorphous domain exhibits the
highest electrical conductivity at room temperature [30,31]. To illustrate this enhancement, electrical
conductivity analysis was performed on the samples.

This result demonstrates that the PEO:MC polymer blend films shows two-phase morphology,
i.e., crystalline and amorphous states. To estimate the crystallinity for all samples and resolve the
crystalline peaks, a combination of the scattered intensities can be used. In this method, the percentage
of the degree of crystallinity (Xc) was obtained from the ratios of the area under the crystalline peak
and the corresponding amorphous halos. In order to separate the crystalline and amorphous peaks,
the XRD pattern for all polymer blend compositions are deconvoluted using Fityk software (1.3.1,
Warsaw, Poland, 2010) [32], and according to the following equation [33].

Xc =
Ac

Ac + Aa
× 100% (1)

where Ac and Aa are, respectively, the area under crystalline peaks and amorphous halos. Table 1
shows the center and the full width at half maximum (FWHM) for deconvoluted XRD patterns into
Gaussian components for PEO:MC polymer blend films. Figure 2 depicts deconvoluted and fitted
XRD patterns for PEO:MC polymer blend films. It can be observed that the semicrystalline peaks are
deconvoluted into four or five Gaussian peaks. The degrees of crystallinity of the films are calculated
from the area under the deconvoluted peaks and are tabulated in Table 1. It is observed that the Xc

value decreases gradually with increasing MC concentration until 40 wt.%, and then increases with
further increasing MC concentration, achieving a minimum value of approximately 15.864%. It is clear
that the PEO:MC polymer blend with a weight ratio of 60:40 exhibits a significant reduction in the
crystalline phase, i.e., this composition has higher amorphicity.
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Figure 2. Deconvoluted XRD peaks for different concentrations of PEO:MC polymer blend. The inner 
graph depicts the peaks for the crystalline region, while the outer shows the peaks for both the 
crystalline and amorphous regions (dotted lines represent the sum of Gaussian peaks). 
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60:40 19.209 0.267 23.373 0.604 26.603 1.040 --- --- 15.86 
40:60 19.161 0.228 23.317 0.625 20.507 4.176 26.942 1.657 16.37 
20:80 20.165 4.337 23.308 0.610 19.162 0.213 --- --- 16.81 
0:100 20.786 5.173 19.656 4.619 21.594 1.858 --- --- 16.10 

3.2. Surface Morphology Analysis 

Polarized optical microscopy can be used to observe the spherulitic and crystalline morphology 
of polymers during crystallization [34]. Figure 3 shows the optical micrographs of the uncomplexed 
PEO, and different compositions of PEO:MC polymer blend films. The micrograph of pure PEO 
(Figure 3a) shows well-defined spherulitic crystalline structures separated by dark amorphous 
regions, which indicate the semicrystalline nature of the PEO polymer [28]. The blending of PEO with 
MC caused the spherulitic structures of PEO to be less prominent due to the lower radial growth rate 

Figure 2. Deconvoluted XRD peaks for different concentrations of PEO:MC polymer blend. The
inner graph depicts the peaks for the crystalline region, while the outer shows the peaks for both the
crystalline and amorphous regions (dotted lines represent the sum of Gaussian peaks).

Table 1. Center, full width half maximum (FWHM) of the deconvoluted XRD peaks, and degree of
crystallinity for PEO:MC polymer blend films with different compositions.

PEO:MC
Ratio

First Peak Second Peak Third Peak Forth Peak Degree of
Crystallinity %Center FWHM Center FWHM Center FWHM Center FWHM

100:0 23.311 0.714 19.153 0.470 26.649 1.105 — — 32.33
80:20 19.233 0.252 23.383 0.589 26.303 0.263 27.041 0.252 21.48
60:40 19.209 0.267 23.373 0.604 26.603 1.040 — — 15.86
40:60 19.161 0.228 23.317 0.625 20.507 4.176 26.942 1.657 16.37
20:80 20.165 4.337 23.308 0.610 19.162 0.213 — — 16.81
0:100 20.786 5.173 19.656 4.619 21.594 1.858 — — 16.10

3.2. Surface Morphology Analysis

Polarized optical microscopy can be used to observe the spherulitic and crystalline morphology of
polymers during crystallization [34]. Figure 3 shows the optical micrographs of the uncomplexed PEO,
and different compositions of PEO:MC polymer blend films. The micrograph of pure PEO (Figure 3a)
shows well-defined spherulitic crystalline structures separated by dark amorphous regions, which
indicate the semicrystalline nature of the PEO polymer [28]. The blending of PEO with MC caused
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the spherulitic structures of PEO to be less prominent due to the lower radial growth rate of PEO
spherulites, and finally to disappear for the pure MC sample (Figure 3f). Therefore, blending reduces
the crystallinity of PEO, and thus the amorphous phase region of the polymer blend systems gradually
enhanced due to a decrease in the size of spherulites, as observed from the appearance of dark regions
in the blending films. Lowest crystallization rate was observed for PEO:MC with composition ratio
60:40. This result is in excellent agreement with the XRD results shown in Figure 1.
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3.3. FTIR Spectroscopy Analysis

The chemical composition and the possible interactions between the functional groups in PEO:MC
polymer blend films have been achieved by using FTIR spectroscopy. The complexation occurs between
two polymers due to specific intramolecular and intermolecular interactions of polymer chains. The
observed changes in the position, shape, and intensity of the IR absorption bands were used as a tool
to detect all the materials interacting with each other [25]. Figure 4 shows the recorded FTIR spectra
for all samples in the wavenumber range from 400 to 4000 cm−1.

In the case of pure PEO, for the distinctive peaks between 800–1400 cm−1 in the spectrum, the
stretching vibration peak of C–O–C splits into three peaks at 1146, 1110, and 1062 cm−1, and the two
bands appeared at 1344, and 1359 cm−1 can be ascribed to the bending vibration of CH2 [35]. These
results reveal the existence of high crystallinity in the PEO structure [36]. However, when different
amounts of MC were added to the PEO matrix, the triplet band corresponding to C–O–C stretching
vibrations become broader and nearly combine into a single peak at 1067 cm−1, indicating a reduction
of PEO crystallinity as shown in Figure 5 [35]. This observation agrees well with the results of XRD
studies. From Figure 4, it can also be noted that the O–C–O bending peaks in pure PEO at 529 cm−1

will disappear with increasing MC; this is another indication of the existence of complexation between
PEO and MC molecules [37].
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Figure 5. FTIR spectra in the regions 1000–1200 cm−1 and 1300–1400 cm−1 for: (a) Pure PEO; (b)
PEO:MC blend weight ratio 80:20; (c) PEO:MC blend weight ratio 60:40; (d) PEO:MC blend weight
ratio 40:60; (e) PEO:MC blend weight ratio 20:80; (f) Pure MC.

Figure 6 shows that the C–H aliphatic stretching band for PEO appears at 2889 cm−1, and this peak
was shifted to lower wavenumbers upon blending with different ratios of MC. The observed changes
in the position and intensity of the C–H band reveal the change in bond length; hence, complexation
takes place between the chains of the two polymers [25,26].

The hydroxyl bands (O–H) in the IR spectrum of pure PEO film, pure MC, and their blend films
are shown in Figure 6. The O–H vibrational mode for pure PEO and pure MC are situated at 3520
and 3448 cm−1, respectively. The position of O–H band of two polymers is comparable with the
previous works [20,38]. The O–H band of PEO:MC polymer blend films has shifted to 3436, 3437, 3434,
3448 cm−1 for weight ratios 80:20, 60:40, 40:60, and 20:80, respectively. The change in the position and
intensity of both O–H and C–H band indicate the formation of hydrogen bonds between the hydrogen
atoms in PEO and oxygen atom in MC, or vice versa.
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3.4. Impedance Analysis

Impedance spectroscopy is a relatively new, nondestructive, and powerful technique for
characterizing the electrical properties of electrolyte materials and their interfaces with conducting
electrodes. The complex impedance planes (Z′′ vs. Z′) of the PEO:MC blend samples at different
temperatures are shown in Figure 7, which consist of a single semicircle arc starting from the origin
and inclined at different angles to the real axis and the frequency increases from right to left on the
arcs. In general, the impedance plots exhibit two noticeable regions: the high-frequency semicircular
arc and low frequency tail. For a perfect Debye-type relaxation, a complete semicircle with its center
overlapping with the Z′ axis should be observed. The deviation from Debye-type behaviour was
expected when detecting a depressed semicircle whose center is below the Z′ axis [11]. Thus, these
plots separate in two regions, which correspond to the electrode polarization effect in the low frequency
regions and the bulk material properties in the high frequency regions [39,40].

The nature of dielectric material in impedance spectra provides significant information about the
contribution of electrode polarization phenomena (EP) (formation of electric double layer between
electrodes surfaces and the dielectric material interface) and about the current carriers, whether they
are electrons or ions [40,41].

From Figure 7, it is observed that the large values of the imaginary part (Z′′ ) as compared to the
real part (Z′) of the complex impedance confirm a high capacitive behavior of these films, owing to
their low conductivity [42]. Moreover, at low temperatures, all weight ratios of polymer blend samples
exhibit nearly straight lines with large slope, suggesting the low conductivity of the samples. With
increasing temperature, the curves bend toward the abscissa to form semicircular arcs, and the radii of
semicircular arcs become smaller, indicating a higher value of conductivity at higher temperatures.
This means that the hopping mechanism could be responsible for the electrical conduction in the
present system [43].
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The semicircle arc in the complex impedance plane plots are commonly used to estimate the DC
bulk resistance Rb, of the dielectric material by extrapolating the intercept on the real axis Z′, then
finding the σdc values according to the following equation for all compositions [41]:

σdc =
t

RbA
(2)

where t (cm) is the thickness, A (cm2) is the electrode–electrolyte contact area, which is 3.14 cm2, and
Rb is the bulk resistance in ohms.

The total conductivity σω spectra at different temperature for all samples are shown in Figure 8,
which are calculated by using the following relation [44]:

σω =

[
Z′

Z′2 + Z′′ 2

]( t
A

)
(3)
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Table 2. The DC conductivity at various temperature ranges (303–373 K) for different PEO:MC 
compositions. 

PEO:MC Ratio 
DC Conductivity (×10−6) (S/cm), at Different Temperatures 

303 K 313 K 323 K 333 K 343 K 353 K 363 K 373 K 
(100:0) 0.0013 0.0034 0.0103 0.1117 4.9682 9.6273 18.800 40.939 
(80:20) 0.0016 0.0132 0.0324 0.1155 4.3675 8.0903 16.647 20.537 
(60:40) 0.0065 0.4712 0.5109 2.2839 6.6989 10.748 21.898 26.677 
(40:60) 0.0027 0.0018 0.0023 0.0039 0.1267 0.2457 0.9164 1.5767 
(20:80) 0.0019 0.0016 0.0022 0.0020 0.0149 0.0169 0.0180 0.0249 
(0:100) 0.0001 0.0019 0.0032 0.0029 0.0038 0.0050 0.0040 0.0063 

 

 

 
Figure 8. The total conductivity spectra for different compositions of PEO:MC in the temperature 
range of 303–373 K. 
Figure 8. The total conductivity spectra for different compositions of PEO:MC in the temperature range
of 303–373 K.

According to Figure 8, two distinct regions could be noted in the σω spectra; a lower-frequency
plateau region corresponding to DC conductivity, and a higher-frequency dispersion region
corresponding to power law which has been defined by the Jonscher power law:

σω = σdc + σac = σdc + Dωs (4)

The first term (σdc) is the temperature-dependent (frequency-independent) DC conductivity and
accounts for free charge resident in the bulk, while the second term (σac) represents the frequency
and temperature dependent ac conductivity and accounts for the bound and free charges. D is the
dispersion parameter; ω is angular frequency (ω = 2π f ), and s is the power law exponent which
generally varies between 0 and 1 [45].

The temperature dependence of conductivity for all complexes is in agreement with the theory
founded by Croce et al. [46], and it is observed that the conductivity increased directly with temperature.
This is explained due to the fact that the segmental motion causes an increase in the free volume of
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the system, which facilitates the movement of charge carriers [47,48]. It is well established that the
improvement of conductivity with increasing temperature indicates the formation of voids presented
by the amorphous area of the polymer blend electrolyte [49].

Increase in σac with frequency and temperature indicates that there may be charge carriers which
are transported by hopping through the defect sites along the film structure [50]. It suggests that
the blending PEO with MC is helpful in improving the electrical conductivity. This phenomenon is
explained by investigation of the temperature-dependent DC conductivity (σdc) for all compositions.

In this study, the value of σdc has been attained by extrapolating of the plateau region of the total
conductivity σω in Figure 8 to the zero frequency ( f → 0). The obtained values of σdc for all samples
at various temperature ranges are presented in Table 2. According to Aziz et al. [24], the estimated
σdc from the plateau region of σω spectra are comparable to the calculated σdc values from the bulk
resistance Rb. The room temperature DC conductivity for pure PEO and pure MC (Figure 9) are found
to be respectively 13× 10−10 S/cm and 1× 10−10 S/cm, which are compatible with the reported values
in the literature [39,51,52]. The PEO:MC polymer blend with the weight ratio of 60:40 shows the highest
room temperature DC conductivity of 6.55× 10−9 S/cm and this value increased to 26× 10−6 S/cm at
373 K. It is quite interesting to note that the greatest value of DC conductivity was associated with the
minimum degree of crystallinity. This result has been confirmed by XRD and POM analysis. According
to Buraidah et al. [53], increase in conductivity is due to more complexation sites provided by the
blending of the two polymers, which is supported by the FTIR result. Hence, there will be more
sites for carrier migration and exchange to take place in the amorphous phase of the polymer blend
samples [54].

Table 2. The DC conductivity at various temperature ranges (303–373 K) for different
PEO:MC compositions.

PEO:MC
Ratio

DC Conductivity (×10−6) (S/cm), at Different Temperatures

303 K 313 K 323 K 333 K 343 K 353 K 363 K 373 K

(100:0) 0.0013 0.0034 0.0103 0.1117 4.9682 9.6273 18.800 40.939
(80:20) 0.0016 0.0132 0.0324 0.1155 4.3675 8.0903 16.647 20.537
(60:40) 0.0065 0.4712 0.5109 2.2839 6.6989 10.748 21.898 26.677
(40:60) 0.0027 0.0018 0.0023 0.0039 0.1267 0.2457 0.9164 1.5767
(20:80) 0.0019 0.0016 0.0022 0.0020 0.0149 0.0169 0.0180 0.0249
(0:100) 0.0001 0.0019 0.0032 0.0029 0.0038 0.0050 0.0040 0.0063
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3.5. Dielectric Studies

Investigation of dielectric properties is another significant source of valuable information
concerning electrical conduction processes; thus, the dielectric data for 60:40 weight ratio PEO:MC
blend samples with different temperature can be analyzed using tangent loss (Dispersion factor D)
tan δ, and complex electric modulus M∗. Figure 10 shows the variation of tangent loss (tan δ = ε′′/ε′)
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with frequency for PEO:MC blend sample with 60:40 weight ratio, at different temperatures between
303 and 373 K.
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Figure 10. The variation of tan δ with frequency for the 60:40 weight ratio PEO:MC blend sample with
at different temperatures.

The single relaxation peak of tan δ spectra appeared in Figure 10 can be used to determine the
relaxation time (τEP = 1/2π fEP), where fEP is the relaxation frequency [55]. The observed shift in the
position of the relaxation peak towards the high-frequency side with increasing temperature indicates
the decrease of relaxation time, which evidences the increase in electrical conductivity [56]. Thus, the
dominant charge transport mechanism in these samples is mostly hopping of charge carriers among
the trap levels situated in the band gap which can be described by the following equation [57]:

σ = εoε
′ωtan δ (5)

where εo is the permittivity for free space, ε′ is the real part of dielectric constant, and ω is angular
frequency (ω = 2π f ). Pradhan et al. [58] described that the peak shifting towards higher frequency
causes reduction of the relaxation time due to an increase in carrier mobility. It is also obvious that the
tan δ peak heights are increased due to increasing temperature. Parameswaran et al. [49] reported that
the increase in the peak intensity indicates the breaking of bond formation from the dipoles. The peak
observed in the tan δ spectra can also be attributed to the fact that the hopping frequency of the charge
carriers is approximately equal to the frequency of the external applied field [59].

The mechanism of dielectric relaxation has been studied by the complex electric modulus (M∗),
which is defined as the reciprocal of the complex permittivity (ε∗) as given by Equation (6). The
advantage of this formulation is that the effects of electrode polarization are suppressed so that the
electric modulus spectrum mainly reflects the bulk electrical properties of the samples [43]:

M∗ =
1
ε∗

= M′ + jM′′ (6)

where M′ and M′′ are, respectively, real and imaginary parts of the complex electric modulus. The
frequency dependence of real M′ and imaginary parts M′′ of the electrical modulus at different
temperatures for the highest conducting sample are presented in the Figure 11. Based on this
plot, M′ increased at the high-frequency end. This increasing trend at a higher frequency may be
attributed to the bulk effect. At low frequency, M′ approached zero, indicating that the contribution
of electrode polarization is negligible [24]. On the other hand, the reduction in M′ with increasing
temperature is related to the segmental chain motion due to an increase in free volume caused by
thermal expansion [60].
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The mechanism of dielectric relaxation has been studied by the complex electric modulus (𝑀∗), 
which is defined as the reciprocal of the complex permittivity (𝜀∗) as given by Equation (6). The 
advantage of this formulation is that the effects of electrode polarization are suppressed so that the 
electric modulus spectrum mainly reflects the bulk electrical properties of the samples [43]: 𝑀∗ =  1𝜀∗ = 𝑀 + 𝑗𝑀            (6) 

where 𝑀  and 𝑀  are, respectively, real and imaginary parts of the complex electric modulus. The 
frequency dependence of real 𝑀  and imaginary parts 𝑀  of the electrical modulus at different 
temperatures for the highest conducting sample are presented in the Figure 11. Based on this plot, 𝑀  
increased at the high-frequency end. This increasing trend at a higher frequency may be attributed to 
the bulk effect. At low frequency, 𝑀  approached zero, indicating that the contribution of electrode 
polarization is negligible [24]. On the other hand, the reduction in 𝑀  with increasing temperature is 
related to the segmental chain motion due to an increase in free volume caused by thermal expansion 
[60]. 

It is also evident from Figure 11 that the observed dispersion of 𝑀  at higher frequency is 
accompanied by a loss peak in the 𝑀 ′ spectra. The asymmetric broadening in the 𝑀 ′ peak indicates 
the presence of non-Debye-type relaxation behavior in the present sample. The peak of 𝑀 ′ can be 
further analyzed by using the relation shown in Equation (7). The change in peak position suggests 
temperature-dependent relaxation [61]; it is clearly seen that with increasing temperature, the 𝑀  
peak shifts towards higher frequency, but the peak height does not significantly change with 
temperature. This trend could be due to a decrease in the capacitance of the film. 
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Figure 11. The frequency dependence of real M′ and imaginary parts M′′ of the complex electrical
modulus at various temperatures from 303 to 373 K for 60:40 wt.% PEO:MC.

It is also evident from Figure 11 that the observed dispersion of M′ at higher frequency is
accompanied by a loss peak in the M

′′

spectra. The asymmetric broadening in the M
′′

peak indicates
the presence of non-Debye-type relaxation behavior in the present sample. The peak of M′′ can be
further analyzed by using the relation shown in Equation (7). The change in peak position suggests
temperature-dependent relaxation [61]; it is clearly seen that with increasing temperature, the M

′′

peak
shifts towards higher frequency, but the peak height does not significantly change with temperature.
This trend could be due to a decrease in the capacitance of the film.

The relaxation function ϕ(t), which describes the electric filed within the dielectric material, is
related to relaxation time by the decay function, given as [62]:

ϕ(t) = exp
(
−

t
τm

)β
(7)

where τm is the most probable relaxation time, and β = 1.14/ω is the stretching exponent parameter.
Here,ω is the full-width at half-maximum. The value of β is between 0 and 1, and for an ideal Debye
relaxation, β = 1. The smaller the value of β, the larger the deviation of relaxation with respect to
Debye-type relaxation [63]. The value of β at different temperatures was calculated from the M′′

spectra in Figure 11, and the values are tabulated in Table 3. The obtained values of β < 1 reflect that
the relaxations observed are a temperature-dependent non-Debye relaxation process [61].
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Table 3. The values of FWHM and stretching exponent for M′′ versus temperatures.

Temperature (K) FWHM β

313 2.169 0.525
323 2.078 0.548
333 1.760 0.647
343 1.684 0.676
353 1.480 0.770
363 1.454 0.784
373 1.428 0.798

4. Conclusions

The perfect composition for polymer blend films based on PEO and MC has been optimized using
XRD, FTIR, POM, and EIS. The highest electrical conductivity (6.55 × 10−9 S/cm) at room temperature
for the blended films was achieved for a sample consisting of 60% wt.% PEO and 40% wt.% MC. XRD
and POM analysis confirm a reduction in the crystalline nature of this film. Thus, both techniques can
be used for optimization of the composition of PEO polymer blends. According to the free-volume
model, the increase of electrical conductivity of blend samples responds to the increment in the mobility
of the charge carrier. From FTIR analysis, an interaction between PEO and MC is evidenced by the
shift of the hydroxyl band to a lower wavenumber. Analysis of the complex electrical modulus and
loss tangent (tan δ) shows that charge transport occurs via a hopping mechanism. The value of the
stretching exponent parameter β < 1 reveals the presence of a non-Debye relaxation process in the
present polymer blend system.
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