Supplementary Information

Article

Surface Modification Design for Improving the Strength and Water Vapor Permeability of Waterborne Polymer/SiO₂ Composites: Molecular Simulation and Experimental Analyses

Yingke Wu¹, Jianzhong Ma^{2,*}, Chao Liu^{3,*} and Hongxia Yan⁴

- ¹ School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; einske@163.com
- ² Key Laboratory of Leather Cleaner Production, China National Light Industry, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- ³ Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Xi'an 710021, China
- ⁴ Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi'an 710129, China; hongxiayan@nwpu.edu.cn
- * Correspondence: majz@sust.edu.cn (J.M.); lc1010158@163.com (C.L.); Tel.: +86-029-86132559 (ext. 601) (J.M.)

1. Construct the composite system containing water model

To study the diffusion coefficient of H₂O in composite systems, the MSDs of H₂O in composite systems were analyzed. Some composite systems containing water molecules were constructed as follows (Figure S1):

PMA/SiO₂ (KH550-SiO₂, KH560-SiO₂)/H₂O: Amorphous cells containing composites of PMA polymer chains with 20 repeat units, one SiO₂ (or modified-SiO₂) nanoparticle (diameter 20 nm) and 10 H₂O molecules were constructed, and periodic boundary conditions were applied.

PMA/KH570-SiO₂/H₂O: Amorphous cells containing composites of PMA polymer chains with 19 repeat units, one PMA-KH570-SiO₂ and 10 H₂O molecules were constructed, and periodic boundary conditions were applied.

Figure S1. Models for water diffusion in composite system: **a.** PMA/H₂O, **b.** PMA/SiO₂/H₂O, **c.** PMA/KH550-SiO₂/H₂O, **d.** PMA/KH560-SiO₂/H₂O, and **e.** PMA/KH570-SiO₂/H₂O.

2. Binding energy of PMA/SiO2 and PMA/modified-SiO2 composites (30 PMA polymer chains)

A system of 30 PMA polymer chains and one SiO₂ was re-simulated, mainly hoping to get consistent trends with experimental results (Figure S2). The simulation calculation of PMA/SiO₂ and PMA/KH550-SiO₂ nanocomposite system has been completed, and the results are as follows (Table S1 and Table S2):

Figure S2. Models for MD simulation of composite system: a. PMA/SiO₂, b. PMA/KH560-SiO₂.

Table S1. Binding energy of PMA/SiO₂ and PMA/KH560-SiO₂ composites (30 PMA polymer chains).

Systems	$E_{ m total}$	Eрma	ESiO2(or Emodified-SiO2)	E_{inter}	$E_{ m binding}$
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
PMA/SiO ₂	2939.02	17572.19	-14344.23	-288.93	288.93
PMA/KH560-SiO ₂	3919.87	18219.59	-13957.74	-341.98	341.96

Table S2. Binding energy of composites system (20 PMA polymer chains and 30 PMA polymer chains).

Systems	Ebinding (kcal/mol)
PMA/SiO2 (20 PMA polymer chains)	274.83
PMA/SiO ₂ (30 PMA polymer chains)	288.93
PMA/KH560-SiO2 (20 PMA polymer chains)	356.27
PMA/KH560-SiO2 (30 PMA polymer chains)	341.96

The simulation results are in line with the experimental results and are consistent with the simulation results in the manuscript.