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Abstract: Solution-processed polymer solar cells (PSCs) have attracted dramatically increasing
attention over the past few decades owing to their advantages of low cost, solution processability,
light weight, and excellent flexibility. Recent progress in materials synthesis and devices engineering
has boosted the power conversion efficiency (PCE) of single-junction PSCs over 17%. As an emerging
technology, it is still a challenge to prepare solution-processed flexible electrodes for attractive flexible
PSCs. Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is one of the most
promising candidates for electrodes due to its high conductivity (>4000 S/cm), excellent transmittance
(>90%), intrinsically high work function (WF > 5.0 eV), and aqueous solution processability. To date,
a great number of single-junction PSCs based on PEDOT:PSS electrodes have realized a PCE over
12%. In this review, we introduce the current research on the conductive complex PEDOT:PSS as well
as trace the development of PEDOT:PSS used in electrodes for high performance PSCs and perovskite
solar cells. We also discuss and comment on the aspects of conductivity, transmittance, work-function
adjustment, film preparing methods, and device fabrications. A perspective on the challenges and
future directions in this field is be offered finally.
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1. Introduction

Solution-processed polymer solar cells (PSCs) have attracted dramatically increasing attention
over the past few decades owing to their advantages of low cost, easy fabrication, light weight,
and good flexibility. Recent achievements in materials development and devices engineering have
produced a record power conversion efficiency (PCE) over 17% [1], demonstrating an anticipated
application prospect. However, a high-quality electrode is another challenge for high performance
PSCs, especially the flexible electrode for the corresponding flexible devices.

It is well known that a typical PSC configuration consists of a light absorption layer sandwiched
between two electrodes (the top one and the bottom one). At least one of them has to be transparent
for light illumination through and then to the light absorption layer. Device performance of PSCs
is highly dependent on the quality of the electrodes, and a stricter requirement is necessary in
the case of flexible electrodes. A high-quality flexible electrode should possess characteristics
such as superior mechanical flexibility, low sheet resistance, high transmittance in the visible-light
range, and excellent thermal stability. Among current candidates, indium-tin-oxide (ITO) and
vacuum-deposited metals-based flexible electrodes have been commercially used in PSCs. However,
high production costs and especially poor mechanical stability strongly hinder their practical
applications [2]. Therefore, many scientific communities are searching other candidates including
silver nanowires (AgNWs), silver-grids, conductive polymers (Poly(3,4-ethylenedioxythiophene):
poly(styrenesulfonate); PEDOT:PSS), and carbon-based materials, etc.
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The commercially available PEDOT:PSS is one of the best choices for flexible electrodes owing to
its high transmittance in the visible range, high and adjustable conductivity, intrinsically high work
function, excellent thermal stability, and good film-forming capability as well as superior mechanical
flexibility. PEDOT:PSS (Figure 1) is composed of positively charged conjugated PEDOT and negatively
charged saturated PSS. Its aqueous dispersion can be processed to form a thin film on either rigid
or flexible substrates by various solution-processing techniques. The achieved PEDOT:PSS film is
smooth and ideal for the application of electrodes in electronics. PEDOT:PSS exhibits a wide range
of conductivities from 10−4 to 103 S/cm−1, determined by synthetic conditions, doping additives,
or post-treatment methods. PEDOT:PSS film also possesses a high work function of 5.0–5.2 eV,
matching well with the highest occupied molecular orbital (HOMO) level of most of the polymer
donors in the absorption layer. The matched energy level ensures that PEDOT:PSS is a suitable electrode
for hole collection. Dedoping of PEDOT:PSS can result in reduction of the WF, endowing potential
fabrication of low-work function PEDOT:PSS electrodes for electron collection. In 2002, Zhang et al. [3]
first demonstrated that the sorbitol-doped PEDOT:PSS with an appropriated conductivity and work
function could be employed as transparent electrodes in PSCs. Since then, more and more scientists
have introduced and optimized PEDOT:PSS as a flexible electrode material. A high PCE over 12% for
single-junction PSCs based on PEDOT:PSS electrodes has been achieved by several groups [4,5].
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Figure 1. The chemical structure and schematic core-shell structure of Poly(3,4-ethylenedioxythiophene):
poly(styrenesulfonate) (PEDOT:PSS).

In this review, we describe the basic synthesis and properties of PEDOT:PSS complex. Comments
and discussions are offered on the conductivity, transmittance, work-function adjustment, as well as
processing technologies of the PEDOT:PSS films. Then, we focus on the applications of PEDOT:PSS
films as electrodes for PSCs. Various fabrication technologies and the application of PEDOT:PSS used
in bottom, top, and both electrodes are all surveyed. A perspective on the challenges and future
directions in this field is offered finally.

2. PEDOT:PSS Electrodes

2.1. Synthesis and Commercialization of PEDOT:PSS Complex

A very feasible way to obtain PEDOT:PSS complex is the oxidative polymerization of EDOT
in aqueous dispersion using sodium peroxodisulfate as the oxidant combined with a PSS template
polymer. The PSS in the complex has two important roles. One is to act as counterions for charge
balancing. A monomolecular oxidation product can be formed without counterions. Another role of
PSS is to keep the PEDOT segments dispersed in the aqueous solution as the PEDOT polycation is
hardly soluble in any solvent. The obtained PEDOT:PSS aqueous dispersion is a deep-blue opaque
solution. We also need to note that the molecular weight of PEDOT is only among 1000 to 2500 Da
(about 6 to 18 repeating units) resembling an oligomeric nature [6]. Research from Inganas, et al.
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demonstrated this polymer complex is stable due to the ionic PEDOT+ and PSS− not being separated
by capillary electrophoresis [7].

PEDOT:PSS aqueous dispersion was first commercialized under the trade name of Baytron®

by Bayer AG, followed by H.C. Starck and currently by Heraeus under the trade name of Clevios™.
The company of Agfa Gevaert N.V. (German) also introduced PEDOT:PSS for large-scale printing
applications under the trade name of Orgacon™. The PEDOT:PSS dispersions are classified into different
grades based on the solids content and the ratio of PEDOT to PSS. The component strongly influences
the particle size and distribution, viscosity, conductivity, and transmittance after film formation
of the dispersion [6]. Table 1 summarizes important properties of the commercial PEDOT:PSS
Clevios dispersions.

Table 1. Commercial PEDOT:PSS dispersions in water and their properties. (Data are from the previous
summarization [8,9]).

Trade Name Solids Content
in Water (wt.%)

PEDOT:PSS
Ratio (w/w)

Viscosity at 20
◦C (mPa)

Particle Size
d50 (nm)

Conductivity
(S/cm)

Clevios P 1.3 1:2.5 80 80 <10

Clevios PH 1.3 1:2.5 20 30 <10

Clevios PVP AI 4083 1.5 1:6 10 40 10−3

Clevios PVP CH800 2.8 1:20 15 25 10−5

Clevios PH500 1.1 1:2.5 25 30 500 a

Clevios PH750 1.1 1:2.5 25 30 750 a

Clevios PH1000 1.1 1:2.5 30 30 1000 a

a Conductivities of Clevios PH500, PH750, and PH1000 are measured for dispersions containing 5%
dimethyl sulfoxide.

2.2. Properties of PEDOT:PSS

PEDOT:PSS possesses several characteristics, such as high transmittance in the visible range,
high and adjustable electrical conductivity, excellent thermal stability, high work function, as well
as good film-forming ability by versatile fabrication techniques. These unique features ensure its
widespread applications in various photo-electronic devices.

The transmittance of the PEDOT:PSS electrode is highly dependent on the film thickness. Generally,
PEDOT:PSS thin films with a thickness around 100 nm possess high transmittance over 90% at 550 nm.
The absorption spectrum of PEDOT:PSS is almost identical to that of in situ chemically polymerized
PEDOT without PSS. Moreover, the addition of PSS or other additives like high boiling solvents does
not influence the optical properties significantly. However, PEDOT:PSS film treated by concentrated
sulfuric acid demonstrates a slight reduction in the transmittance [10]. The reason is mainly attributed
to a stacking conformational change of the conjugated ionic PEDOT+ segments caused by the significant
loss of PSS in the processing.

Electrical conductivity is one of the most important parameters considering its applications in
various devices such as electrodes. The electrical conductivity is strongly dependent on the film
morphology, chemical and physical structure, as well as the composite ratio, which in turn can be
strongly modified via a variety of post treatments. In the past few decades, many efforts have been made
in improving the electrical conductivity of PEDOT:PSS, and several approaches such as second doping
as well as post-treatment have been reported to significantly improve the conductivity of PEDOT:PSS.
In 2002, Kim et al. reported the electrical conductivity enhancement of PEDOT:PSS by doping polar
organic solvents [11]. They demonstrated that the electrical conductivity of PEDOT:PSS can be enhanced
by one order when dimethylformamide (DMF) is added into the aqueous solution, while enhancement
over two orders can be achieved by doping dimethyl sulfoxide (DMSO). Conductivity enhancement
was also reported by employing other polar organic solvents like ethylene glycol (EG), glycerol,
and sorbitol [3,12]. Moreover, anionic surfactant, ionic liquid, as well as nonionic surfactant were
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found to be very effective in improving the electrical conductivity of PEDOT:PSS [13–15]. In addition
to doping, film post-treatment is another common and effective method for enhancing the conductivity
of PEDOT:PSS. As for post-treatment, a solvent or solution is dropped (or vapored) onto a PEDOT:PSS
film, or the film is dipped into a solvent or a solution. The conductivity can be obviously enhanced
through a post treatment with an organic solvent like DMSO, EG, methanol, 2-methoxyethanol as
well as co-solvent, aqueous or organics solutions of salts and acids [16–19]. The strong acids such
as HCl and H2SO4 are the most often used method for acid treatment. Ouyang and colleagues for
the first time observed that conductivity can be obviously improved through a post treatment of the
PEDOT:PSS film with concentrated H2SO4 [20]. As shown in Figure 2, the electrical conductivity of
PEDOT:PSS is highly related to the concentration of H2SO4 and treated temperature. The electrical
conductivity of PEDOT:PSS film can be enhanced to 2400 S/cm treated by diluted 1.5 mol/L H2SO4

and up to 3100 S/cm by repeating the process. This electrical conductivity is comparable to that
of commercialized indium tin oxide (ITO) electrodes. Later, Lee’s group improved the electrical
conductivity by optimizing the post-treatment conditions with concentrated H2SO4 [16]. They found
the conductivity increased as the improvement of PEDOT:PSS crystallinity and a high conductivity
up to 4380 S/cm was obtained. Up to now, the highest conductivity has reached 4840 S/cm through
this H2SO4 post treatment method [21]. The H2SO4-treated PEDOT:PSS demonstrates unique metallic
or semimetallic behavior, indicating strong interactions among the PEDOT chains. Although great
progress has been made in the improvement of electrical conductivity, its value is still much lower
than that of metal electrodes. In addition, the conductive mechanism is still controversial and further
efforts are necessary for exploring the origins of this conductivity enhancement.
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Figure 2. Conductivities of PEDOT:PSS films after treatment with H2SO4 solutions [20]. (a) PEDOT:PSS
films treated with H2SO4 solutions of various concentrations at 160 ◦C. (b) PEDOT:PSS films treated
with 1 mol/L H2SO4 at various temperatures. The PEDOT:PSS films in (a,b) were treated with 1 mol/L
H2SO4 only once. (c) Diagram of the structural rearrangement of PEDOT:PSS via a concentrated H2SO4

treatment [16].
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2.3. Fabrication Technologies of PEDOT:PSS Electrodes

PEDOT:PSS can be deposited and can readily form continuous thin film on either rigid or flexible
substrates by all common techniques employed for the deposition of waterborne coatings (such as
spin coating, doctor blading, screen printing, inkjet printing; see Figure 3) [22]. However, pristine
PEDOT:PSS solution possesses hydrophobic nature and cannot be processed directly. One of the
effective methods is to employ plasma or ozone cleaning, but this makes the process complex. Another
preferable method is to add surfactants (such as Zonyls, Dynols, and Triton X-100) into PEDOT:PSS
solution to improve its wetting property [23–25]. Previous reports demonstrate that the contact angle
of commercially available PEDOT:PSS solution (PH1000) on top of active layer can be reduced from
99.6◦ to 29.1◦ by doping 0.4% surfactant PEG-TmDD [14]. The PEDOT:PSS films achieved by the
above procedures are smooth, and the thickness can also be controlled from several to hundreds of
nanometers, making these films attractive as cladding layer for thin film device applications.
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Figure 3. Schematic of (a) spin coating, (b) doctor blade coating, (c) screen printing, and (d) inkjet
printing [22].

Spin coating is the most commonly used method in the lab to prepare a highly conductive
PEDOT:PSS film as electrodes in the PSCs. During the preparation, the PEDOT:PSS dispersion is
dropped onto a substrate followed by a substrate spinning at a selected speed. The thickness mainly
depends on the solution concentration and the spinning speed. Normally, the PEDOT:PSS electrodes
achieved by spin coating methods possess the film thicknesses of 100–200 nm and transmittances of
over 80% in the wavelength range of 350–600 nm, which is about 10% lower than that of commercialized
ITO electrodes beyond 600 nm [8]. However, this technique is unsuited to a device with a large area and
not compatible with the industrial roll-to-roll processing. Moreover, more than 80% of the solution/ink
flies away during the processing. This motivates intensive research on printing techniques. The doctor
blading technique is another coating technique that can be integrated with the roll-to-roll processing.
The coating solution is placed in front of a sharp blade, and a thin wet film is formed after the blade
moves across the substrate. The distance is typically 10–500 µm [26]. The coating solution is placed
in front of a sharp blade, and a thin wet film is formed after the blade moves across the substrate.
Film thickness depends on the concentration, viscosity of the solution, and the surface energy of the
substrates. The doctor blading technique is not used as widely as the spin-coating method because it is
time-consuming and requires a lot of materials to get the right conditions for film processing. Jang et al.
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propose a simple and fast patterning method based on the doctor blading by adjusting the wetting
properties of PEDOT:PSS. They also reveal that the evaporation-induced flow exerts a great influence
on the film morphology [27]. Screen printing is also a commonly used method. In this technique,
a pre-patterned mesh is used to transfer ink onto a substrate. Then a blade or squeegee is moved
across the screen to fill the open mesh apertures with ink followed by a reverse stroke to ensure the
screen touches the substrate momentarily along a line of contact. Note that this technique requires a
high viscosity of the solution, and the generated films always possess a large thickness. Therefore,
this processing technique might not be used for fabricating the active layer but might be suitable for
depositing PEDOT:PSS films.

Considering the difference in processing technology and concomitant film-forming mechanism,
the requirements for characteristics including viscosity, density, and surface tension of the solution are
different. Therefore, rational optimization of the solution composition, such as solvent and additives,
is of great importance to obtain a high quality conductive film.

3. Polymer Solar Cells Based on PEDOT:PSS

Polymer solar cells (PSCs) have emerged as an alternative photovoltaic technology and attract
tremendous attention owing to the advantages of a wide range of materials source, light weight,
high mechanically flexibility, and solution processability. During a device preparation, ITO is always
employed as the transparent electrode, and the vacuum-deposited metals (such as Al, Ag, Au) are
generally used as top electrodes. Despite its good combination of high optical transmittance and high
conductivity, ITO is too expensive and rigid while the vacuum-deposited metals consume high energy
and require expensive deposition facilities with high-cost maintenance. Therefore, many scientific
communities devote themselves to developing novel conductive materials as an alternative approach.
The solution-processable PEDOT and its derivatives have become main candidates and have been
functioned as bottom, top, and both electrodes in the PSCs (Table 2).
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Table 2. Summary of the device performance of polymer solar cells (PSCs) based on PEDOT:PSS electrodes under AM1.5 illumination.

Device Thickness (nm) R (Ω/sq) T (%) JSC (mA/cm2) VOC (V) FF PCE (%) Ref.

Glass/PEDOT:PSS:S/MEH-PPV/PCBM/Al 150 ~103 80 1.6 0.75 0.30 0.36 [3]

Glass/EG-PEDOT:PSS/MEH-PPV:PCBM/Ca/Al 250 250 - 5.1 0.74 0.39 1.5 [28]

Glass/PH500:5%DMSO/P3HT:PC61BM/Ca/Al 100 213 90 9.73 0.63 0.54 3.27 [29]

PET/PH500:5%DMSO/P3HT:PC61BM/Ca/Al 100 213 90 9.16 0.61 0.50 2.8 [29]

Glass/Methanol treated PH1000/P3HT:PC61BM/Ca/Al ~50 25 85 9.51 0.58 0.67 3.71 [30]

Glass/H2SO4 treated PH1000/PEDOT:PSS(4083)/P3HT:PC61BM/Ca/Al 70 67 87 9.29 0.59 0.65 3.56 [20]

Glass/PEDOT:PSS:CNTs/PEIE/ZnO/PBDBTTT-C-T:PC71BM/V2O5-RGO/Ag - 40.51 80 15.76 0.77 0.62 7.47 [31]

Glass/Ag grid/PH500 /ZnO/C60SAM/P3HT:PC61BM/PEDOT:PSS(4083)/Ag - 9.1 79 9.39 0.60 0.57 3.21 [32]

Glass/CH4SO3 treated PH1000/PEDOT:PSS(4083)/PBDB-T:IT-M/PDINO/Al 80 40 - 16.01 0.925 0.72 10.60 [33]

PET/ CH4SO3 treated PH1000/PEDOT:PSS(4083)/PBDB-T:IT-M/PDINO/Al 80 40 90 15.49 0.93 0.70 10.12 [34]

Glass/ITO/ZnO/P3HT:PC61BM/CPP:PEDOT:PH1000 - 420 - 7.2 0.55 0.58 2.4 [35]

Glass/ITO/PEI/P3HT:ICBA/PH1000:PEG-TmDD - 526 - 8.70 0.78 0.60 4.1 [14]

Glass/ITO/ZnO/PBDB-T:ITIC/MC-PH1000:EG:PEG-TmDD - - - 13.0 0.86 0.66 7.38 [36]

Glass/metal/ZnO/P3HT:PCBM/PH1000T/Ag-busbar 190 - - 6.96 0.58 0.65 3.08 [37]

Glass/ITO/PEI/P3HT:ICBA/PH1000/PEI/P3HT:ICBA/PH1000:EG:PEG-TmDD T - - - 3.10 1.62 0.68 3.60 [38]

Glass/ITO/PEI/P3HT:ICBA/PEDOT:PSS(4083)/HCT-PEDOT:PSS T 2780 2.60 - 8.65 0.81 0.66 4.6 [39]

Glass/PH500:5%DMSO/ZnO-NPs/C60-SAM/P3HT:PCBM/PEDOT:PSS(4083)/PH500:5%DMSO T 130 370 - 5.49 0.31 0.28 0.47 [40]

PES/PH1000 5% DMSO/PEI/P3HT:ICBA/PH1000:CPP-PEDOT T 130 (bottom) 160 (top) - - 7.1 0.80 0.52 3.0 [41]

PES/PH1000:5%DMSO/PEI/P3HT:ICBAT/PH1000:5%DMSO T 120 (bottom) 150 (top) - - 5.6 0.80 0.55 2.4 [42]

Glass/LWF-PEDOT:PSS/P3HT:ICBA/HWF-PH1000:EG:PEG-TmDD T 124 (bottom) 150 (top) - - 8.10 0.81 0.61 4.0 [43]

PES/H3PO4-PEDOT:PSS/PEI/P3HT:ICBA/EG-PEDOT:PSS 85 (bottom) 150 (top) 120 (bottom) - 6.6 0.84 0.60 3.3 [44]

PES/hc-PEDOT:PSS/PEI/P3HT:ICBA/PEDOT:PSS/PEI/ . . . P3HT:ICBA/hc-PEDOT:PSST - - - 0.40 5.40 0.40 0.85 [45]

Recent representative research progress on PEDOT:PSS-based solar cells including served as bottom, top and both electrodes are included in this table. The parameters, such as thickness,
sheet resistance (R) and transmittance are referring to the PEDOT:PSS-based bottom or top electrodes in the PSCs device. The superscript T of the electrode in the device structure refers to
the PEDOT:PSS layer deposited via film transfer lamination technique. CNTs: Carbon nanotubes. JSC: Short-circuit current density. VOC: open-circuit voltage. FF: Fill factor. PCE: Power
conversion efficiency.
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3.1. PEDOT:PSS as Bottom Electrode for Polymer Solar Cells

For bottom transparent electrode, to replace the traditional ITO, two material properties
(transmittance in the visible spectral range and electrical conductivity) are the most relevant. The first
attempt to use PEDOT:PSS as bottom transparent electrodes for PSCs was reported by Zhang et al.
in 2002 [3]. They improved the conductivity of the PEDOT:PSS film by two orders of magnitude
to 10 S/cm through mixing the original solution with glycerol or D-sorbitol. The transmittance of
the optimized polymer electrode films was over 80% in the wavelength range of 350–600 nm with
thicknesses of 150–200 nm. Ultimately, the device based on glass/PEDOT:PSS as the anode delivered a
PCE of 0.36% as compared to 0.46% of the glass/ITO-based device. Though the PCEs of the cells were
inferior, it demonstrated the feasibility of conducting polymer acting as the transparent electrodes for
PSCs. Then Ouyang and co-workers further improved the conductivity of the PEDOT:PSS film to
155–160 S/cm by adding ethylene glycol (EG) or meso-erythritol into its dispersion [28]. The conductivity
enhancement was attributed to the additive-induced conformational change in the PEDOT chains,
which increased both intra-chain and inter-chain charge carrier mobility. A higher PCE of 1.5%
under 100 mW cm−2 illumination for the PSCs was thus obtained. Since then, different strategies,
such as adding high boiling polar solvents (DMSO etc.) and post treatment with acid (sulfuric acid,
phosphoric acid, or organic acids) or surfactant, have been used for enhancing its conductivity to
meet the requirement for practical electrode application [40,46,47]. Na et al. reported the average
conductivity of pristine PEDOT:PSS (PH500) only possessed an average conductivity around 1 S/cm
on both glass and PET substrates, while it can be improved to ~500 S/cm after adding 5% DMSO [29].
They optimized the PEDOT:PSS film with a thickness of 100 nm exhibiting a sheet resistance of
213 Ω/sq and transmittance above 90% in the visible wavelength range. By employing this highly
conductive polymer film as bottom transparent electrode, they developed highly efficient ITO-free
PSCs on both glass (PCE = 3.27%) and flexible plastic substrates (PCE = 2.8%) for the first time.
Though the efficiencies were comparable to those of ITO-based devices on glass (PCE = 3.66%) and
flexible substrates (PCE = 2.9%), the ITO-free PSCs on the flexible substrate manifested superior
mechanical robustness. It is worth noting that a homogenous PEDOT:PSS layer was difficult to
reproduce once DMSO was added. To overcome this problem, different surfactants were always
added for a better adhesion and wettability. Ahlswede et al. reported a highly conductive PEDOT:PSS
formulation consisting of four chemicals (including DMSO, diethylene glycol, sorbitol, and sulfonyl) to
maintain adhesion, coverage, and conductivity at the same time [19]. Controlling the PEDOT:PSS film
with a sheet resistance of 80 Ω/sq at a maximum transmittance of 74%, they obtained a PCE of 2.6%
based on P3HT:PCBM active layer. For a higher conductivity, the PEDOT:PSS film can be post-treated
with polar solvents or acids. Alemu et al. proposed a simple yet robust film treatment method with
methanol to enhance the conductivity of PEDOT:PSS by four orders of magnitude to 1362 S/cm [30].
They prepared ITO-free PSCs with standalone PEDOT:PSS anodes showing almost equal performance
to that of ITO electrodes. Sulfuric acid (H2SO4) treatments have been considered as very promising
methods for PEDOT:PSS films with a high conductivity and transmittance. Ouyang and co-workers
first reported that the conductivity of PEDOT:PSS can be enhanced to over 3000 S/cm via dropping
H2SO4 solutions onto the pristine PEDOT:PSS films followed by thermal annealing [20]. Moreover,
the dilute H2SO4 treatment slightly affects the transmittance of the PEDOT:PSS film. A 66 nm-thick
film possessed a transmittance of 87% at 550 nm, and the transmittance was higher than 90% in the
wavelength below 500 nm. The PSCs with the H2SO4-treated PEDOT:PSS film as anode exhibited
comparable photovoltaic performance to that of the control devices using ITO anode. In addition to
being used as an anode for holes collection in the device, PEDOT:PSS can also be modified as a cathode
for electrons collection. Zhou and co-workers pioneered the work on utilization of PEI or PEIE to
modify PEDOT:PSS and generate a low work function bottom electrode for ITO-free PSCs [41].

Incorporation of carbon materials and metal nanowires or grids into PEDOT:PSS is another
effective approach to improve the conductivity of the PEDOT:PSS films for PSCs. Chen and co-workers
demonstrated scalable and highly conductive PEDOT:PSS:CNTs (hc-PEDOT:PSS:CNTs; CNTs—carbon
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nanotubes) transparent electrode for high performance optoelectronics [31]. The composite electrode
possessed a high conductivity of 3264.27 S/cm as well as a high transmittance over 85%. ITO-free
PSCs based on glass/PEDOT:PSS:CNTs electrode achieved a PCE of 7.47% with high stability.
Later, they also produced a composite electrode with low work function via in situ polymerization
of the PEDOT:PSS-based sulfonated carbon nanotubes (SCNTs) as templates [34]. The resultant
PEDOT:PSS:SCNT films (70 nm) possessed a work function of 4.4 eV and conductivity over 3500 S/cm
as well as ~83% transmittance in the visible wavelength range. The electrodes were successfully
integrated as a cathode in PSCs and perovskite solar cells with PCEs of 9.91% and 13.31%, respectively.
Metal nanowires or grids have been shown to form high quality electrode coatings from solution
processes. The electrodes have a sheet resistance and transmittance similar to those of common ITO.
However, one of the major challenges in employing these metallic electrodes with nanostructures
for thin-film electronic devices is their high surface roughness that create shorts or leakage across
the semiconductor films. To address this issue, an inorganic–organic hybrid electrode consisting of
metal nanowires or grids and PEDOT:PSS was developed. The polymer PEDOT:PSS could fill the gaps
among nanowires or grids, and the film therefore possesses a smoothed surface as well as an increased
conductivity. Zou et al. reported Ag grid/PEDOT:PSS hybrid transparent electrode could be used to
replace ITO for the fabrication of inverted structure PSCs [32]. The performance of the devices could be
tuned easily by varying the width and separation of the metal grids. PSCs fabricated using this hybrid
electrode showed efficiencies as high as ~3.2%. Krebs and co-workers also demonstrated a multistack
flexible electrode comprising a structure of polyethylene terephthalate (PET)/Ag grid/PEDOT:PSS
can be employed as front electrodes for ITO-free all printed PSCs [48]. Subsequently, they further
expanded this flexible electrode to fabricate large area, flexible organic tandem solar cell modules via
roll-to-roll manufacture under ambient atmosphere [49]. Noh et al. reported the AgNWs/hcPEDOT
hybrid electrodes could be prepared with a one-step spray-coating [50]. The film thickness, optical
transmittance, and sheet resistance of the hybrid electrodes were easily controlled by varying the spray
deposition time. With these one-step spray-coated hybrid electrodes on glass substrate, the device
exhibited a PCE of 2.16% based on P3HT:PCBM active layer system.

The above examples indicate the solution-processable PEDOT:PSS is a promising candidate
material as bottom transparent electrode for ITO-free PSCs. Recently, benefiting from the progress
of non-fullerene-based bulk heterojunction PSCs, more and more ITO-free PSCs with PEDOT:PSS
as bottom transparent electrode have yielded a high PCE over 10% on both rigid glass and flexible
substrates [33,51]. As shown in Figure 4a,b, the flexible PSCs maintain an excellent bending flexibility
after 1000 cycles (a high retention ≈94% of the initial efficiency). Moreover, the PSCs are easy to realize
in an all-solution-processed fabrication due to the avoidance of the sputtered ITO, which is compatible
with various printing technologies for large-scale and flexible devices.

3.2. PEDOT:PSS as Top Electrode for Polymer Solar Cells

In common PSC devices, metals including MoO3/Ag or LiF/Al are used as the top electrodes.
However, the thermal evaporation of metal electrodes requires high-vacuum system, which is
complicated, expensive, and highly energy consuming. Moreover, thermal damage of interface may
occur during metal evaporation. Therefore, solution-processed PEDOT:PSS top electrode is proposed
due to its advantages of being fast, energy-efficient, cost-effective, and transparent [52]. There are two
main challenges for fabricating high-quality PEDOT:PSS top electrodes. Firstly, commercially available
high-conductivity PEDOT:PSS formulations (dispersed in aqueous solutions), such as PEDOT:PSS
PH500 and PEDOT:PSS PH1000, exhibit poor wetting property on hydrophobic photoactive layers.
Secondly, unlike inorganic solar cells, the photoactive layers of PSCs are thin (~100 nm) and soft.
The photoactive layer is easily penetrated, leading to large leakage current or even shortage and poor
device performance. Thus, a proper pattern is necessary.

To tune the photoactive layer surface from hydrophobic to hydrophilic for better deposition of
aqueous PEDOT:PSS, many efforts have been made. One effective method is inserting an interlayer,
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by incorporating a thermally evaporated layer of lithium-doped bathophenanthroline (BPhen:Li) [53],
an amphiphilic layer of PAH-D [54], or a low-conductivity PEDOT:PSS (Al4083 or CPP 105D) buffer
layer with more surfactant [55] so that PEDOT:PSS top electrodes can be easily deposited. To simplify
the device fabrication, Zhou et al. mixed CPP 105D with PH1000 to enable a single-step deposition
of PEDOT:PSS top electrode [35]. Li et al. added a nonionic surfactant PEG-TmDD to PH1000,
which can solve wetting problem and enhance the electrical conductivity to 526 S/cm [14]. Mao et al.
reported a Maobi coating strategy in which PEDOT:PSS electrode can be fabricated from aqueous
PH1000 mixed with EG and surfactant using Maobi as coating tool [36]. PSCs with a structure of
glass/ITO/ZnO/PBDB-T:ITIC/PEDOT:PSS exhibit a high PCE of 7.38%. Mild plasma treatment is another
efficient method to turn the surface to hydrophilic, but the photoactive layer could be damaged if this
is not performed with proper processing techniques [56].

Considering the pattern issues of PEDOT:PSS top electrode, different methods have been
developed with the popularity of the flexible electrode. Lim et al. fabricated PEDOT:PSS top
electrode through spray coating and patterned through a shadow mask [57] Hau et al. and Zhou et al.
used poly(dimethylsiloxane) (PDMS) to peel off part of the interlayer, leaving behind a patterned area.
Then high-conductive PEDOT:PSS formulation was spin-coated to form top electrode [21,33]. However,
this peeling-off method including solution process could damage layers underneath and bring difficulty
in precisely controlling the pattern of the PEDOT:PSS film. Further, modified film-transfer lamination
technique was reported by Wang et al. and Gupta et al. [37,58]. Generally, a PDMS stamp coated with
PEDOT:PSS electrode was placed in close contact with the receiving surface. The PDMS stamp was
then peeled off, leaving the transferred electrode in place. The application of film-transfer lamination
method could solve the problem of damaging the layers underneath, since the PEDOT:PSS film is
transferred dry. Zhou et al. fabricated PSCs with laminated PH1000 as top electrode on recyclable
cellulose nanocrystal (CNC) substrates (Figure 4c) [59]. This dry film-transfer lamination process
avoids swelling damage to the CNC substrate, since CNC can be easily dissolved in water. The PSCs
exhibit a maximum PCE of 4.0% when illuminated through the semitransparent PEDOT:PSS top
electrode. To break the Shockley–Queisser limit as well as achieve high efficiency, tandem solar cells
have been investigated. Tong et al. first reported on organic tandem solar cells with PEDOT:PSS as the
top electrode using film-transfer lamination method by PDMS medium. The fabricated devices exhibit
an open-circuit voltage of 1.62 V and an average PCE of 3.6% [38]. Later, Mao et al. also employed
this film-transfer lamination method to fabricate flexible large-area organic tandem solar cells with
P3HT:ICBA as bottom cells and PTB7-Th:PCBM as top cells [60]. To reduce the series resistance,
80 nm silver grids were evaporated on top of the laminated PH1000 top electrode, yielding a PCE of
6.5% (Figure 4d). Yin et al. replaced PDMS with cheaper and more easily accessible plastic wrap as
transfer medium [61]. PSCs based on this new medium exhibited an averaged PCE of 4.0%, which was
comparable with PDMS method. In 2016, Li et al. reported micrometer-thick, highly conductive,
free-standing PEDOT:PSS films with a high conductivity of 1400 Scm−1, which can be laminated as the
top electrode directly without using PDMS medium [39]. By using this technique, the PEDOT:PSS
films can be easily scaled up, which gives them great potential in large-area applications [42].

3.3. PEDOT:PSS as Both Bottom and Top Electrodes for Polymer Solar Cells

In light of the advantages of their low cost, low weight, and flexible manufacture, all-plastic
organic solar cells with ITO-free, metal-free, and vacuum-free PEDOT:PSS electrodes are emerging.
Hau et al. demonstrated the first all-plastic solar cell with PEDOT:PSS acting as both bottom cathode
and top anode, showing an efficiency of 0.47% [40]. Zhou et al. developed a universal method to
tune work function of conductors with PEI. Devices with a PEI-coated PH1000 bottom electrode and a
PEDOT:PSS blend top electrode yielded an average PCE of 3.5% [41]. The same group further reported
the first semitransparent all-plastic solar cell fabricated in ambient air through film-transfer lamination
technique [43]. Li et al. treated PEDOT:PSS bottom electrode with H2SO4 and PEI solution through
a two-step dipping process. A high conductivity of 1561 S/cm and a low work function of 4.0 eV
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can be obtained, yielding a champion efficiency of 4.0% [44]. To avoid the corrosion of H2SO4 on
plastic substrates such as PET or PES, Meng et al. used a mild phosphoric acid (H3PO4) to treat
the PEDOT:PSS electrode, and an enhanced conductivity of 1460 S/cm was acquired [45]. With the
flexible electrode of PES/H3PO4-treated PEDOT:PSS, they fabricated flexible all-plastic solar cells
(PES/H3PO4-treated PEDOT:PSS/PEI/P3HT:ICBA/EG-PEDOT:PSS) with a PCE of 3.3% under 100 mW
cm−2 white light illumination. Koppitz et al. reported all-plastic organic solar cells comprising top
and bottom PEDOT:PSS electrodes embedded with AgNWs [62]. The devices fabricated in air by
doctor-blading exhibit excellent robustness in bending experiments with a PCE of 3.8%. The first
all-plastic and all-solution-processed tandem solar cells (up to seven junctions) have been reported
by Tong et al. [63] They optimized the conductivity of the charge recombination layers to fabricate
multi-junction (up to seven junctions and 22 layers, as shown in Figure 4e,f) solar cells achieving a PCE
of 6.1% ± 0.4% and a high VOC of 5.37 V. These all-plastic multijunction solar cells are successfully
used to drive LEDs and LCDs as well as split water.
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3.4. Perovskite Solar Cells Based on PEDOT:PSS Electrode

Perovskite solar cells (PeSCs) are the most promising candidates amongst the next-generation
photovoltaic technologies and have been attracting considerable attention because of their low
fabrication cost and impressive PCE. Undoubtedly, the highly conductive PEDOT:PSS can also be used
as a transparent cathode and/or anode in the PeSCs to replace transparent conducting oxides (TCOs)
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and vacuum-deposited metals. Commonly, the PEDOT:PSS electrode was mainly used as the bottom
electrode of TCO-free PeSCs and the top electrode of metal-free PeSCs.

The flexible PeSCs without inorganic TCO layers were successfully fabricated for the
first time in 2015. Kelly et al. substituted the metal oxide electrode with a layer of
HC-PEDOT:PSS to improve device flexibility of PeSCs. The resulting devices with an architecture
of PET/HC-PEDOT/SC-PEDOT/CH3NH3PbI3/PC61BM/Al displayed PCEs as high as 7.6% [64].
Ouyang et al. investigated PEDOT:PSS films as the transparent bottom electrode in both rigid
and flexible PeSCs. The conductivity of PEDOT:PSS films was significantly enhanced through treating
the film with methanesulfonic acid (MSA). The optimized PCEs were 11.0% and 8.6% for the rigid
PeSCs-based glass substrate and flexible PeSCs-based PET substrate, respectively [65]. Meanwhile,
PEDOT:PSS films with the addition of high boiling polar solvent as an additive were reported as a
semitransparent anode for TCO-free flexible PeSCs. The best case in terms of spray deposition (sheet
resistance ~28 Ω/sq, transmittance ~65%) was achieved by modifying PH1000 with addition of 6%
(v/v) ethylene glycol and a spray deposition time of 90 s [66]. Other environmentally friendly acid-free
approaches through solvent additives, post treatments, and a mild oxygen plasma treatment were also
presented to enhance the conductivity of PEDOT:PSS for TCO-free PeSCs. The achieved 10.5% was
one of the highest reported efficiencies for TCO-free PeSCs with a PEDOT:PSS electrode that excludes
the use of acid treatments [67]. Considering the high enough work function of PEDOT:PSS, it can
serve as hole transport layer at the same time. Several electrode formulas (PH1000-5%, PH1000-10%,
and PH1000-H) were optimized and selected for TCO-free PeSCs without hole transport layer for
the purpose of simplifying the process of PeSCs. The electrodes PH1000-x% were obtained from
spin-coating the PH1000 solutions containing x vol% DMSO on glass substrates. PH1000-H was
obtained from spin-coating DMSO solution of p-toluenesulfonic acid on PH1000. The PeSCs based on
PH1000-10% achieved the highest PCE up to 9.65% [68]. In addition to the anode, TCO-free planar PeSCs
basing a high conductive PEDOT:PSS as cathode were also successfully fabricated. The polyetherimide
(PEI)-modified PEDOT:PSS significantly changed its work function from −5.06 to −4.08 eV, yielding a
better electron collection. The PeSCs based on glass/PEDOT:PSS/PEI cathode exhibited an average
PCE of 12.42%, comparable to that of regular devices with metal oxide cathodes [69].

Since perovskite is sensitive to humidity, the key problem is that the aqueous solution of
PEDOT:PSS destroys the perovskite film when PEDOT:PSS is used as a top electrode for metal-free
PeSCs. To solve this incompatibility, film-transfer lamination technique is an appropriate method
to prepare PEDOT:PSS film. Jiang et al. employed HC-PEDOT:PSS as the top electrode of PeSCs
for the first time through a transfer lamination technique in 2015 [70]. Furthermore, they presented
semitransparent PeSCs via the film transfer laminated PEDOT:PSS as the top transparent electrode.
The plastic wrap was used as the transfer medium. Transmittance of the fabricated solar cells
was tuned by changing the thickness of TiO2 scaffold layer and the concentration of PbI2 solution.
The semitransparent PeSCs yielded a PCE of 10.1% at an area of about 0.06 cm2 [71]. A micrometer-thick
PEDOT:PSS-Ag nanowire composite with desirable optical, electrical, and adhesive characteristics [72]
and mesh-like silver network on PET substrates coated with a PEDOT:PSS/D-sorbitol film were
also shown to be a highly transparent top electrode for PeSCs via a simple lamination process [73].
Considering the typically used high-temperature sintered TiO2, the mechanically brittle TCO is
not suitable for the flexible devices. Zhou et al. demonstrated efficient flexible ITO-free PeSCs.
The low-temperature-processed stearyldimethylbenzylammonium chloride (SDBAC)-doped fullerene
was used as the electron-transporting layer and silver as the bottom electrode. With the new device
structure and the new electron transfer layer, the devices on PES substrates delivered a PCE up to
11.8%, which is comparable to the reference devices on glass substrate [74]. Intriguingly, the top
electrode of transparent conducting PEDOT:PSS can be simultaneously used as an spectrally selective
antireflection coating. Jiang firstly reported a simple and efficient strategy to achieve colorful PeSCs
with wide color gamut by changing the thickness of PEDOT:PSS film and selecting appropriate hole
transport layer (Figure 5a). They found the vivid colors arise from the coherent superposition of
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the reflected and transmitted electromagnetic fields among the transparent PEDOT:PSS electrode,
the hole transport layer, and the perovskite layer [75]. It was observed that HC-PEDOT:PSS was usually
employed as top anode for regular PeSCs. The PEI-modified PEDOT:PSS with reduced work function
can also be employed as top cathode for vacuum-free inverted PeSCs. A polymer stamping with
hydrophobic polyurethane acrylate (PUA) succeeded in transferring the both layers of PEDOT:PSS/PEI
on top of the ITO/PEDOT:PSS/CH3NH3PbI3/PCBM, improving the device performance from 0.07%
to 4.02% [76]. Zheng et al. reported the first low temperature and fully solution-processed TCO-free
semitransparent PSCs, in which nitric acid annealed conducting polymer PEDOT:PSS was used as
both transparent cathode and anode of the device to replace traditional TCO-based bottom and metal
based top electrodes, respectively. The fully solution-processed PeSCs fabricated on glass showed a
PCE of 13.9%. In addition, it could readily stack c-Si bottom cell to build a four-terminal PeSCs/c-Si
tandem cell (Figure 5a).As shown in Figure 5b, the tandem device showed a high PCE of 19.2% [77].
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Figure 5. (a) Device architecture of the cells with conducting polymer PEDOT:PSST as the top electrode
(left) and photographic image of a colored schematic “H” assembled by colorful PeSCs [75]. Each pixel
substrate is about 5 × 5 mm2. The PEDOT:PSS electrode was prepared by film transfer lamination.
(b) Illustration of the structure of the four-terminal TCO-free/c-Si tandem cell and (c) the corresponding
J-V curves [77].

4. Summary and Outlook

Over the past decades, organic polymer thin-film solar cells have made tremendous
progress. The device performance increased from roughly 1% to over 17% in less than 30 years.
The commercialized conducting polymer PEDOT:PSS endows the PSCs with characteristics of light
weight, flexibility, and cost-effectiveness for large-area processing more prominence. It has been
reported that the solution-processable PEDOT:PSS can be utilized as bottom, top, and both electrodes
to replace traditional non-solution-processed metal oxide and metal electrodes. Despite the great
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progress of PEDOT-based PSCs, much more work lies ahead to give a comprehensive understanding
of its multiple functionalities, resolve outstanding problems, and speed up the research of PEDOT as
printing inks for fully printable PSCs. Firstly, the conductivity of solution-processed PEDOT is not
enough. How to increase the conductivity of solution-processable PEDOT up to 104 S/cm or even higher
is still challenging. Although many strategies have been reported to improve the conductivity of the
commercialized PEDOT:PSS, the inner mechanisms are ambiguous. It is necessary to make it clear so
that we can solve the problem fundamentally in the initial synthesis step. In addition, the components
of the commercialized PEDOT:PSS aqueous dispersion are also unclear. Then, with reference to the
device processing, a balance between the transmittance and conductivity also needs to be considered.
Especially, the recently emerging high-efficiency non-fullerene active layers possess a wide absorption
spectrum extending to near-infrared region. The requirement for the transmittance of PEDOT:PSS
electrode needs to be redesigned. Finally, for different processing techniques, new approaches
such as surface chemical engineering should also be developed to improve the surface wetting or
substrate adhesion.
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