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Abstract: To gain an insight of the chemistry in the alkali-promoted aromatization of oxygen-
containing heavily aromatic polymers or biomass; thermal degradations of sodium phenolates
with different substituents have been investigated. The -ONa group strongly destabilizes the
phenolates. The thermal stability of phenolates is largely in parallel with bond strengths of Ar
substituents. De-substituents and the removal of aromatic hydrogens are dominant reactions in the
main degradation step. CO is formed only at a very late stage. This degradation pattern is completely
different from that of phenol. To account for this distinctive decomposition; a mechanism involving
an unprecedented formation of an aromatic carbon radical anion generated from the homolytic
cleavage of Ar substituent (or Ar–H) in keto forms has been proposed. The homolytic cleavage of Ar
substituent (or Ar–H) is facilitated by the strong electron-donating ability of the oxygen anion. A set
of free-radical reactions involved in the alkali-catalyzed aromatization have been established.
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1. Introduction

Aromatization is a fundamental process in the carbonization of oxygen-containing char-forming
polymers and biomass [1,2]. Numerous studies have demonstrated that the aromatization is significantly
affected by the presence of alkali catalysts [3–6]. For example, at an astoundingly low loading level of
0.1%, potassium 3-(phenylsulfonyl)benzenesulfonate (KSS) enables bisphenol A polycarbonate (PC) to
achieve a remarkable UL-94 V0 rating by accelerating the latter’s aromatization process [3]. Although
the scale of charring acceleration is quite striking, the generally observed different degradation products
and/or their distribution in the presence of alkalis suggest that alkali ions are more than to merely
enhance the reaction rate [7,8].

To understand the action of alkalis, considerable efforts have been devoted to investigating the
thermal degradation of polymers or biomass in the presence or absence of alkalis. Significant progress
has been made in the clarification of the degradation products or intermediate structures, and the
action of alkali ions on the primary reactions such as dehydration, esterification, and decarboxylation
in early degradation stages have been well documented [9–13]. However, the use of complex raw
materials might confound the alkalis’ roles in the later aromatization process. So far, the origin of
catalytic action of alkali ions on the aromatization largely remains speculative.

One way to potentially elucidate the aromatization process promoted by alkalis is through
studying model compounds which can represent the char-forming precursors. In this regard, phenols
are highly valuable candidates since they have been established as one of key intermediates in charring
of oxygenated heavily aromatic polymers such as PC and lignin [14–16]. However, although the
thermal degradation of phenols has been extensively investigated, little has been known about that of
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alkali phenolates. We surmised that a comparison of their degradation pathways might shed lights on
the origin of the alkali-promoted aromatization of phenols and subsequently polymers.

In this work we have studied the thermal degradation of a series of sodium phenolates with
different substituents. We have found that the thermal degradation of phenolates is fundamentally
different from that of phenols. The -ONa group remarkably accelerates the removal of aromatic
hydrogens and de-substituents of phenolates. Based on the degradation pattern of phenolates, a new
mechanism involving a formation of an aromatic carbon radical anion as a key step has been proposed.
A set of free-radical chemistry has been established for the aromatization of phenolates. The origin of
alkalis’ action on the aromatization of oxygen-containing polymers has been clarified.

2. Experimental

2.1. Materials

Sodium phenolate was bought from Energy Chemical Co. Ltd. (Shanghai, China). p-Phenoxyphenol
and sodium salicylate were purchased from Aladdin Co. (Shanghai, China). Sodium hydroxide,
sodium benzoate, m-cresol, and p-cresol were obtained from Sinopharm Chemical Reagent Co. Ltd.
(Shanghai, China). All materials were used without further purification.

2.2. Preparations of Sodium Phenolates

Sodium salts of p-phenoxyphenol and p- or m-cresol were prepared by neutralization with aqueous
sodium hydroxide followed by drying in a vacuum oven to a constant weight.

2.3. Characterizations

Thermal gravimetric analysis (TGA) experiments of sodium phenolates were conducted on a
Q500 thermogravimetric instrument. About 5 mg samples were loaded in a platinum pan and then
heated from 50 to 800 ◦C at a rate of 10 ◦C/min in nitrogen (60 mL/min).

Fourier transform infrared spectra (FTIR) of the residues collected in the TGA runs after the main
degradation step were recorded on a Cary 660 FTIR spectrometer (Agilent Technologies, Santa clara,
CA, USA) interfaced to a GladiATR (Pike Technologies, Fitchburg, WI, USA) with diamond crystal at
4 cm−1 resolution.

Thermogravimetric analysis/infrared spectra (TGA-IR) of sodium salts were performed on either a
TGA/DSC1 analyzer (Mettler-Toledo, Switzerland) interfaced to a Nicolet 6700 FTIR spectrophotometer
(Thermo-fisher, Waltham, MA, USA) (for sodium phenolate, sodium p-cresolate and sodium m-cresolate)
or a TGA 8000 analyzer (PerkinElmer, Columbus, OH, USA) interfaced to a Spectrum Two FTIR
spectrophotometer (PerkinElmer, Columbus, OH, USA) (for sodium p-phenoxyphenolate, sodium
salicylate). The temperatures of the transferring line between TGA and FTIR were set to 200 and 270 ◦C,
respectively. Samples of 3–5 mg were heated from 50 to 800 ◦C at a heating rate of 10 ◦C/min under a
nitrogen atmosphere with a flow rate of 50 mL/min. The spectra were recorded at 4 cm−1 resolution
every 40 s for 85 min.

Thermogravimetric analysis/mass spectrum (TGA-MS) of sodium phenolate was conducted on
a TGA 8000 analyzer interfaced to a Clarus SQ 8 T mass spectrometer (PerkinElmer, Waltham, MA,
USA). The temperature of the transferring line between TGA and MS was set at 270 ◦C. About 3 mg
sample was heated from 50 to 800 ◦C at a heating rate of 10 ◦C /min in nitrogen (60 mL/min).

Gas chromatograph of collected off-gas of sodium phenolate in the TGA experiment was performed
on a 7890B gas chromatograph (Agilent Technologies, Santa clara, CA, USA). The temperatures of
column box, thermal conductivity detector (TCD) and valve box were independently 60, 240 and
60 ◦C. The flow rates of helium in TCD and pneumatics control module (PCM) C were set to 40 and
28 mL/min, respectively. The pressure of PCM C was 18 psi. Valve 1 opens at 0.01 min and closes at
3.3 min, and Valve 2 opens at 1.6 min and closes at 9 min.
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3. Results and Discussion

3.1. TGA of Sodium Phenolates

The thermogravimetric analyses of various sodium phenolates and sodium benzoate are shown
in Figure 1. T1%, T5%, and Tmax, which are the temperatures at 1%, 5% and maximum mass losses
respectively, and mass losses of the main degradation steps are listed in Table 1.

From the shape of TGA curves and the values of T1%, T5%, and Tmax, it is clear that sodium
salicylate is the least thermally stable, followed consecutively by p-phenoxyphenolate, p-cresolate,
and m-cresolate with sodium phenolate exhibiting the highest thermal stability. This order of the
thermal stability is generally in parallel with the bond strength of NaOPh-substituent (Ar substituent).
For example, the bond dissociation energy (BDE) of Ph–H (464.0 kJ/mol) is larger than that of
Ph–CH3 (425.9 kJ/mol) [17]. While the exact value of BDE of NaOPh–OPh is not available, the radical
stability of PhO· is higher than that of CH3· so it is conceivable that the bond strength of Ar–OPh is
weaker than Ar-CH3. On the other hand, although Ph–COOH has a comparable value of BDE (429.7
kJ/mol) as Ph-CH3 [18], it has been shown that the presence of -OH facilitates the decarboxylation of
hydroxybenzoic acid [19]. Since sodium salicylate has much lower stability than sodium benzoate, a
similar destabilization by -ONa must be in play and the actual bonding strength of HOPh–COONa is
expected to be low. Nevertheless, the subsequent facile decarboxylation might contribute more to the
low thermal stability of sodium salicylate.
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Figure 1. The thermogravemtric analyses of sodium phenolates under N2.

Table 1. TGA data of sodium salts.

Sodium salts T1% (◦C) T5% (◦C) Tmax (◦C) Mass Loss (%)

phenolate 375 487 527 13.2
m-cresolate 359 489 501 13.0
p-cresolate 344 478 500 13.2

p-phenoxyphenolate 253 392 400 47.0
salicylate 246 253 261 42.9
benzoate 457 477 516 46.9
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The above analysis points the correlation between the thermal stability of molecules and the
particular bond strength of Ar substituent. Thus, the thermal degradation might begin with the
bond cleavage of Ar substituent. To test this assumption, TGA-FTIR of phenolates on the gaseous
decomposition products and IR analyses on the residues were performed.

3.2. TGA-FTIR of Phenolates

3.2.1. Sodium Phenolate

Sodium phenolate shows a surprisingly reduced thermal stability when compared with phenol
which commences the degradation around 650 ◦C [20]. The negative charge of oxygen apparently
accelerates or changes the degradation pathway of phenol. The thermal degradation of phenol is known
to be initiated either by a homolytic cleavage of PhO–H or a tautomerization to keto forms [21,22]. In
either case, cyclopentadiene and CO are major decomposition products. Since sodium phenolate does
not possess -OH, the tautomerization to keto forms followed by the loss of CO and a simultaneous
generation of cyclopentadienide would be envisaged. However, besides a small amount of phenol
which is almost always present, the only detectable gaseous species is benzene during most of time
in the main degradation step as seen in TGA-FTIR spectra shown in Figure 2. Benzene is also
unequivocally identified by the MS spectrum as illustrated in Figure S1. CO becomes noticeable only
after the end of the main degradation step. Thus, the change from -OH to -ONa must alter the initial
degradation pathway of sodium phenolate.
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Figure 2. FTIR spectra of gaseous products of sodium phenolate at selected temperatures.

Considering benzene as the dominant species in the first stage, Ph–ONa must be broken. However,
the homolysis of the bond is unlikely due to very high bond energy of Ph–O (459.0 kJ/mol for
Ph–OH) [23]. Instead, an ipso attack of H· on C(-ONa) is assumed as it is proposed in the formation
of benzene, a minor product, from the thermal degradation of phenol [24,25]. Nevertheless, in the
case of phenol, H· can be conveniently produced from the homolytic cleavage of PhO–H. For sodium
phenolate, aromatic H must be the source of H·. To account for this unexpected disconnect of Ar-H at a
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temperature much lower than that needed to break HOPh–H, it is hypothesized that the C(sp2)–H(o-,
p-) bond is first weakened by the negative charge of oxygen and then cleaved to generate a carbon
radical anion and H· as outlined in Scheme 1 (Reaction (1)).Polymers 2019, 11, x FOR PEER REVIEW 5 of 14 
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Scheme 1. The aromatization process of sodium phenolate.

The relatively easy generation of the carbon radical anion (B) and its para- analogs in sodium
phenolate can be rationalized as follows. Tautomerization of phenolate initially gives keto forms (A)
that are an alkyl carbanion. Because the hybridization of an alkyl carbanion is normally sp3 and the
geometry is pyramidal [26], the one sp3 orbital which is occupied by the negative charge is not in
the maximum overlapping position with the adjacent pi orbitals due to the restriction of the space
direction of orbitals and a reduced bond angle of (C–C-–C). Consequently, the negative charge of the
alkyl carbanion largely localizes on the alkyl carbon as shown in Figure 3a. On the other hand, an
allylic anion can adopt sp2 hybridization and delocalization of charge in the p orbital can take place
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with the neighboring unsaturated bonds [25]. However, for keto forms (A), although sp2 hybridization
can give the p orbital where the negative charge locates a good overlap with the adjacent pi orbitals,
the number of total electrons in the ring pi orbitals would be seven (Figure 3b). Thus, regardless of the
type of hybridization of the carbanion, keto forms lose aromaticity. This is likely one of reasons that
tautomerization from enol to keto forms is unfavorable. This unfavorable tautomerization is especially
true for neutral phenol since there is a charge separation in the resonant keto forms [27], but should be
less so in phenolate of which resonance structures only involve the movement of the negative charge.
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(c) sp2 radical anion.

To regain the aromaticity for keto forms (A), one way is to lose the hydrogen atom of the carbanion
to transform to a radical anion (B). Since the hybridization of a carbon radical is sp2 [28], this leads to a
planar geometry that allows a perfect overlap of the p orbital where the free radical is with the rest of
ring pi orbitals as seen in Figure 3c. Furthermore, the number of total pi electrons in the ring is six
now so an aromaticity is achieved in (B). Therefore, it is the resulted aromaticity of the radical anion
that activates the NaOPh–H(o-, p-) bond. The above rationale about activation of NaOPh–H(o-, p-) is
probably a bit simplified, but it is based on the solid commonly known knowledge and is easy to be
used to analyze the thermal degradation of a variety of sodium phenolates as described below.

After H· is generated, it can combine to H2 (Reaction (2)), of which presence is independently
confirmed by the GC analysis of the collected off-gas (to see Figure S2), or it can add to the aromatic
ring to displace -ONa and generate observed benzene and NaO· as shown in Reaction (3) (to see
Figure S1). However, benzene could also be formed through a first hydrogenolysis of phenyl rings to
cyclohexadiene radical followed by H abstraction and elimination of NaOH as shown in Reaction (4).
The degradation of the hydrogenated structures eventually leads to the appearance of methane. On
the other hand, NaO· or cyclohexadiene radical abstracts activated o-, p–Hs to produce aryl radicals
(Reaction (5)). Combination of aryl radicals gives multi-substituted sodium phenolates (Reaction
(6)), which can then activate m–H originally to -ONa according to Reaction (7). However, since
multi-substituted sodium phenolates can be converted to multi-substituted benzene through Reactions
(3) or (4), not all hydrogens are activated. In addition, some oxygenated aromatic hydrocarbons
must survive the first degradation step since CO is detected at a high temperature as shown in
Figure 2. CO can be generated via Reaction (8), following the similar degradation pathway of phenol
at high temperatures.

To gain further information on the degradation, the residues collected at selected mass losses
were examined by FTIR spectroscopy and their spectra are shown in Figure 4. The most striking
features at 5% and 10% mass losses are the appearance of strong absorptions at 2852, 2923, and
2955 cm−1, indicating the presence of C(sp3)–H. Since there is no aliphatic proton in sodium phenolate,
the detections of aliphatic structures strongly support the hydrogenolysis of phenyl ring which can
proceed as Reactions (4) and (5). The aliphatic features in the residue are clearly in line with the
assumption that there exist active hydrogens and hence weak NaOPh–H bonds. In addition, a new
peak growing with the mass loss appears at 1441 cm−1 and dominates in the spectrum of the residue
collected after the main degradation step. This is found to be Na2CO3 which is apparently formed
by the reaction of NaOH and CO2 in air. The spectrum of the water washed residue is nearly flat,
suggesting the carbonaceous char in nature [29].
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One highly interesting finding is that the residue collected after the main degradation step is
intumescent as seen in Figure 5a. Traditionally, intumescence requires the presence of an acidic
source [30]. The expanded carbonaceous char formation observed in sodium phenolate thus represents
a completely different route to intumescence. Considering the mass loss of only about 13%, such an
efficient charring process under a basic condition is highly remarkable and might be the key reason
that alkali ions are good flame retardants for PC. In fact, intumescence has been noticed in PC/KSS
flame-retardant system and considered to be a primary factor to contribute to the excellent flame
retardancy of KSS [3]. Nevertheless, an acidic action of KSS has been suggested [31]. In view of the
thermal degradation of PC that produces a large amount of phenols [32], it is reasonable to assume
that the real action of KSS on PC stems from the intumescence of potassium phenolates which are
generated from phenols and KSS or its decomposition products.
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Compared to the thermal degradation of phenol, the removal of aromatic hydrogens in sodium
phenolate is very fast. This is dramatically different from their extremely difficult loss in pure phenol
even at a high temperature. In fact, the thermal degradation of phenol does not involve the bond
cleavage of HOPh–H [33,34]. However, from the results of thermal degradation of sodium phenolate,
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it is safe to say that the degradation pattern of phenol can be fundamentally changed in the presence of
alkalis. This change can be ascribed to the accelerated tautomerization to keto forms due to the strong
electron-donating ability of oxygen anion. Furthermore, since the degradation of sodium phenolate
generates sodium hydroxide, which can neutralize phenol and regenerate sodium phenolate, alkali can
work as a highly efficient catalyst to change the decomposition pathway of phenols to one favoring an
early aromatization. In this sense, a very small amount of alkalis will have a huge influence on the
charring of oxygen-containing heavily aromatic polymers or biomass. This is the reason that only a
trivial amount of KSS is required for PC to achieve an extraordinary flame-retardant rating.

3.2.2. Sodium p-Phenoxyphenolate

Diphenyl ether is highly thermally stable up to 450 ◦C [35]. However, substitution of its one
p–H by -ONa noticeably decreases the thermal stability of the molecule. The thermal degradation of
p-phenoxyphenolate starts around 400 ◦C and loses 47.5% by weight in the main degradation stage
as shown in Figure 1. Benzene and phenol are dominant gaseous products as seen in TGA-FTIR
spectra in Figure 6. Phenol evolves in the entire first degradation step while benzene only shows up
in the beginning of the decomposition. Theoretically, the mass loss due to phenol is 45.2%, so the
first stage mainly involves the formation and vaporization of phenol. CO is merely found at the high
temperatures after the main degradation step.
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In terms of the degradation mechanism, following the proposal in sodium phenolate, the initial
decomposition of p-phenoxyphenol can begin with the homolysis of either NaOAr–H(o-) or NaOAr–OPh
or both. If the initiation begins with the homolytic cleavage of NaOAr–H(o-), the resulted H· adds to a
second phenoxyphenol molecule and displaces phenoxy group forming sodium phenolate and ·OPh as
shown in Scheme 2 (Reactions (9) and (10)). On the other hand, the homolysis of NaOAr–OPh yields
NaOAr· and ·OPh. NaOAr· abstracts hydrogens to yield NaOPh as illustrated in Reactions (11) and
(12) or undergoes Reactions (6) and (7) to crosslinking structures. In both cases, sodium phenolate and
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·OPh are common intermediates. While sodium phenolate is quickly responsible for the observation of
benzene, the fate of ·OPh is very interesting.
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It has been reported that PhO· degrades to yield cyclohexadiene radical and CO [36]. However,
since CO is not observed in the main degradation step, it necessitates that the degradation of PhO·
is very slow at 400–450 ◦C. On the other hand, the abstraction of labile hydrogens by PhO· readily
accounts for the detection of phenol as shown in Reaction (13). In this sense, the bond strength of
NaOAr–H (o-) can be estimated to be even weaker than PhO–H. Given a much higher BDE of the
virgin Ph-H than that of PhO–H (361.9 kJ/mol) [17], the magnitude of this bond activation of NaOAr–H
(o-) is enormous.

Compared with sodium phenolate, sodium p-phenoxyphenolate is much less thermally stable.
This is in line with the weak bond of Ar–OPh which generates phenoxy radical either by direct homolysis
or hydrogenolysis. On the other hand, sodium phenolate loses the first step mass by breaking down
the relatively strong bond of NaO–Ph via hydrogenolysis. Thus, it is the easy generation of phenoxy
radical that leads to an early mass loss of sodium p-phenoxyphenolate.

3.2.3. Sodium p-Cresolate

p-Cresolate has three weak bonds. Like sodium phenolate, Ar–CH3 and Ar–H (o-) are activated
by -ONa. Besides these two bonds, ArCH2-H has a relatively low BDE (PhCH2–H = 368.2 kJ/mol).
However, considering that NaOAr–H (o-) is weaker than PhO–H, the homolytic cleavage of ArCH2–H
should not be competitive here.

Figure 7 shows the TGA-FTIR spectra of off-gas from the thermal degradation of sodium p-cresolate.
It can be clearly seen that methane is the only gaseous product in the main degradation step. The
theoretical value of mass loss due to methane is 12.3%, close to the 13.2% obtained in the TGA curve.
Thus, the first degradation step mainly involves the demethylation. The presence of methane can
be promptly accounted for by the initial homolysis of Ar–CH3 or Ar–H (o-) or both, just like the
generation of phenol from p-phenoxyphenolate. However, it is interesting to note that unlike the
thermal degradation of p-phenoxyphenolate, benzene is not found in sodium p-cresolate. Since
the formation of benzene requires a pre-generation of sodium phenolate, the absence of benzene
suggests that the lifetime of phenolate is very short. Given the much higher activity of CH3· than
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PhO·, Reaction (14) in Scheme 3 would be faster when R· = CH3· so virtually little sodium phenolate is
formed during the thermal degradation of p-cresolate.
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On the aspects of residue, sodium p-cresolate also produces an intumescent char at the end of the
main degradation step as seen in Figure 5b. In addition, the IR spectra are nearly identical to those
from sodium phenolate as judged from Figure S3. Overall, sodium phenolate and sodium p-cresolate
share a similar aromatization process.

Finally, it is interesting to compare the demethylation of sodium p-cresolate with that of p-cresol.
In the case of p-cresol, methane is formed only after the fragmentation of p-cresol to CO and
methylcyclopentadiene. It is the further degradation of methylcyclopentadiene that generates
methane [18]. On the other hand, CO is not observed before or together with methane during
the main thermal decomposition step of sodium p-cresolate. Instead, methane is produced mainly by
the first disconnect of NaOPh–CH3 followed by the hydrogen abstraction of CH3·. Thus, the routes to
methane are profoundly different from p-CH3Ph–OH to p-CH3Ph–ONa.

3.2.4. Sodium m-Cresolate

Sodium m-cresolate shows a similar degradation pattern as sodium p-cresolate. There does not
seem to have an apparent influence of different positions of methyl group in the ring on the mass
loss and type of degradation products. Methane is the only detected gaseous product in the main
degradation step. However, the initial bond break in m-cresolate must start from the homolytic cleavage
of Ar–H(o-, p-). After the generation of H·, it adds to a second molecule to form sodium phenolate
and CH3·, which abstracts activated hydrogen to yield methane and aryl radicals. The subsequent
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degradation pathway is analogous to that of sodium p-cresolate. The IR spectra of the residue collected
after the main degradation step are also virtually identical to those of the residue from p-cresolate (to
see Figure S3).

3.2.5. Sodium Salicylate

Sodium salicylate has a great propensity to undergo thermal degradation. It starts to decompose
at ~240 ◦C, significantly lower than sodium benzoate that is stable to at least 425 ◦C as illustrated in
Figure 1. The easy decomposition of sodium salicylate might come from the phenolate form which is
in equilibrium with the carboxylate form as shown in Scheme 4 (Reaction (15)).
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Scheme 4. Equilibrium of the phenolate form and carboxylate form in sodium salicylate.

The phenolate form apparently activates Ar–H(o-, p-) and Ar–COOH bond of which homolytic
cleavages yield aryl radicals and H· or ·COOH, respectively. The latter can foreseeably decompose
to CO2 and H·. H· and aryl radical then undergo Reactions (2–7). Due to the formation of sodium
phenolate and the absence of an active alkyl radical, generation of benzene is expected. H· can also
add to sodium salicylate and produces phenol. The presence of both benzene and phenol is confirmed
in the first decomposition step by the TGA-FTIR spectra shown in Figure 8.Polymers 2019, 11, x FOR PEER REVIEW 12 of 14 
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4. Conclusions

Thermal degradations of a series of sodium phenolates have been investigated. The replacement
of -OH by -ONa considerably lowers the thermal stability of phenolates. The thermal stability of
phenolates is generally in parallel with the bond strength of NaOPh–R. The weaker the bond is, the
easier their decompositions are. The major gaseous degradation products in the main step are those
derived from substituents or benzene. This degradation pattern is significantly different from that
of phenol.

To account for the reduced thermal stability of sodium phenolates and the degradation products a
mechanism involving an aromatic radical carbanion has been proposed. It is based on the notion that
the localized or delocalized carbanion of keto forms need to homolytically lose a substituent to achieve
an aromaticity. The homolytic cleavage of Ar substituent/H(o-, p-) is greatly enhanced by the strong
electron-donating ability of oxygen anion, which rationalizes the difference in the thermal degradation
pathways of phenol and phenolates.

The detections of benzene in the gaseous phase and aliphatic structures in the residue from the
thermal degradation of sodium phenolate strongly support the existence of active hydrogens and hence
the weak NaOPh–H bonds. Furthermore, the preferred formation of phenol instead of degradation
to cyclopentadiene radical and CO from phenoxy radical generated in the thermal degradation of
p-phenoxyphenolate suggests that the bond strength of NaOAr–H(o-, p-) is even weaker than that
of PhO–H.

Overall, the aromatization process of phenolates is initiated by the homolysis of NaOPh–R(/H)(o-,
p-). Succeeding hydrogen abstractions and aryl radical combinations lead to the crosslinking and
eventually the charring.

Considering the importance of base catalyzed char formation in the flame retardancy of polymeric
materials and the efficient use of biomass as feedstock, understanding the origin of the alkali effect
is critical. Our work on the degradation mechanism of model compounds, i.e., sodium phenolates,
clearly shows that this alkali effect originates from the activation of Ar–H bonds by oxygen anion and
will pave a way to take advantage of this base effect.
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