Supplementary Material

Table S1: Information on 55 experimental articles from 1998 to 2018 which deal with the development of chitosan/insulin delivery systems.

Paper Code			R	elevant Paper Ir	formation					Re	search Questions			Paper Abstract
Id	Paper Title	Authors	Year	Publisher	Research Country	Journal	Number of Pages	Total Citations on Google Scholar	RQ1 – What phase the development of the delivery systems of chitosan/insulin are? (initial,encapsulati on, <i>in vitro</i> realise, and <i>in</i> <i>vivo</i> realise)	RQ2 – What are the release system developed? (Hidrogel, nanoemution, nanoparticles, scaffold, membrene, fiber, nanofiber, film, gel, etc.)	RQ3 – What are the main alternative ways of administration suggested? (Oral, transbuccal, buccal, Nasal,subcutaneo us, transdermic, injetable, etc.)	RQ4 – What are the total amount of insulin Loaded and the encapsulation efficiency of the release system? (Encapsulation efficiency and loading capacity)	RQ5 – For how long the system released the insulin? (Toatal time of release)	Abstract
1	Development and characterization of in situ gel system for Nasal insulin delivery	A. K. Agrawal, P. N. Gupta, A. Khanna1, R. K. Sharma, H. K. Chandrabanshi, N. Gupta, U. K. Patil, S. K. Yadav	200 9	Govi-Verlag Pharmazautis cher Verlag	India	Pharmazie	6	47	in vivo	Hydrogels	Nasal	Not informed	6 h	The objective of the present study was to develop a thermosensitive in situ gel system based on chitosan and poly vinyl alcohol (PVA) for Nasal delivery of insulin. The hydrogel was prepared by mixing chitosan and PVA. The concentration of the components was optimized during formulation development. The prepared hydrogel was characterized for gelation temperature, gelation time, viscosity changes, degree of swelling, in vitro release and in vivo hypoglycemic effect. The prepared hydrogel was liquid at room temperature while underwent thermal transition from solution below or at room temperature to non-flowing hydrogel when incubated at 37 °C for approximately 12 minutes with

														increased viscosity. The in vitro release of insulin from gel network was observed spectrophotometricall y which was good enough to maintain blood glucose level for six hour. Furthermore, the formulation when evaluated for their in vivo hypoglycemic effect, demonstrated its ability to reduce glucose level. The observed in vitro and in vivo results indicate that the proposed thermosensitive in situ gelling system has substantial potential as Nasal delivery system for insulin.
2	Low Molecular Weight Chitosan- Insulin Polyelectrolyte Complex: Characterizatio n and Stability Studies	Zakieh I. Al- Kurdi, Babur Z. Chowdhry, Stephen A. Leharne, Mahmoud M. H. Al Omari and Adnan A. Badwan	201 5	MDPI	Jordan	Marine Drug	20	11	in vitro	Nanoparticles	Oral	Not informed	6 h	The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs) on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC) consisting of insulin and LMWC in the presence of a Tris- buffer at pH 6.5. In the presence of a Tris- buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte comple+P2x (I-LMWC PEC) in a reverse micelle (RM) system,

														administered to diabetic rats, results in an Oral delivery system for insulin with acceptable bioactivity.
3	<u>Chitosan/lecithi</u> <u>n liposomal</u> <u>nanovesicles as</u> <u>na Oral insulin</u> <u>delivery system</u>	Mayyas Al- Remawi, Amani Elsayed, Ibrahim Maghrabi, Mohammad Hamaidi & Nisrein Jaber	201 6	Taylor & Francis	Jordan/Sau di Arabia	Pharmaceu tical Developme nt and Technology	9	14	in vivo	Nanoparticles	Oral	The AE was calculated to be around 20% under such preparation conditions.	1 h	In the present work, insulin-chitosan polyelectrolyte complexes associated to lecithin liposomes were investigated as a new carrier for Oral delivery of insulin. The preparation was characterized in terms of particle size, zeta potential and encapsulation efficiency. Surface tension measurements revealed that insulin- chitosan polyelectrolyte complexes have some degree of hydrophobicity and should be added to lecithin liposomal dispersion and not the vice versa to prevent their adsorption on the surface. Stability of insulin was enhanced when it was associated to liposomes. Significant reduction of blood glucose levels

														was noticed after Oral administration of liposomal preparation to streptozotocin diabetic rats compared to control. The hypoglycemic activity was more prolonged compared to subcutaneously administered insulin.
4	Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method	Mohammad Reza Avadi, Assal Mir Mohammad Sadeghi, Nasser Mohammadpou r, Pharm, Saideh Abedin, Pharm, Fatemeh Atyabi, Rassoul Dinarvand, Morteza Rafiee- Tehrani	201 0	Elsevier	Iran	Nanomedic ine	6	231	in vitro	Nanoparticles	Oral	The LE for all formulations was calculated and was shown to be between 25% and 35%	4 h	In the past decade, many strategies have been developed to enhance Oral protein delivery. The aim of the current work was to develop a nanoparticulate system based on ionic gelation between chitosan and Arabic gum for loading of insulin. Various formulations were prepared using 23 factorial designs. The optimum association efficiency was obtained for formulations F2, F5, and F8. The release profile of insulin in phosphate buffer solutions (pH 6.5 and pH 7.2) is completely different than that in acidic medium (pH 1.2). Increased solubility of chitosan in acidic medium and better swelling of Arabic gum chains at pH N6.5 resulted in lower insulin release of nanoparticles at pH 6.5 in comparison with that of the other pH mediums. The values of the exponent n were 0.49 and 0.82 for

														formulations F8 and F5, respectively, indicating a non- Fickian transport. This suggests that release is possibly controlled by diffusion or relaxation of the polymer chains.
5	Ultrasound- triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules	Jin Di, Jicheng Yu, Qun Wang, Shanshan Yao, Dingjie Suo, Yanqi Ye, Matthew Pless, Yong Zhu, Yun Jing, and Zhen Gu	201 7	Springer	United States	Nano Research	10	28	in vivo	Microgels	Injectable	Drug loading capacity (LC%) and encapsulation efficiency (EE%) of nanoparticles encapsulated with insulin was 11,9 (+/- 0,6) and 71,3 (+/- 1,8), respectivily.	240 h	Diabetes is a serious public health problem affecting 422 million people worldwide. Traditional diabetes management often requires multiple daily insulin injections, associated with pain and inadequate glycemia control. Herein, we have developed an ultrasound-triggered insulin delivery system capable of pulsatile insulin release that can provide both long- term sustained and fast on-demand responses. In this system, insulin-loaded poly(lactic-co-glycolic acid) (PLGA) nanocapsules are encapsulated within chitosan microgels. The encapsulated insulin in nanocapsules can passively diffuse from the nanoparticle but remain restricted within the microgel. Upon ultrasound treatment, the stored insulin in microgels can be rapidly released to

														regulate blood glucose levels. In a chemically- induced type 1 diabetic mouse model, we demonstrated that this system, when activated by 30 s ultrasound administration, could effectively achieve glycemic control for up to one week in a noninvasive, localized, and pulsatile manner.
6	<u>Chitosan–</u> <u>Sodium Lauryl</u> <u>Sulfate</u> <u>Nanoparticles</u> <u>as a Carrier</u> <u>System for the</u> <u>In Vivo Delivery</u> <u>of Oral Insulin</u>	Amani Elsayed, Mayyas Al- Remawi, Nidal Qinna, Asim Farouk, Khaldoun A. Al- Sou'od, and Adnan A. Badwan	201 1	Springer	Jordan	AAPS PharmSciT ech	7	43	in vivo	Nanoparticles	Oral	Nanoparticles displayed high encapsulation efficiency as 82.04±1.95% of insulin was encapsulated.	7 h	The present work explores the possibility of formulating an Oral insulin delivery system using nanoparticulate complexes made from the interaction between biodegradable, natural polymer called chitosan and anionic surfactant called sodium lauryl sulfate (SLS). The interaction between chitosan and SLS was confirmed by Fourier transform infrared spectroscopy. The nanoparticles were prepared by simple gelation method under aqueous-based conditions. The nanoparticles were stable in simulated gastric fluids and could protect the encapsulated insulin from the GIT enzymes. Additionally, the in vivo results clearly indicated that the insulin-loaded nanoparticles could effectively reduce the blood glucose level in a diabetic rat model. However, additional formulation modifications are required to improve

														insulin Oral
														bioavailability.
														Peptide (insulin) loaded nanoparticles
														(NPs) have been
														embedded into buccal
														films- NPs). These films
														were produced by
														involved incorporating
														in chitosan gel (1.25%
														suspensions at three
														different
														and 5mg of NPs per
	An integrated													film) using glycerol as
	buccal delivery system	_												plasticiser. Film swelling and
	combining	Concetta Giovino, Isaac				Colloids and								mucoadhesion were
7	chitosan films impregnated	Ayensu, John	201	Elsevier	United Kingdom	Surfaces B:	7	69	in vivo	films	Buccal	Not informed	360 h	investigated using 0.01M PBS at 37 ∘C
	with peptide	Tetteh, Joshua S. Boateng	-			Biointerfac								and texture analyzer,
	loaded PEG-b-	of Doutenig				65								respectively.
	nanoparticles													containing 3mg of NPs
														per film produced
														excellent
														mucoadhesion and
														swelling properties. Dynamic laser
														scattering
														measurements showed that the
														erosion of the chitosan
														backbone controlled
														from the films,
														preceding in vitro drug
														(insulin) release from

														Ch-films-NPs after 6 h. Modulated release was observed with 70% of encapsulated insulin released after 360 h. The use of chitosan films yielded a 1.8-fold enhancement of ex vivo insulin permeation via EpiOraITM buccal tissue construct relative to the pure drug. Flux and apparent permeation coefficient of 0.1_g/cm2/h and 4×10-2 cm2/h were respectively obtained for insulin released from Chfilms- NPs-3. Circular dichroism and FTIR spectroscopy demonstrated that the conformational structure of the model peptide drug (insulin) released from Ch-
8	<u>Glucose-</u> <u>Responsive</u> <u>Microgels</u> <u>Integrated with</u> <u>Enzyme</u> <u>Nanocapsules</u> <u>for Closed-Loop</u> <u>Insulin Delivery</u>	Zhen Gu, Tram T. Dang, Minglin Ma, Benjamin C. Tang,Hao Cheng, Shan Jiang, Yizhou Dong, Yunlong Zhang,and Daniel G. Anderson	201 3	ACS Publication	United States	ACS Nano	9	223	in vivo	Microgels	Injectable	An optimal insulinloading capacity of 44.6 (2.8% and encapsulation efficiency of 59.7 (3.4% (Supporting Information) were achieved.	4 h	preserved during the formulation process. A glucose-responsive closed-loop insulin delivery system represents the ideal treatment of type 1 diabetes mellitus. In this study, we develop uniform Injectable microgels for controlled glucose- responsive release of insulin. Monodisperse microgels (256 (18 μm), consisting of a pH-responsive chitosan matrix, enzyme nanocapsules, and recombinant human insulin, were fabricated through a one-step electrospray procedure. Glucose- specific enzymes were covalently

							encapsulated into the
							nanocapsules to
							improve enzymatic
							stability by protecting
							from denaturation and
							immunogenicity as
							well as to minimize
							loss due to diffusion
							from the matrix. The
							microgel system
							swelled when
							subjected to
							hyperglycemic
							conditions, as a result
							of the enzymatic
							conversion of glucose
							into gluconic acid and
							protonation of the
							chitosan network.
							Acting as a self-
							regulating valve
							system, microgels
							were adjusted to
							release insulin at basal
							release rates under
							normoglycemic
							conditions and at
							higher rates under
							hyperglycemic
							conditions. Finally, we
							demonstrated that
							these microgels with
							enzyme nanocapsules
							facilitate insulin
							release and result in a
							reduction of blood
							glucose levels in a
							mouse model of type 1
							diabetes.

														The aim of this study
														was to generate a new
														type of nanoparticles
														made of chitosan (CS)
														and carboxymethyl
														cyclodextrin (CMCD)
														and to evaluate their
														potential for the
														association and
														delivery of
														macromolecular drugs.
														CS and CMCD or
														mixtures of CM
														CD/tripolyphosphate
														(TPP) were processed
														to nanoparticles via
														the ionotropic gelation
														technique. The
														resulting nanoparticles
														were in the size range
														of 231–383 nm and
														showed a positive zeta
												Insulin could be		potential ranging from
												incorporated		+20.6 to +39.7mV.
												very efficiently		These nanoparticles
	Chitosan/cyclod											to all		were stable in
	extrin	Ale				Internation						nanoparticie		simulated intestinal
0	nanoparticles as	Alexander H.	200	Elsovior	Spain	al Journal	0	202	invitro	Nanonarticlos	Nacal	roaching	2 h	for at least 4 h
9	macromolecula		7	Elsevier	Sham	Dharmacou	9	202		Natioparticles	INdSdI	reaching	211	Flomontal analysis
	r drug delivery	JUSE AIUIISU				tics						association		studios rovoalod tho
	<u>system</u>					tics						more than 85%		actual integration of
												and loading		CMCD to CS
												efficiency with		nanonarticles Insulin
												68 4 + 0 5%		and henarin used as
												00.4 ± 0.570		macromolecular model
														drugs, could be
														incorporated into the
														different nanocarriers
														with association
														efficiencies of 85.5–
														93.3 and 69.3–70.6%.
														respectively. The
														association of these
														compounds led to an
														increase of the size of
														the nanoparticles
														(366–613 nm), with no
														significant
														modification of their
														zeta potentials (+23.3
														to +37.1 mV). The
														release profiles of the
														associated
														macromolecules were
														highly dependent on
														the type of molecule

							and its interaction with the nanomatrix: insulin was very fast released (84–97% insulin within 15 min) whereas heparin remained highly associated to
							the nanoparticles for several hours (8.3– 9.1% heparin within 8 h). In summary, CS-CD (cyclodextrin) nanoparticles may be considered as nanocarriers for the
							fast or slow delivery of macromolecules.

														A polyelectrolyte
														complex system of
														and microparticles was
														developed to
														encapsulate the
														normone insum. The
														for Oral inculin
														delivery without
														chomical crosslinkors
														based on natural and
														biodegradable
														nolysaccharides The
														nano- and
														microparticles were
														developed using
														chitosans (with
														different degrees of
														acetvlation: 15.0% and
												An EE of 34–		28.8%) and pectin
												37% of insulin		solutions at various
												was achieved		charge ratios (n+/n-
		Vinicius P. V										for systems		given by the
	Electrostatic	Maciel										with charge		chitosan/pectin mass
	Self-Assembled	Cristiana M. P.										ratio (n+/n−)		ratio) and total charge.
	Chitosan-Pectin	Yoshida, Susana	201							Nano- and		0.25. The EE		Nano- and
10	Nano- and	M. S. S. Pereira.	7	MDPI	Brazil	Molecules	21	13	in vitro	microparticles	Oral	was further	2 h	microparticles were
	Microparticles	Francisco M.								inter op at cierco		improved (62%)		characterized
	tor Insulin	Goycoolea and										for systems		regarding particle size,
	Delivery	, Telma T. Franco										with charge		zeta potential,
												ratio (n+/n-)		production yield,
												5.00, index such a f		encapsulation
												independent of		efficiency, stability in
												DA OI Chitosan.		transmission electron
														microscopy and
														cytotoxicity assays
														using Caco-2 cells. The
														insulin release was
														evaluated in vitro in
														simulated gastric and
														intestinal media.
														Small-sized particles
														(~240–~1900 nm) with
														a maximum
														production yield of
														~34.0% were obtained.
														The highest
														encapsulation
														efficiency (~62.0%) of
														the system was
														observed at a charge
														ratio (n+/n-) 5.00. The
														system was stable in
														various media,

														particularly in simulated gastric fluid (pH 1.2). Transmission electron microscopy (TEM) analysis showed spherical shape particles when insulin was added to the system. In simulated intestinal fluid (pH 6.8), controlled insulin release occurred over 2 h. In vitro tests indicated that the proposed system presents potential as a drug delivery for Oral administration of bioactive peptides.
11	Development and characterization of new insulin containing polysaccharide nanoparticles	Bruno Sarmento, António Ribeiro, Francisco Veiga c, omingos Ferreira	200 6	Elsevier	Portugal	Colloids and Surfaces B: Biointerfac es	10	219	in vitro	Nanoparticles	Oral	Nanoparticles formulated with a DS:chitosan mass ratio of 1.5:1 showed a AE (%) of 85,4 (+/- 0,5).	5 h	A nanoparticle insulin delivery system was prepared by complexation of dextran sulfate and chitosan in aqueous solution. Parameters of the formulation such as the final mass of polysaccharides, the mass ratio of the two polysaccharides, pH of polysaccharides, pH of polysaccharides, pH of polysaccharides, pH of polysaccharides solution, and insulin theorical loading were identified as the modulating factors of nanoparticle physical properties. Particles with a mean diameter of 500 nm and a zeta potential of approximately –15mV were produced under optimal conditions of DS:chitosan mass ratio of 1.5:1 at pH 4.8. Nanoparticles showed spherical shape,

							uniform size and good
							shelf-life stability.
							Polysaccharides
							complexation was
							confirmed by
							differential scanning
							calorimetry and
							Fourier transformed
							infra-red spectroscopy.
							An association
							efficiency of 85% was
							obtained. Insulin
							release at pH
							below5.2was almost
							prevented up to 24 h
							and at pH 6.8 the
							release was
							characterized by a
							controlled profile. This
							suggests that release
							of insulin is ruled by a
							dissociation
							mechanism and
							DS/chitosan
							nanoparticles are pH-
							sensitive delivery
							systems. Furthermore,
							the released insulin
							entirely maintained its
							immunogenic
							bioactivity evaluated
							by ELISA, confirming
							that this new
							formulation shows
							promising properties
							towards the
							development of an
							Oral delivery system
							for insulin.

12	Preparation and characterization of chitosan- polyvinyl alcohol blend hydrogels for the controlled release of nano- insulin	Yuangang Zu, Ying Zhang, Xiuhua Zhao, Chang Shan, Shuchong Zu, Kunlun Wang, Yong Li, Yunlong Ge	201	Elsevier	China	Internation al Journal of Biological Macromole cules	6	77	in vitro	Hydrogels	Transdermal	Not informed	12 h	Chitosan (CS)– polyvinyl alcohol (PVA) blend hydrogels were prepared using glutaraldehyde as the crosslinking agent. The obtained hydrogels, which have the advantages of both PVA and CS, can be used as a material for the transdermal drug delivery (TDD) of insulin. The nano- insulin-loaded hydrogels were prepared under the following conditions: 1.2 g of polyethylene glycol, 1.5 g of CS, 1.2 g of PVA, 1.2 mL of 1% glutaraldehyde solution, 16 mL of water, and 40 mg of nano-insulin with 12 min of mixing time and 3 min of cross-linking time. The nano-insulin- loaded hydrogels were characterized using scanning electron microscopy, energy dispersive spectrometry, Fourier- transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and its mechanical properties were analyzed. The results show that all molecules in the hydrogel also showed good mechanical and thermal properties. The in vitro drug release of the hydrogel showed that the nano-
														showed that the nano- insulin accorded with Fick's first law of

														diffusion and it has a high permeation rate (4.421 _g/(cm2 h)). These results suggest that the nano-insulin- loaded hydrogels are a promising non-invasive TDD system for diabetes chemotherapy.
13	Microencapsula ted chitosan nanoparticles for pulmonary protein delivery: In vivo evaluation of insulin-loaded formulations	S. Al-Qadi, A. Grenha, D. Carrión-Recio, B. Seijo, C. Remuñán-López	201 2	Elsevier	Spain	Journal of Controlled Release	8	146	in vivo	Nanoparticles	Intratracheal	CS/TPP/INS=5/1 /1.5 (w/w), which have higher TPP content, registered increased production yield (48%), INS association efficiency (75%), loading capacity (31%) and zeta potential (+32 mV) compared to the other formulation (6/1/1.8 (w/w)). CS 113 show a higher production yield, association efficiency and loading capacity (56%, 83%, and 37%, respectively), but smaller size	5 h	This work presents a new dry powder system consisting of microencapsulated protein-loaded chitosan nanoparticles (CS NPs). The developed system was evaluated in vivo in rats in order to investigate its potential to transport insulin (INS), a model protein, to the deep lung, where it is absorbed into systemic circulation. The INS- loaded CS NPs were prepared by ionotropic gelation and characterized for morphology, size, zeta potential, association efficiency and loading capacity. Afterwards, the NPs were co-spray dried with mannitol resulting in a dry powder with adequate aerodynamic

												(289 nm) than the NPs made of CS 213.		properties for deposition in deep lungs. The assessment of the plasmatic glucose levels following intratracheal administration to rats revealed that the microencapsulated INS-loaded CS NPs induced a more pronounced and prolonged hypoglycemic effect compared to the controls. Accordingly, the developed system constitutes a promising alternative to systemically deliver therapeutic macromolecules to the lungs, but it can also be used to provide a local effect.
14	A novel nanoemulsion- based method to produce ultrasmall, water- dispersible nanoparticles from chitosan, surface modified with cell-penetrating peptide for Oral delivery of proteins and peptides	Ghullam Reza Barbari, Farid Abedin Dorkoosh, Mohsen Amini, Mohammad Sharifzadeh, Fateme Atyabi, Saeed Balalaie, Niyousha Rafiee Tehrani, Morteza Rafiee Tehrani	201 7	Dove Medical Press	Iran	Internation al Journal of Nanomedic ine	13	12	in vitro	Nanoparticles	Oral	NPs weight ratio of 2:10 with 12 h incubation time represent the highest LE and EE of 16 and 92%, respectively.	24 h	A simple and reproducible water-in- oil (W/O) nanoemulsion technique for making ultrasmall (,15 nm), monodispersed and water-dispersible nanoparticles (NPs) from chitosan (CS) is reported. The nano- sized (50 nm) water pools of the W/O nanoemulsion serve as "nanocontainers and nano-reactors". The entrapped polymer chains of CS inside these "nano-reactors" are covalently cross- linked with the chains of polyethylene glycol (PEG), leading to rigidification and formation of NPs. These NPs possess excessive swelling properties in aqueous medium and preserve integrity in all pH

							ranges due to chemical
							cross-linking with PEG.
							A potent and newly
							developed cell-
							penetrating peptide
							(CPP) is further
							chemically conjugated
							to the surface of the
							NPs, leading to
							development of a
							novel peptide-
							conjugated derivative
							of CS with profound
							tight-junction opening
							properties. The CPP-
							conjugated NPs can
							easily be loaded with
							almost all kinds of
							proteins, peptides and
							nucleotides for Oral
							delivery applications.
							Feasibility of this
							nanoparticulate
							system for Oral
							delivery of a model
							peptide (insulin) is
							investigated in Caco-2
							cell line. The cell
							culture results for
							translocation of insulin
							across the cell
							monolayer are very
							promising (15%–19%
							increase), and animal
							studies are actively
							under progress and
							will be published
							separately.

15	Synthesis of a novel structure for the Oral delivery of insulin and the study of its effect on diabetic rats	Akbar Esmaeilia, Syed Neda Mousavi	201 7	Elsevier	Iran	Life Sciences	7	2	in vivo	Scaffolds	Oral	Not informed	32 h	Common materials used for drug delivery in the body are: liposomes, micelles, polymer capsules, dendrimers, nanoparticles, porous materials, etc. Drug delivery system should be inert, biodegradable, have high biocompatibility and the ability to load large amounts of the drug with known concentration while having a simple and economical sterilizing process. In this study we produced mesoporous silica nanostructures coated with polyamide amine dendrimer that were placed in chitosan- gelatin scaffolds. At every step of the synthesis, the products were identified using different methods, including XRD, FT-IR, SEM, and TGA. The final drug was studied in terms of in vitro & in vivo and MTT toxicity was evaluated.
16	<u>A cell-</u> <u>penetrating</u> <u>peptide</u> <u>mediated</u> <u>chitosan</u> <u>nanocarriers</u> <u>forimproving</u> <u>intestinal</u> <u>insulin delivery</u>	Lei Li, Liaoqing Yang, Manman Li, Liefeng Zhang	201 7	Elsevier	China	Carbohydr ate Polymers	8	9	in vitro	Nanoparticles	Oral	the encapsulation efficiency and drug loading content of the CS/insulin-NPs were 73.68% and 7.89%, respectively.	4.5 h	To overcome barriers for Oral delivery of insulin, the chitosan(CS)-based nanocarriers with a novel cellpenetrating peptide (SAR6EW) have been prepared and evaluated in this study. Characterization mea-surements showed that SAR6EW/CS/insulin- NPs displayed global particles with smooth surfaces and anaverage diameter about 150 nm. The entrapment efficiency and loading rates of

							insulin were 75.36%
							and7.58%,
							respectively. Insulin
							could be released
							constantly from
							SAR6EW/CS/insulin-
							NPs in vitro. Further-
							more,
							SAR6EW/CS/insulin-
							NPs could facilitate the
							uptake of insulin and
							induce a significantly
							higherinternalization
							of insulin via adding
							clathrin and caveolae
							mediated endocytosis.
							In addition, in
							vivohypoglycemic
							studies showed that
							Orally administrated
							SAR6EW/CS/insulin-
							NPs produced a better
							hypo-glycemic effect
							as compared with
							CS/insulin-NPs in
							diabetic rats.
							Meanwhile, no
							significant
							cytotoxicityof the
							nanoparticles was
							observed. In
							conclusion, SAR6EW-
							mediated chitosan
							nanocarriers showed
							suf-ficient
							effectiveness for Oral
							delivery of insulin. This
							delivery system is also
							promising for the
							delivery ofother
							protein drugs by Oral
							administration.

														The objective of this work was to explore the potential of polyethylene glycol- grafted chitosan (PEG- g-chitosan) nanoparticles as a system for improving the systemic absorption of insulin following Nasal administration. Insulin- loaded PEG-g-chitosan nanoparticles were prepared by the ionotropic gelation of PEG-g-chitosan solution using tripolyphosphate ions
17	Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles	Xinge Zhang, Huijie Zhang, Zhongming Wu, Zhen Wang,Haimei Niu, Chaoxing Li	200 8	Elsevier	China	European Journal of Pharmaceu tics and Biopharma ceutics	9	157	in vivo	Nanoparticles	Nasal	The PEG-g- chitosan nanoparticles displayed a high association efficiency (>78.6%) leading to insulin loading values as high as 38.6%	24 h	agent. The nanoparticles were in the size range 150–300 nm, had a positive electrical charge (+16 to +30 mV) and were associated with insulin (loading efficiency 20– 39%). The physicochemical properties of nanoparticles were affected by the composition of the compolymer. In vitro insulin release studies showed an initial burst followed by a slow release of insulin. IntraNasal administration of PEG- g-chitosan nanoparticles in rabbits enhanced the absorption of insulin by the Nasal mucosa to a greater extent than a suspension of insulin-PEG-g-chitosan and control insulin solution. PEG-g- chitosan nanoparticles are promising vehicles for insulin transport through the Nasal mucosa.

														To improve the
														efficacy and reduce
														the systemic toxicity of
														the diabetes mellitus,
														herewith, we
														developed a novel
														microparticles-
														embedded
														microcapsules (MEMs)
														system, synthesized
														from calcium alginate/
														chitosan (Ca-Alg/CS),
														by emulsion gelation
														using a nigh voitage
												The drug		generator In our
												loading and the		study we selected two
												encansulation		antidiabetic drugs
												efficiency for		insulin (INS) and
												the two drugs		metformin (MFT) as
												loaded alone		model drugs to
												were		investigate different
												respectively		spatial distribution
												attained a		appropriate of MEMs
												different value		system.
	The influence of	Qinglei Dal, Xia										(0.204 ± 0.023%		Characterization based
	<u>spatial</u>	Zilou, Kejilig				Journal of						(inner) and		on particle size and
	distribution on	Long Shihin	201	Taylor &		Biomaterial						$0.241 \pm 0.017\%$		morphology,
18	add-on therapy	Wang Haiwang	201	Erancis	China	s Science,	12	0	in vivo	Microspheres	Injectable	(outer), 1.641 ±	48 h	encapsulation
	of designed Ca-	Huang	0	Trancis		Polymer						0.180% (inner)		efficiency and drug
	Alg/CS MEMs	Yanhua Xia &				Edition						and 1.804 ±		loading, as well as drug
	<u>system</u>	Yuangang Liu										0.121% (outer)		delivery properties
												were for MET;		were carried out on
												2.296 ± 0.120%		the MEMs system.
												(inner) and		Typical multi-chamber
												$9.357 \pm 0.751\%$		structure was shown
												(outer), 11.002		by SEIVI and the optical
												10.708%		diameters of
												85 534 +		micronarticles and Ca-
												1 511% (outer)		Alg/CS MFMs were
												were for INS)		2100 nm and 410 um.
												incre for intoji		respectively. Insulin
														and MET were
														embedded into MEMs
														via electrostatic
														reaction according to
														FT-IR spectra.
														Moreover, drug
														loading and
														encapsulation
														efficiency of INS were
														higher than that of
														MET in this system
														when drugs were
														loaded alone or
														together. More

														importantly, this system has potential for orderly drug release and well sustained release when MET in the inner and INS in the outer space could be applied as a combination therapy for diabetes. The obtained in vivo experimental data on diabetes rats has shown that the designed MEMs system resulted in a higher hypoglycemic effect within add-on therapy.
19	Multiboronic acid-conjugated chitosan scaffolds with glucose selectivity to insulin release	Nabil A. Siddiqui, Nashiru Billa & Clive J. Roberts	201 7	Taylor & Francis	United Kingdom	Journal of Biomaterial s Science, Polymer Edition	14	2	in vitro	Nanoparticles	Not informed	The EE% for FPBAINP and FTBAINP were 56.7% and 57.5% respectively. The LC% for FPBAINP and FTBAINP were calculated to be 45 ± 1.4 mg and 48 ± 1.1 mg of insulin in 100 mg of nanoparticles respectively.	1h	The principal challenge for the use of boronic acids (BA) as glucose sensors is their lack of specificity for glucose. We examined the selectivity of and insulin release from two boronic acids- (2- formyl-3- thienylboronic acid (FTBA) and 4- formylphenylboronic acid (FPBA)) conjugated chitosan scaffolds to glucose and fructose. Adsorption of glucose to BA: chitosan conjugates was dose- dependent up to 1:1 at 35 and 42% for FPBA and FTBA respectively but the FTBA conjugates adsorbed more glucose and fructose at respective FPBA ratios. The affinity of both BA

							conjugates to glucose
							decreased with
							increase in BA ratio.
							On the other hand, the
							affinity of both BA
							conjugates for fructose
							decreased from ratio
							1:1 to 2:1 then rose
							again at 3:1. Insulin
							release from FPBA
							nanoparticles
							(FPBAINP) and FTBA
							nanoparticles
							(FTBAINP) were both
							concentration-
							dependent within
							glyceamically relevant
							values (1–3 mg/ml
							glucose and 0.002
							mg/ml fructose).
							Furthermore, the total
							amounts of insulin
							released from FPBAINP
							in both the media
							were higher than from
							FTBAINP. Both
							FPBAINP and FTBAINP
							have the potential for
							development as a
							glucose-selective
							insulin delivery system
							in physiological
							settings.

														To develop insulin
														delivery system for the
														treatment of diabetes,
														two insulin-loaded
														nanogels with
														opposite zeta potential
														$(-15.94 \pm 0.449 \text{ mV for})$
														Insulin:CIVICS/CS-
														$NGS(-)$ and $\pm 17.15 \pm$
														insulin:CMCS/CS-
														NGs(+)) were
														obtained, study, the
														blood glucose level in
														insulin:CMCS/CS-
														NGs(-) group had 3
														mmol/L lower than
														insulin:CMCS/CS-
														NGs(+) group during 1
														h to 11 h after the Oral
														administration, which
														demonstrated that
														negative
	Positive/pegativ											Insulin:CMCS/C		had a better
	e surface											S-NGs(-) had na		management of blood
	charge of	Juan Wang,										EE(%) 73 ± 6.36		glucose than positive
	chitosan based	Mengxue Xu,	204			Carbohydr						and LC(%) 29 ±		ones. 0.449 mV for
20	nanogels and its	Xiaojie Cheng,	201	Elsevier	China	ate	7	37	in vitro	Nanogels	Oral	3.61, and	15 h	insulin:CMCS/CS-
	potential	IVIINg Kong, Ya	6			Polymers						Insulin:CIVICS/C		NGs(-) and +17.15 ±
	influence on	Yiguang Chen										5 = 1003(+) 11au FE(%) 74 + 8.36		0.492 mV for
	Oral insulin	Alguaring criteri										and IC 27 +		insulin:CMCS/CS-
	delivery.											4.04		NGs(+)) were
												-		obtained. Ex vivo
														results showed that
														the hanogels with
														opposite surface
														different adhesion and
														nermeation in specific
														intestinal segments.
														There was no
														significant differences
														in adhesion and
														permeation in rat
														duodenum, but in rat
														jejunum,
														insulin:CMCS/CS-
														NGs(-) exhibited
														enhanced adhesion
														and permeation, which
														were about 3 folds
														folds (nermestion)
														higher than
														insulin:CMCS/CS-
														NGs(+). These results

														demonstrated that the surface charge property of nanogels determined the absorption sites of CMCS/CS-NGs in small intestine. In vivo study, the blood glucose level in insulin:CMCS/CS- NGs(-) group had 3 mmol/L lower than insulin:CMCS/CS- NGs(+) group during 1 h to 11 h after the Oral administration, which demonstrated that negative insulin:CMCS/CS-NGs had a better management of blood glucose than positive ones.
21	In vitro and in vivo evaluation of thermosensitive chitosan hydrogel for sustained release of insulin.	Farzaneh Ghasemi Tahrir, Fariba Ganji, Ali Reza Mani, and Elham Khodaverdi	201 4	Taylor & Francis	Iran	Drug Delivery	9	19	In vivo	Hydrogels	Injectable	Not informed	>150 h	Injectable In situ gel- forming chitosan/b- glycerol phosphate (CS/b-Gp) solution can be introduced into the body in a minimally invasive manner prior to solidifying within the target tissue. This hydrogel is a good candidate for achieving a prolonged drug delivery system for insulin considering its high molecular weight. In addition to the physicochemical characterization of this hydrogel, in vitro and in vivo applications were studied as a sustained insulin delivery system. In the in vitro release studies, 19–63% of total insulin was released from the CS/b-Gp hydrogel

														within 150 h at different b-Gp and insulin concentrations. The best formulation was selected for in vivo experimentation to control the plasma glucose of diabetic mice models. The hypoglycemic effect of this formulation following subcutaneous injection in diabetic mice lasted 5 d, significantly longer than that of free insulin solution which lasted several hours
22	Development and evaluation of chitosan and chitosan derivative nanoparticles containing insulin for Oral administration.	Hecq J, Siepmann F, Siepmann J, Amighi K, Goole J.	201 5	Taylor & Francis	Belgium/Fr ance	Drug Developme nt and Industrial Pharmacy	8	16	In vitro	Nanoparticles	Oral	The most promising formulation (F8) was based on HTCC-33% and the EE was 52 ± 3%.	3,33h	Chitosan and chitosan derivative-based nanoparticles loaded with insulin were prepared by self- assembly, via electrostatic interactions between the negatively charged drug and the positively charged polymers. In the investigated chitosan derivatives, the amine groups were substituted to different extents (33, 52 or 99%) by 2- hydroxypropyl-3- trimethyl ammonium groups, rendering the polymers permanently positively charged, irrespective of the pH. This is an important property for this type of advanced drug delivery system, since the pH value changes throughout the gastrointestinal tract and electrostatic interactions are of crucial importance for the stability of the nanoparticles. Permanent positive charges are also in favor of

							mucoadhesion. In
							contrast, the electric
							charges of chitosan
							molecules depend on
							the pH of the
							surrounding medium.
							Since the solubility of
							the chitosan
							derivatives increased
							due to the
							introduction of
							quaternary ammonium
							groups, sodium
							tripolyphosphate (TPP)
							was added to the
							systems to create
							supplementary cross-
							links and stabilize the
							nanoparticles. The
							presence of TPP
							influenced both the
							dissolution of the
							polymer matrix as well
							as the resulting release
							kinetics. The
							underlying drug
							release mechanisms
							were found to be more
							complex than simple
							diffusion under
							constant conditions,
							likely involving also
							ionic interactions and
							matrix dissolution. The
							most promising
							formulation was based
							on a chitosan
							derivative with 33%
							substitution degree
							and characterized by a
							Z-average of
							142 + 10 nm, a zeta
							potential of $29 \pm 1 \text{ mV}$
							an encapsulation
							efficacy of 52 + 3%
							and, most importantly
							the release of insulin
							was sustained for
							more than 210 min

														There are many
														ongoing investigations
														to improve the Oral
														bioavailability of
														peptide and protein
														formulations.
														Bioadhesive
														polysaccharide
														chitosan nanoparticles
														(CS-NPs) would seem
														to further enhance
														intestinal absorption
														of them. In this study,
														Insulin-loaded CS-NPs
														were prepared by
												association		CS with
												efficiency and		tripolyphosphato
												loading capacity		anions Its particle size
												of the		distribution and zeta
												nanoparticles		notential were
												were affected		determined by photon
												by the insulin		correction
	D : U											concentration		spectroscopy and laser
	Bioadhesive											in the TPP		Dopper anemometry.
	polysaccharide	Yan Pan, Ying-										solution and		The ability of CS-NPs to
	delivery system;	jian Li, Hui-ying				Internation						inculin		enhance intestinal
	chitosan	Zhao, Jun-min	200			al Journal						incorporated		absorption of insulin
23	nanonarticles	Zheng, Hui Xu,	200	Elsevier	China	of	8	666	In vivo	Nanoparticles	Oral	with increasing	40 h	and increase the
	improve the	Gang Wei, Jin-	2			Pharmaceu						amount ratio of		relative
	intestinal	song Hao, Fu-de				tics						insulin to		pharmacological
	absorption of	Cui										chitosan leading		bioavailability of
	insulin in vivo											to a slight		insulin was
												decrease of		investigated by
												association		monitoring the plasma
												efficiency and		glucose level of
												an		diabotic rate after Oral
												enhancement		administration of
												of loading		various doses of
												capacity (Table		insulin-loaded CS-NPs
												1).		CS-NPs had a particle
														size in the range of
														250/400 nm and its
														polydispersity index
														was smaller than 0.1,
														positively charged,
													1	stable. Insulin
													1	association was found
														up to 80% and its in
														vitro release showed a
														great initial burst with
														a pH-sensitivity
														property. CS-NPs
														enhanced the
														intestinal absorption
														of insulin to a greater

														extent than the aqueous solution of CS in vivo. Above all, after administration of 21 I.U./kg insulin in the CS-NPs, the hypoglycemia was prolonged over 15 h and the average pharmacological bioavailability relative to SC injection of insulin solution was up to 14.9%.
24	Oral insulin delivery by self- assembled chitosan nanoparticles: I n vitro and in vivostudies in diabetic animal model	Piyasi Mukhopadhyay, Kishor Sarkar, Mousumi Chakraborty, Sourav Bhattacharya, Roshnara Mishra, P.P. Kundu	201 3	Elsevier	India	Materials Science and Engineerin g: C	6	81	In vivo	Nanoparticles	Oral	 ~ 97% insulin encapsulation and 27% insulin loading capacity. 	12 h	We have developed self-assembled chitosan/insulin nanoparticles for successful Oral insulin delivery. The main purpose of our study is to prepare chitosan/insulin nanoparticles by self- assembly method, to characterize them and to evaluate their efficiency in vivo diabetic model. The size and morphology of the nanoparticles were analyzed by dynamic light scattering (DLS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The average particle size ranged from 200 to 550 nm, with almost spherical or sub spherical shape. An

														average insulin
														encapsulation within
														che hanoparticles was
														65%. In vitro release
														study showed that the
														also efficient in
														retaining good amount
														of insulin in simulated
														gastric condition, while
														significant amount of
														insulin release was
														noticed in simulated
														intestinal condition.
														The Oral
														administrations of
														chitosan/insulin
														nanoparticles were
														effective in lowering
														the blood glucose level
														of alloxan-induced
														diabetic mice. Thus,
														self-assembled
														nanonarticlos show
														nromising effects as
														potential insulin
														carrier system in
														animal models
														new Oral delivery
														system for insulin was
														developed aiming to
														improve bioavailability
														based on a conjugate
														low molocular woight
														chitosan (LMWC) of
														narrow molecular
	Anovel													weight distribution.
	approach to													The conjugate was
	Oral delivery of													synthesized from the
	insulin by		201	100		Biocomjug				Netinformed				reaction between site-
25	conjugating	Lee E, Lee J, Jon	201	ALS	Korea	ate	3	53	In vivo	(Conjugato)	Oral	Not informed	12 h	specifically modified
	with low	5.	0	Publication		Chemistry				(Conjugate)				insulin at the lysine
	molecular													residue of the B-chain
	weight													and sulfhydryl-
	<u>chitosan.</u>													modified LMWC. To
														investigate the effect
														of MWs of LMWC on
														inculin various I MMCc
														(3 6 9 and 13k
														average MW) with
														narrow MW
														distribution were used
														to synthesize LMWC-

														insulin conjugates. The content of insulin in the LMWC-insulin conjugates was calculated by UV spectrophotometer: 62%, 44%, 38%, and 29% for 3, 6, 9, and 13 kDa LMWC, respectively. The biological activity of insulin in LMWC(6k)- insulin conjugate in vivo was 43 (0.7%. LMWC-insulin conjugates after Oral administration to diabetic rat models could control blood glucose levels effectively for several hours. Of those conjugates, LMWC(9k)-insulin exhibited the highest pharmacodynamic bioavailability of 3.7 (0.3% relative to that of subcutaneously (s.c.) injected insulin
26	In Vitro Insulin Release from Thermosensitiv e Chitosan Hydrogel	Elham Khodaverdi, Mohsen Tafaghodi,Farib a Ganji, Khalil Abnoos, and Hanie Naghizadeh	201 2	Springer	Iran	American Association of Pharmaceu tical Scientists	6	63	In vitro	Hydrogels	Injectable	Not informed	>300h	Recently, great attention has been paid to in situ gel- forming chitosan/glycerol- phosphate (chitosan/Gp) solution due to their good biodegradability and thermosensitivity. This in situ gel-forming system is Injectable fluid that can be introduced into the body in a minimally invasive manner prior to solidifying within the desired tissue. At the present study, insulin release from chitosan/Gp solution has been investigated. Insulin in different concentrations was loaded in two

														formulations of chitosan/Gp solution and in vitro drug release was studied over a period of 3 weeks. Results indicated that the release of insulin from chitosan/Gp gel decreases by increasing in Gp salt and initial insulin concentration. Stability of released insulin was investigated by 8- anilino-1- naphthalenesulfonate probe. Results proved that insulin have been released in its native form. Because of simple preparation and administration, prolonged release of insulin and stability of released insulin, this in situ gel-forming system could be used as a controlled release delivery system for
27	Design and evaluation of biodegradable, biosensitive in situ gelling system for pulsatile delivery of insulin	Kashyap N, Viswanad B, Sharma G, Bhardwaj V, Ramarao P, Ravi Kumar MN.	200 7	Elsevier	India	Biomaterial S	9	118	In vivo	Gels	Injectable	Not informed	30h	Biodegradable glucose-sensitive in situ gelling system based on chitosan for pulsatile delivery of insulin was developed. The sols/gels were thoroughly characterized for swelling properties, rheology, texture analysis and water content. The developed glucose- sensitive gels responded to varied glucose concentrations in vitro indicating their ability to function as environment-sensitive systems. Insulin load onto the gels was optimized and was found to affect the rheological behavior of

							these gels, the final
							preparation used for in
							vitro contained 1
							IU/200 ml of the sol.
							These gels released
							the entrapped insulin
							in a pulsatile manner
							in response to the
							glucose concentration
							in vitro. Furthermore,
							the formulations when
							evaluated for their in
							vivo efficacy in
							streptozotocin-
							induced diabetic rats
							at a dose of 3 IU/kg,
							demonstrated their
							ability to release
							insulin in response to
							glucose concentration
							and were preferred
							much better against
							subcutaneously given
							plain insulin
							formulation used as
							the control. Together,
							these preliminary
							results indicate that
							biosensitive chitosan
							in situ gelling systems
							have substantial
							potential as pulsatile
							delivery systems for
						 	insulin.

	nicrospheres omposed of chitosan % (w/v), and loading 20 IU insulin were roduced by emulsion ross-linking method. cross-linking time was
	omposed of chitosan % (w/v), and loading 20 IU insulin were roduced by emulsion ross-linking method. ross-linking time was
	% (w/v), and loading 20 IU insulin were roduced by emulsion ross-linking method. ross-linking time was
	20 IU insulin were roduced by emulsion ross-linking method. ross-linking time was
	roduced by emulsion ross-linking method. ross-linking time was
	ross-linking method. ross-linking time was
	ross-linking time was
Cre	
Sh Sh	h and glutaraldehyde
	.5% (v/v) was used as
	ross-linker. Swelling
rat	atio studies were
eva	valuated to predict
rel	elease of insulin from
	hitosan microspheres.
Bac	acitracin and sodium
tau	aurocholate were
	ncorporated in the
for	ormulations as
	roteolytic enzyme
inh	hibitor and
	bsorption enhancer.
res	espectively. In vitro
	nsulin release studies
Predictive S. Jose J.F.	vere performed in
modeling of Fangueiro, J.	hosphate buffer pH
insulin release Smitha, T.A.	.4 and also in HCl pH
28 profile from Cinu. A.J. 201 Elsevier India/Portu Journal of 4 55 In vitro Microspheres Oral Not informed 12 h 2 w	with and without
cross-linked Chacko, K. 3 gal Medicinal try	rypsin. Activity of
chitosan Premaletha. Chemistry	acitracin was also
microspheres E.B. Souto	valuated. In vitro
	elease showed a
cor	ontrolled profile up to
12	2 h and the
for	ormulation containing
0.1	.15% (w/v) of
	acitracin revealed a
	naximum biological
	ctivity of about 49.1
4.1	.1%. Mathematical
	nodeling using Higuchi
	nd
	orsmeyerePeppas
	uggested a non-
	ickian diffusion as the
	nechanism of insulin
	elease. Insulin-loaded
	hitosan microspheres
for the second	or Oral delivery
	howed to be an
	novative and reliable
	elivery system to
	vercome
	onventional insulin
the	herapy

29	Preparation and Characterizatio n of Water- Soluble Chitosan Microparticles Loaded with Insulin Using the Polyelectrolyte Complexation Method	Sihui Wu, Yi Tao,Hongliang Zhang,and Zhengquan Su	201	ACM DL	China	Jornal of Nanomater ials	6	10	In vitro	Microparticles	Oral	Association efficiency and loading capacity of insulin- loaded WSC- MPs prepared in 0.01 mol/L HCl of insulin were 48.28 ± 0.90% and 9.52 ± 1.34%.	24h	Polymeric delivery systems based on microparticles have emerged as a promising approach for perOral insulin delivery. The amount of insulin was quantified by the improved Bradford method. It was shown that water-soluble chitosan/insulin/tripol yphosphate (TPP) mass ratio played an important role in microparticles formation. Stable, uniform, and spherical water-soluble chitosan microparticles (WSC- MPs) with high insulin association efficiency were formed at or close to optimized WSC/insulin/TPP mass ratio. WSC-MPs had higher association efficiency in the pH 4.0 and pH 9.7 of TPP solution. The results showed that association efficiency and loading capacity of insulin-loaded WSC- MPs prepared in 0.01 mol/L HCl of insulin were 48.28 ± 0.90% and 9.52 ± 1.34%. The average size of insulin-loaded WSC-MPs was 292 nm. The presented WSC microparticulate system has promising properties towards the development of an Oral delivery system for insulin.
30	Properties of Insulin– Chitosan Complexes Obtained by an Alkylation	Robles, Josué Juérez, María. G. Burboa, Luis E. Gutierrez, Pablo Taboada, Victor	201 3	Wiley Online Library	México/Sp ain	Journal of Applied Polymer Science	10	10	Initial	Gels	Not informed	Not informed	not informed	investigated the influence of hydrophobized chitosan on the formation and thermodynamic and
	Reaction on	Mosquera,										surface tension		
---	-------------	-----------	---	---	--	---	--	---	---	---	--	--------------------------		
	Chitosan	Miguel A.										properties of insulin-		
		Valdez										chitosan (I–Ch)		
												polyelectrolyte		
												complexes (PECs). We		
												used an alkylation		
												procedure to insert 12		
												carbon chains along		
												the chitosan		
												macromolecule with		
												final substitution		
												degrees of 5, 10, and		
												50%. NMR and IR		
												spectroscopy were		
												used to evaluate the		
												success and extent of		
												the hydrophobization		
												procedure. Isothermal		
												titration calorimetry		
												(ITC) was used to		
												determine the type		
												and extent of the		
												existing intermolecular		
												interactions between		
												the different		
												constituting		
												inculin, hydrophobizod		
												chitocon RECs		
												Through the surface		
												tension and diffusion		
												coefficients at the air-		
												water interface and		
												ITC experiments with		
												different I–Ch		
												proportions, we		
												demonstrated that		
												around 34, 24, 25, and		
												60–80 insulin		
												molecules saturated 0,		
												5, 10, and 50%		
												hydrophobized		
												chitosans, respectively.		
												Surface tension		
												experiments at the		
												air-water interface		
												demonstrated that the		
												interaction of insulin		
												molecules on the		
												unmodified chitosan		
												increased the		
												hydrophobicity; this		
												was mainly due to		
												electrostatic		
												interaction. On the		
												contrary, insulin-		
1			1	1		1		1	1	1		hydrophobized		

														chitosan interaction lowered the PEC hydrophobicity because of insulin alkyl chain interaction, and therefore, the hydrophilic insulin groups at the PEC surface contributed to a higher surface tension.
31	Drug Delivery System Using Biodegradable Nanoparticles Carrier	Do Hun Lee, lk Joong Kang	200 6	J-Stage 20th	Korea	KONA Powder and Particle Journal	7	5	In vivo	Nanoparticles	Transdermal	Not informed	24h	Recently, many biochemists have identified that chitosan is not rejected by the body and that it can improve the effective and safe delivery of drugs and vaccines with its absorptive power. Also, it has been known that chitosan is suitable for controlled drug release thanks to its advantages of biodegradability and bio-compatibility. As the interest into the extension of human life and personal health has been increased, the pharmaceutical and medical worlds have been making efforts to develop more sustained and effective drug release property in a body. This study investigated the individual drug characteristics and drug release behavior by manufacturing the chitosan patch using insulin, a drug used for treating diabetes, at a low temperature, and further tried to find the optimal condition by adding the skin activating agent to the chitosan patch using NOD (Non Obese

							Diabetic) mice.
							According to the
							analysis using the
							chitosan-insulin drug
							and the skin-activating
							agent, a dramatic
							decrease in the blood
							glucose level was
							achieved. An
							experiment was
							performed in vivo by
							utilizing chitosan
							nanoparticles as a
							biopolymer to control
							the drug delivery rate
							at an optimal
							concentration, pH and
							temperature. It was
							also observed that the
							experiment of the drug
							delivery by
							nanoparticles
							containing insulin
							could effectively lower
							the blood glucose of
							the mouse.

														In this study, we aimed
														to develop a novel
														protein -
														nanoencapsulated
														system for Oral
														administration. For
														this purpose, insulin
														was selected as the
														model drug. Insulin
														loaded chitosan
														nanoparticles (INS-CS-
														NPs) were obtained by
														ionic gelation between
														chitosan (CS) and
														sodium
														tripolyphosphate
														(TPP). Afterwards, as a
														novel strategy the
														nanoparticles were
														loaded into the inner
														phase of prepared
														water in oil
														nicroemuision to
	Nanoencapsulat													rologsod incrogsod in
	ed chitosan	Gülsəh Erel												vivo stability and
	nanoparticles in	Mustafa				Journal of								enhanced drug
	emulsion-based	Kotmakci				Drug								absorption in the
32	Oral delivery	Hasan Akbaba	201	Flsevier	Turkey	Delivery	6	16	In vivo	Nanoparticles	Oral	Not informed	24h	gastrointestinal tract.
02	system: In vitro	Sumru Sozer	6	Liberter	runney	Science	Ŭ	10		itanoparticies	0101			By this way, INS-CS-
	and in vivo	Karadaglı. Avse				and								NPs encapsulated in
	evaluation of	Gülten Kantarcı				Technology								microemulsion (INS-
	insulin loaded													CS-NP-ME) was
	tormulation													formed. The in vitro
														release properties of
														formulations with
														different INS:CS and
														CS:TPP ratios were
														investigated. In vitro
														release study in pH 2.5
														revealed that insulin
														release was
														significantly low under
														higher CS ratios (p <
														0.05). Circular
														dichroism analyses
														showed that the
														conformational
														stability of insulin was
														not affected from
														preparation process.
														Furthermore, in vivo
														experiments in Wistar
														Albino rat model
														CS ND ME offortively
														reduced blood glucoso
1														reduced blood glucose

														levels over a period of 8 h after Oral administration. Based on these findings, we propose that the developed INS-CS-NP- ME system can be a promising alternative dosage form for Oral protein delivery
33	Nasal Delivery of Insulin Using Novel Chitosan Based Formulations: A Comparative Study in Two Animal Models between Simple Chitosan Formulations and Chitosan Nanoparticles	A. M. Dyer,M. Hinchcliffe,P. Watts, J. Castile, I. Jabbal-Gill,R. Nankervis,A. Smith, and L. Illum	200 2	Springer	United Kingdom	Pharmaceu tical Research	10	246	In vivo	Nanoparticles	Nasal/Subcutaneo us	Not informed	5h	Purpose. To investigate whether the widely accepted advantages associated with the use of chitosan as a nasal drug delivery system, might be further improved by application of chitosan formulated as nanoparticles. Methods. Insulin- chitosan nanoparticles

								were prepared by the
								ionotropic gelation of
								chitosan glutamate
								and tripolyphosphate
								nentasodium and by
								simple complexation
								of insulin and chitosan
								The nacel abcorntion
								of inculin ofter
								of insum after
								chilosan hanoparticle
								formulations and in
								chitosan solution and
								powder formulations
								was evaluated in
								anaesthetised rats
								and/or in conscious
								sheep. Results. Insulin-
								chitosan nanoparticle
								formulations produced
								a pharmacological
								response in the two
								animal models,
								although in both cases
								the response in terms
								of lowering the blood
								glucose levels was less
								(to 52.9 or 59.7% of
								basal level in the rat.
								72.6% in the sheen)
								than that of the nasal
								inculin chitosan
								solution formulation
								(40.1%) in the rat
								(40.1%) in the rat,
								The insulin chitesen
								solution formulation
								was found to be
								significantly more
								effective than the
								complex and
								nanoparticle
								tormulations. The
								hypoglycaemic
								response of the rat to
								the administration of
								post-loaded insulin-
								chitosan nanoparticles
								and insulin-loaded
								chitosan nanoparticles
								was comparable. As
								shown in the sheep
								model, the most
								effective chitosan
								formulation for nasal
								insulin absorption was
								a chitosan nowder
	1		1	1				a chitosan powder

														delivery system with a bioavailability of 17.0% as compared to 1.3% and 3.6% for the chitosan nanoparticles and chitosan solution formulations, respectively. Conclusion. It was shown conclusively that chitosan nanoparticles did not improve the absorption enhancing effect of chitosan in solution or powder form and that chitosan powder was the most effective formulation for nasal delivery of insulin in the sheep mode.
34	Multifunctional Polyelectrolyte Microparticles for Oral Insulin Delivery	Nadezhda G. Balabushevich, Mikhail A. Pechenkin, Elena D. Shibanova,Dmit ry V. Volodkin, Elena V. Mikhalchik	201 3	Wiley Online Library	Russia/Ger many	Macromole cular Bioscience	9	42	In vivo	Microparticles	Oral	The protein encapsulation efficiency was 62–65% for both insulin and BBI. The microparticles were characterized by a high insulin content (~55%).	8h	Multicomponent insulin-containing microparticles are prepared by layer-by- layer assembly of dextran sulfate and chitosan on the core of protein-polyanion complex with or without protease inhibitors. Oral bioavailability of the encapsulated insulin is improved due to the cumulative effect of each component. A physico-chemical study shows that the particle design allows adjustment of the pH- dependent profile of the insulin release, as well as mucoadhesive properties and Ca2b binding ability of the microparticles. Supplementing the microparticles with 2–3% protease inhibitors fully prevents proteolysis of human insulin. The pharmacological effect of microencapsulated

														insulin in doses 50–100 IU kg1 is demonstrated in chronic experiments after Oral administration to diabetic rats fed ad libitum.
35	<u>Chitosan</u> <u>Nanofibers for</u> <u>Transbuccal</u> <u>Insulin Delivery</u>	Michael G. Lancina, Roopa Kanakatti Shankar, Hu Yang	201 7	wiley Online Library	United States	Journal of Biomedical Materials Research Part A	7	9	In vitro	Nanofibers	Transbuccal	Not informed	24h	n this work, they aimed at producing chitosan based nanofiber mats capable of delivering insulin via the buccal mucosa. Chitosan was electrospun into nanofibers using poly(ethylene oxide) (PEO) as a carrier molecule in various feed ratios. The mechanical properties and degradation kinetics of the fibers were measured. Insulin release rates were determined in vitro using an ELISA assay. The bioactivity of released insulin was measured in terms of Akt activation in pre- adipocytes. Insulin

														buccal mucosa was
														measured in an ex-vivo
														porcine transbuccal
														model. Fiber
														morphology,
														mechanical properties,
														and in vitro stability
														were dependent on
														PEO feed ratio. Lower
														PEO content blends
														produced smaller
														diameter fibers with
														significantly faster
														insulin release kinetics.
														Insulin showed no
														reduction in bloactivity
														due to electrospinning.
														Buccal permeation of
														high chitosan contont
														hlonds was
														significantly higher
														than that of free
														insulin. Taken
														together, the work
														demonstrates that
														chitosan-based
														nanofibers have the
														potential to serve as a
														transbuccal insulin
														delivery vehicle.
														Systematic
														experimental work is
														required to improve
														knowledge related to
														the use of oily delivery
	Factors	Accof Shoroon												systems. This work
	Involved in	Assal, Shereen												aimed to examine the
	Formulation of	Nowzat D :												molocular woights
	Oily Delivery	Effaiba Ala'a E ·												chitosan on formation
	System for	Elsaved Amani			Jordan/Kin	lournal of								and solubilization
	Proteins Based	M · Al-Remawi			gdom of	Dispersion								ahility of w/o system
36	on PEG-8	Mayyas M ·	201	Taylor &	Saudi	Science	12	12	In vivo	Water/Oil	Oral	Not informed	24 hours	of Labrasol Plurol
50	Caprylic/Capric	Oinna, Nidal A.:	1	Francis	Arabia/Uni	and	12	12		Microemulsion	oru	Not mornica	24 110 01 5	Oleique, water and
	Glycerides and	Chowdhry.			ted	Technology								oleic acid. Phase
	Polyglyceryl-6	Babur; Leharne.			Kingdom									diagrams were
	Dioleate in a	Stephen:												constructed. Size
	Mixture of Oleic	Badwan, Adnan												measurements were
	Acid with	Α.												performed for each
	Chitosan													surfactant in oleic acid.
														Interfacial tension of
														chitosan was
														measured between
														oleic acid and water at
														pH 1.5 and 6.25. Effect

														of chitosan on microemulsion size was studied. When used to deliver rh- insulin to diabetic rats, the mixture showed reduction in blood glucose compared to control.
37	Basic studies on bioadhesive delivery systems for peptide and protein drugs	Andreas Bernkop- Schnürch, Claudia Humenberger, Claudia Valenta	199 8	Elsevier	Austria	Internation al Journal of Pharmaceu tics	9	71	Initial	Tablets	Peroral	Not informed	12h	We have been evaluating the influence of different drying methods and of ionic crosslinkers on adhesive strength, cohesiveness as well as release behaviour of bioadhesive polymers. Chitosan-EDTA and carbomer were ionically crosslinked via 1,8-diaminooctane or L-lysine. The resulting polymers were either lyophilised or precipitated in acetone and air-dried. Tablets made of these pre-treated polymers (66.7%), mannitol (30%), and the model drug insulin (3.3%) were investigated in vitro. Whereas tablets containing the precipitated and air- dried chitosan-EDTA or carbomer exhibited under our experimental conditions an adhesive strength of 93.2915.6

														and 93.1917.3 mN, it
														was determined to be
														57.799.5 and 56.196.7
														mN (mean9S.D.; n=5)
														but wonbilised
														nolymers respectively
														The use of ionic
														crosslinkers led also to
														a significant reduction
														in the bioadhesiveness
														of the dosage form.
														Furthermore, the
														stability of tablets
														could be strongly
														increased by using
														ionic crosslinkers
														and or the precipitated
														chitosan-EDTA or
														carbomer. Due to the
														use of ionic
														crosslinkers, the
														release rate of insulin
														was strongly reduced.
														The results represent
														helpful basic
														information for the
														development of
														peroral (poly)peptide
														on bioadhesive
														nolymers
														Chitosan (CS) and
														polyurethane-chitosan
														(PU-CS) nano-particles
														(NPs) were prepared
														for the core formation
												The insulin		by complex
												encapsulation		coacervation method
	Polyurethane-											efficiencies of		whereas alginate (ALG)
	incorporated	Bhattacharyya,										CS-ALG, PU-		and PU-ALG were
	chitosan/alginat	Aditi; Nasim,				Journal of						CS/ALG, CS/PU-		gelation method to
38	e core-shell	Farhat; Mishra,	201	Wiley Online	India	Applied	16	2	In vivo	Nanoparticles	Oral	ALG, and PU-	about 800	form the protective
50	nano-particles	Roshnara;	8	Library	india	Polymer	10	-		Hunopurcieies	orui	CS/PU-ALG	minutes	shellaver over the
	torcontrolled	Bharti, Ram P.;				Science						nanoparticles		core. Effects of PU
	Oral insulin	Kundu, P.P.										was 58, 79.5,		incorporation either
	aenvery											/4.9/, and		within the core or shell
												30.3%,		or both were
												respectively.		investigated by
														different in vitro and in
														vivo parameters.
														Fourier transform
														Intrared (FTIR)
					1	1					1	1	1	spectroscopy of

							different compositions
							of nano-particles
							showed distinct
							characteristic peaks for
							CS, PU, and ALG,
							indicating their
							presence in variable
							ratios. Significance of
							polyurethane-
							incorporated systems
							towards insulin
							encapsulation
							efficiency, swelling
							parameters, insulin
							release, and in vivo
							pharmacological effect
							were also studied.
							Particle sizes, zeta
							potential,
							morphological
							analysis,
							mucoadhesion study,
							and in vivo acute
							toxicity studies of
							these core-shell
							nanoparticles were
							also performed.
							Bioavailability of
							insulin ranged from
							9.04 to 11.6% for
							polyurethane-
							incorporated chitosan-
							alginate core-shell
							nano-particle
							formulations which
							was significantly higher
							than the insulin
							bioavailability of basic
							CS/ALG core-shell
							nanoparticle system.

39	Noninvasive imaging Oral absorption of insulin delivered by nanoparticles and its stimulated glucose utilization in controlling postprandial hyperglycemia during OGTT in diabetic rats.	Chuang EY ; Lin KJ ; Su FY ; Mi FL ; Maiti B ; Chen CT ; Wey SP ; Yen TC ; Juang JH ; Sung HW	201 3	Elsevier	Taiwan	Journal of Controlled Release	10	36	In vivo	Nanoparticles	Oral	Their insulin loading efficiency and content were 77.4 ± 3.9% and 17.8 ± 2.4%, respectively.	10 hours	This work examined the feasibility of preparing a pH- responsive nanoparticle (NP) system composed of chitosan and poly(gamma-glutamic acid) conjugated with ethylene glycol tetraacetic acid (gammaPGA-EGTA) for Oral insulin delivery in diabetic rats during an Oral glucose tolerance test (OGTT). OGTT has been used largely as a model to mimic the period that comprises and follows a meal, which is often associated with postprandial hyperglycemia. Based on Forster resonance energy transfer (FRET), this work also demonstrated the ability of gammaPGA- EGTA to protect insulin from an intestinal proteolytic attack in living rats, owing to its ability to deprive the environmental calcium. Additionally, EGTA-conjugated NPs were effective in disrupting the epithelial tight junctions, consequently facilitating the paracellular
	controlling postprandial hyperglycemia during OGTT in diabetic rats.											respectively.		proteolytic attack in living rats, owing to its ability to deprive the environmental calcium. Additionally, EGTA-conjugated NPs were effective in disrupting the epithelial tight junctions, consequently facilitating the paracellular permeation of insulin throughout the entire small intestine. Moreover, results of positron emission tomography and computer tomography demonstrated the effective absorption of the permeated insulin into the systemic circulation as well as promotion of the

														glucose utilization in the myocardium, and skeletal muscles of the chest wall, forelimbs and hindlimbs, resulting in a significant glucose- lowering effect. Above results indicate that as-prepared EGTA- conjugated NPs are a promising Oral insulin delivery system to control postprandial hyperglycemia and thus may potentially prevent the related diabetic complications.
40	Microcapsules of alginate/chitosa n containing magnetic nanoparticles for controlled release of insulin	Priscilla Vanessa Finotelli; Daniel Da Silva; Mauro Sola-Penna; Alexandre Malta Rossi; Marcos Farina; Leonardo Rodrigues Andrade; Armando Yoshihaki Takeuchi; Maria Helena Rocha- Leão	201 0	Elsevier	Brazil	Colloids and Surfaces B: Biointerfac es	6	114	In vivo	Microcapsules	Subcutaneous	The insulin encapsulation efficiency was 33.3 ± 5.2% and 34.0 ± 5.0% for alginate and alginate/chitosa n beads, for insulin concentration of 10 wt%, respectively.	24 hours	The challenge of this work was to investigate the potential of alginate/chitosan beads containing magnetite nanoparticles as a drug delivery system. The insulin beads were prepared by dripping a solution of sodium alginate containing insulin into a CaCl2 solution. Magnetite nanoparticles of 5nm mean size were synthesized inside the alginate egg-box structure by co- precipitation of Fe(III) and Fe(III) in the presence of NH4OH. Quantitative analysis revealed that insulin encapsulation depends on the initial protein

														content and 35% of
														insulin was entrapped
														by alginate beads for a
														protein concentration
														of 10wt%. It was
														verified that
														approximately 50% of
														the insulin was
														released to Milli-Q
														water in 800h release
														experiments. The
														application of
														oscillating magnetic
														field increased three
														fold the insulin
														release. The results
														suggest that the
														alginate/chitosan
														system containing
														magnetite
														nanoparticles is a
														clinical applications of
														controlled release of
														insulin in the presence
														of an oscillating
														magnetic field in a
														subcutaneous implant
														approach.
														Nanoparticles
														intended for use in the
														transmucosal delivery
														of macromolecules
														were prepared by the
														ionic gelation of
														chitosan (CS)
												00 TDD		hydrochloride with
	0.11											CS-TPP-		pentasodium
	Chitosan-	Goycoolea,										ALGnanoparticl		tripolyphosphate (TPP)
	<u>alginate</u>	Francisco M.;										es were able to		and concomitant
	<u>biended</u>	Lollo, Giovanna;			Spain/							associate		complexation with
41	carriers for the	Remunan-	200	ACS	Spain/ Movico/	Biomacrom	0	176	In vivo	Nanoparticlos	Nacal	officioncios of	E hours	The incorporation of a
41	transmucosal	Lopez, Carmen;	9	Publication	Italy	olecules	0	170		Manoparticles	INdSdi	between ~/1	Shours	small proportion of
	delivery of	Quaglia,			italy							to \sim 52% and		ALG of increasing
	macromolecule	Fabiana;										load efficiency		molecular weight (Mw-
	s	Alonso, Maria J.										of ~51 to		from 4 to 74 kDa) into
	-											~53%.		the nanoparticles led
												2370.		to a monotonic
														increase in colloidal
														size from ~260 to
														~525 nm. This
														increase in size was
														regarded as a
														consequence of the
														formation of gradually

														more expanded structures. Insulin, taken as a model peptide, was associated to CS-TPP- ALG nanoparticles with efficiencies in the range of ~41 to ~52%, irrespective of the Mw of the ALG incorporated in the formulation. These CS- TPP-ALG nanoparticles exhibited a capacity to enhance the systemic absorption of insulin after Nasal administration to conscious rabbits. Interestingly, it was observed that the duration of the hypoglycaemic response was affected by the ALG's Mw. Briefly, this work describes a new nanoparticulate composition of potential value for increasing Nasal insulin
42	Fabrication and characterization of complex nanoparticles based on carboxymethyl short chain amylose and chitosan by ionic gelation	Ji, Na and Hong, Yan and Gu, Zhengbiao and Cheng, Li and Li, Zhaofeng and Li, Caiming	201 8	Royal Society of Chimestry	China	Food & Function	38	2	in vitro	Nanoparticles	Oral	CMSCA/CS NPs show 24 an insulin encapsulation efficiency of 85.2% and loading capacity of 6.55%.	8 hours	We aimed to investigate whether the combination of the modification of short chain amylose (SCA) with chitosan (CS) through the electrostatic interaction could be considered as a candidate for Oral delivery of bioactive ingredients. Carboxymethyl short chain amylose (CMSCA) was synthesized by reacting SCA with monochloroacetic acid. The changes in SCA levels after the reaction were investigated by zeta- potential

							determination, Fourier
							transform infrared
							(FTIR) spectroscopy,
							differential scanning
							calorimetry,
							thermogravimetry and
							derivative
							thermogravimetry.
							Complex nanoparticles
							(NPs) were then
							synthesized using
							CMSCA and CS by ionic
							gelation. FTIR spectral
							analysis revealed that
							the complex NPs were
							synthesized by
							hydrogen bonding and
							electrostatic
							interactions between
							CMSCA and CS.
							CMSCA/CS NPs show
							an insulin
							encapsulation
							efficiency of 85.2% and
							exhibit sustained
							release of insulin in
							vitro. CMSCA/CS NPs
							were observed to
							show excellent
							cytocompatibility by
							cell culture. These
							findings demonstrated
							that CMSCA/CS NPs
							constructed by the
							ionic gelation method
							could be further
							exploited as a
							potential Oral delivery
							system for peptide
							drugs. ©
							2018 The Royal Society
							of Chemistry.

43	Characterizatio n of thermosensitive chitosan-based hydrogels by rheology and electron paramagnetic resonance spectroscopy	Sabine Kempe, Hendrik Metz, Martin Bastrop, Annette Hvilsom, Renata Vidor Contri, Karsten Mäder	200 8	Elsevier	Germany	European Journal of Pharmaceu tics and Biopharma ceutics	8	77	In vitro	Hydrogels	Not informed	Not informed	48 hours	Chitosan, an amino- polysaccharide, has been proposed as a promising biopolymer for tissue repair and drug delivery. Chitosan solutions containing glycerol-2-phosphate (b-GP) have been described as injectable in situ gelling thermosensitive formulations, which undergo sol-gel transition at physiological pH and temperatures. This feature makes them suitable for the parenteral administration of drugs, especially for peptides and proteins. The aim of the present study was to get a deeper insight into the macro- and microstructure of chitosan/b-GP systems. In addition to oscillating rheology, electron paramagnetic resonance (EPR) spectroscopy was applied to examine the microviscosity and pH inside the gels depending on the b-GF concentration and to follow the loading and release of spin-labelled Insulin. All chitosan/b- GP solutions showed a physiological pH ranging from 6.6 to 6.8 that did not change during gelation, irrespective of the proportion of b-GP. The dynamics of the spin-labelled Insulin and its microviscosity inside the gels and during release were monitored by EPR spectroscopy. The results indinest the the
----	---	---	----------	----------	---------	---	---	----	----------	-----------	--------------	--------------	----------	--

							the Insulin was incorporated into the aqueous environment of the gel and was released in its native form. The in vitro drug release from the gels was governed by diffusion of drug from the gel matrix. A sustained release of Insulin was observed over a period of 2 weeks. Increasing the proportion of b-GP increased the amount of released Insulin and the velocity thereof

														As most of
														polypeptides are
														marginally stable, a
														mild formulation
														procedure would be
														beneficial for the
														drugs. The objective of
														drugs. The objective of
														the present study was
														consitivo papoparticlo
														system that was
														suitable for
														entrapment of
														hydrophilic insulin but
														without affecting its
														conformation.
														Chitosan was
														incorporated as a
														positively charged
														material, and one of
														the three
												Both insulin		poly(methylmethacryla
	Preparation and	Li, Ming-Guang										entrapment		te/methylmethacrylic
	characterization	and Lu, Wan-										efficiency		acid) copolymers,
	of insulin	Liang and				lournal of						(62,04 to		Consisting of Eudragit
	nanoparticles	Wang, Jian-				Nanoscione						12,57%) allu		\$100 was used as a
11	employing	Cheng and	200	Ingenta	China	e and	13	34	in vitro	Nanonarticles	Oral	nercentage	8 hours	negatively charged
44	Chitosan and	Zhang, Xuan	6	Connect	China	Nanotechn	15	54	in vitro	Nanoparticles	Orai	(0.87 to 3.10%)	8 110013	nolymer for
	poly(methylmet	and Zhang, Hua				ology						using chitosan-		preparation of three
	hacrylate/meth	and Wang, Xue-										Eudragit L100-		insulin nanoparticles.
	<u>ylmethacrylic</u>	Qing and Wu,										55 as matrix		respectively. Three
	acid) copolymer	Cui-Shuan and										materials were		nanoparticles obtained
												the highest.		were spherical. The
														mean diameters were
														in the range from 200
														nm to 250 nm, and the
														entrapment
														efficiencies, from 50%
														to 70%. The surface
														analysis indicated that
														insulin was evenly
														distributed in the
														ratio of chitesen to
														Fudragit was the factor
														which influenced the
														nanonarticles
														significantly
														Characterization
														results showed that
														the electrostatic
														interactions existed.
														thus providing a mild
														formulation procedure
														which did not affect

							the chemical integrity
							and the conformation
							of insulin. In vitro
							release studies
							revealed that all three
							types of the
							nanoparticles
							exhibited a pH-
							dependant
							characteristic. The
							modeling data
							indicated that the
							release kinetics of
							insulin was nonlinear,
							and during the release
							process, the
							nanoparticles showed
							a polynomial swelling.
							On overall estimation,
							the insulin chitosan-
							Eudragit L100-55
							nanoparticles may be
							better for the Oral
							delivery. This new pH-
							sensitive nanoparticle
							formulation using
							chitosan and Eudragit
							L100-55 polymer may
							provide a useful
							approach for
							entrapment of
							hydrophilic
							polypeptides without
							affecting their
							conformation.
							Copyright © 2006
							American Scientific
							Publishers. All rights
			1				reserved.

														Chitosan and its
														derivatives are widely
														used in drug delivery
														systems due to their
														bio-degradebility, bio-
														compatibility and
														absorption enhancing
														properties. Many
														peptide and protein
														derived therapeutics
														cannot be
														administered through
														Oral rout because of
														the proteolytic
														condition of gastro-
														intestinal tract and
														their low bio-
														availability. Insulin is a
														peptide drug which is
														widely used in
														diabetics as repeated
														daily injection. Due to
	Preparation and													the fact that there are
	characterization													receptors for
	of novel	Omid, Nersi												didpeptides and
	derivatives of	Jafary;										The loading		vitamine B12 in small
	chitosan and	Babanejad,										efficacy of the		intestine, in this
	trimethyl	Niloofar; Amini,	201			Journal of						particles is low		research work novel
45	chitosan	Hossein; Amini,	201	Springer	Iran	Polymer	16	11	in vitro	Nanoparticles	Oral	which may	6 hours	derivatives of chitosan
	conjugated with	Mohsen; Rafiee	4			Research				-		again be due to		and trimethyl chitosan
	dipeptides and	Tehrani,										low solubility of		conjugated with glycyl-
	vitamin B12 as	Morteza;										the polymer.		glycine, alanyl-alaninie
	candidates for	Dorkoosh, Farid												and vitamine B12 were
	Oral delivery of													synthesized and
	insulin													characterized. The
														structure of conjugates
														as well as substitution
														of different functional
														groups was confirmed
														by different
														instrumental analytical
														methods such as
														Fourier transform
														infrared, magnetic
														resonance, and X-ray
														diffraction
														spectroscopy. Nano-
														particles of
														aforementioned
														loaded with insulin
														were prepared and
														their size, surface
														electrical charge and
														morphology
														characterized and their
														release profile were
														studied. The results

							are promising and
							reveal that these new
							chitosan and trimethyl
							chitosan derivatives
							are potential vehicles
							for protein and
							peptide drug
							molecules.

46	Optimization of pH-responsive carboxymethyla ted iota- carrageenan/ch itosan nanoparticles for Oral insulin delivery using response surface methodology	Pratyusa Sahoo; Kok Hoong Leong ; Shaik Nyamathulla; Yoshinori Onuki; Kozo Takayama; Lip Yong Chung	201 7	Elsevier	Malaysia/ Japan	Reactive and Functional Polymers	11	3	in vitro	Nanoparticles	Oral	The resulting optimized nanoparticles had loading capacity and entrapment efficiency of 10.7 ± 0.6%, respectively.	12 hours	In this study, we investigated the influence of hydrophobized chitosan on the formation and thermodynamic and surface tension properties of insulin– chitosan (I–Ch) polyelectrolyte complexes (PECs). We used an alkylation procedure to insert 12 carbon chains along the chitosan macromolecule with final substitution degrees of 5, 10, and 50%. NMR and IR spectroscopy were used to evaluate the success and extent of the hydrophobization procedure. Isothermal titration calorimetry (ITC) was used to determine the type and extent of the existing intermolecular interactions between the different constituting components of the insulin–hydrophobized chitosan PECs. Through the surface tension and diffusion coefficients at the air– water interface and ITC experiments with different I–Ch proportions, we demonstrated that around 34, 24, 25, and 60–80 insulin molecules saturated 0, 5, 10, and 50% hydrophobized chitosans, respectively Surface tension experiments at the air–water interface demonstrated that the interaction of insulin molecules on the
----	--	--	----------	----------	--------------------	---	----	---	----------	---------------	------	--	----------	---

														unmodified chitosan increased the hydrophobicity; this was mainly due to electrostatic interaction. On the contrary, insulin– hydrophobized chitosan interaction lowered the PEC hydrophobicity because of insulin alkyl chain interaction, and therefore, the hydrophilic insulin groups at the PEC surface contributed to a higher surface tension.
47	Probing insulin's secondary structure after entrapment into alginate/chitosa n nanoparticles	B. Sarmento; D.C. Ferreira; L. Jorgensen; M. van de Weert	200 7	Elsevier	Potugal/ Denmark	European Journal of Pharmaceu tics and Biopharma ceutics	8	184	in vitro	Nanoparticles	Oral	Decreasing the alginate:chitosa n mass ratio from 6:1 to 3.3:1 led to an increase in AE to 91% and a decrease of the LC to 6,5%.	2 hours	The aim of the present study was to probe the structural integrity of insulin after being entrapped into chitosan/alginate nanoparticles produced by ionotropic polyelectrolyte pre- gelation. By manipulating the alginate:chitosan mass ratio and the pH during nanoparticle production, desired nanoparticles with a mean size of 850 (±88) nm and insulin association efficiency of 81 (±2)% were obtained. Insulin secondary structure was assessed by Fourier transform

							infrared (FTIR) and
							circular dichroism (CD)
							after entrapment into
							nanoparticles and
							after release from the
							particles under
							gastrointestinal
							simulated conditions.
							FTIR second-derivative
							spectra and area-
							overlap compared to
							an insulin standard
							confirmed that no
							significant
							conformational
							changes of insulin
							occurred in terms of a-
							helix and b-sheet
							content. Far-UV-CD
							spectra corroborated
							the preservation of
							insulin structure
							during the
							nanoparticle
							production procedure.
							The presented
							nanoparticulate
							system is a promising
							carrier for insulin Oral
							delivery since it
							preserves insulin
							structure and
							therefore also,
							potentially, its
							bioactivity.

														Insulin is mainly
														administered via
														subcutaneous route by
														injection which is the
														cause of painful and
														possible infections.
														Oral insulin
														administration would
														present a more
														convenient form of
														application because it
														is less invasive. Oral
														delivery of insulin to
														the gastrointestinal
														tract is one of the
														issues because it
														numerous barriers to
														overcome in order to
														create an effective
														system for insulin
														delivery. In the present
												The entrapment		study, insulin-loaded
		Diamel Tahtat:										of insulin		alginate/chitosan
		Mohamed										increased with		blend gel beads were
		Mahlous;										the increase of		prepared with
	Oral delivery of	Samah				Internation						chitosan		different mass ratios.
	insulin from	Benamer; Assia	201			al Journal						content in the		Chitosan was
48	alginate/chitosa	Nacer Khodja;	201	Elsevier	Algeria	01 Dielegies	9	65	in vitro	Beads	Oral	beads. The	6 hours	depolymerized by
	n crosslinked by	Habiba	3			Biological						loading		gamma irradiation at a
	glutaraldehyde	Oussedik-				sulos						efficiency were		dose of 80 kGy
		Oumehdi;				cules						1.86% for 8:2,		reducing its molecular
		Fatima Laraba-										2,12% for 7:3		weight for ideal blend
		Djebari										and 2,16% for		with sodium alginate.
												6:4.		The homogeneous
														solution of alginate
														and chitosan was
														dripped into CaCl2
														solution (2%), the
														resultant calcium
														crosslinked beads
														were dipped in
														glutaraldehyde (2%)
														solution sequentially
														to prepare dual
														improved mechanical
														improved mechanical
														properties so as to
														withstand the
														Simulated gastric fluid
														(SGF) and simulated
														Morphological
														structure, FTIK
														anaiysis, thermogravimotry
														analysis, specific
			1											analysis, specific

							surface area, gel
							fraction, swelling
							kinetics in SGF and SIF,
							loading efficiency,
							insulin release
							behavior.
							mucoadhesivity of the
							alginate/chitosan
							beads were
							investigated. The
							cumulative insulin
							release of nure
							alginate heads (10.0)
							reached as maximum
							level 100% in 3 h after
							they were dipped in
							SIE Concorning the
							boods Alg/Chi (9.2)
							$\Delta \log/Chi (7.2)$ and
							Alg/Chi (7.3) and Alg/Chi $(6:4)$ the
							Alg/CIII (0.4) the
							inculin reached 00 E%
							115ull1 redched 50.3%,
							69.2% dilu 70.2%,
							respectively in 6 n. The
							rate of 100% was
							reached alter 24 h lor
							Alg/CIII (0.2), Alg/CIII (7:2) and after 72 h for
							(7.3) and after 73 m for $Alg/Chi/(Chi/)$ The
							Alg/Chi (6:4). The
							presence of chitosan in
							the plend beads
							decreased the
							cumulative insulin
							release in gastric
							media and enhanced
							benavior of
							alginate/chitosan
							beads in intestinal
							meaium due to the
							crosslinking. The
							aiginate/chitosan
							beads crosslinked by
							giutaraidenyde may be
							considered as
							potential insulin
							carriers for Oral drug
			1	1			delivery system.

40 Machinesian Ma															Intestinal epithelium is
 Machanion of Namio Decision Decision of Namio Decision of Namio Decision of Namio Decisio															a major barrier limiting
 Machanian Managana Angana Angan															the absorption of Oral
 Mathematical integration of mathematical inte															insulin owing to the
 A Markaran Markaran Managaran Managara Managaran Managaran Managaran Mana															presence of
 Markananat Markananat															intercellular tight
 Matchained stratectores and stratectores of the strat															junctions (TJs).
49 Micharish financial fin															Previous studies
 Mathematical constraints Markan and cons															proved that
49 Machanish of Lindeechares of the states o															carboxymetnyi
40 Machanism of Markan															chitosan/chitosannano
 Mechanical contractions of instantial extension of instantial ext															NPs) exhibited surface
43 Machanica A Marana A Maranaa A Marana A Maran															charge depending
 Markan Amerikan A															promotion of intestinal
49 Machanizan of Kong, Mag and Yang, Luan and Kong, Mag and Yang, Luan and Yang, Juan Ang Yang, Juan Yang Yang Yang Yang Yang Yang Yang Ya															absorption. This study
43 Machanish of sufficient experimentations of sufficient e															further confirmed the
49 Machanism of Mauface Charge of Mauface Charge of Mauface Charge of Mauface Charge of Character Mauface Chara															better performances
49 Michanism of Margina Inamania, Margina Marg															of insulin:CMCS/CS-
49 Machanism of intestinal entrine uson intestinal intestinal entrine uson intestinal entrine uson intestinal intestinal entrine uson interventing uson intervention uson interventing uson intervention uson interventing uson intervention uson interventing uson intervention uson interventintervention uson intervention uson inte															NPs(-) in enhancing
49 Machanim of Magnetic Linear Argenetic Linear Argeneta Argeneta Argenetic Linear Argenetic Linear Argen															epithelial permeation,
 Machanism of surface charge in subject of insulin CMCS/CSNPs(1) and Kong. Ming and Xin, Dong and Xin, Dong and Kong. Maje and King. Maje and King and King. Maje and King. Maje and King. Ma															increasing
 Matchaism of user of transformed strengthy of the strengthy o															bioavailability and
 49 Kong, Ming and Cheng, Xiaole and Kang, Kong, Ming and and Yan, Oong and Yan, Yang and Kang, Yang and Kang, Yang and Yang, Yang Yang and Yang, Yang Yang and Yang, Yang Yang Yang Yang Yang Yang Yang Yang		Mechanism of	Wang, Juan and												extending blood
49 Indextal arcsing of the second of the sec		surface charge	Kong, Ming and												duration of insulin
49 entremendation of the second secon		intestinal	Zhou, Zhenjin												insulin:CMCS/CSNPs(+)
49 <u>unction</u> and vi, 201 Elsevier China tet at the second that Is opening and Cheng, Xiaging and Chen, Xiguang Cheng, Chang and Cheng, Xiaging and		enithelial tight	and Yan, Dong				Carbohydr								
apening upon chitosan nanoparticles no risulin Oral delivery Xaoping and For insulin Oral for insulin CMCS/CS- NPS(-) group, partially existed in insulin:CMCS/CS- NPS(-) group, par	49	junction	and Yu,	201	Elsevier	China	ate	7	19	In vivo	Nanoparticles	Oral	Not informed	13 hours	Immunohistochemistry
Chefg, Rable nanopartices for insulin Crait delivery. Chefg, Rable and Liu, Ya and Chen, Xiguang on jejjurum epithelium completely disappeared in linsulin.CMCS/CS- NPS(-) group, partially existed in linsulin.CMCS/CS- NPS(-) group and appeared no change in control. Surface charges of CMCS/CS- NPS(-) group and appeared no change in control on the surface charges of CMCS/CS- NPS(-) group and appeared no charges of control on the surface charges of CMCS/CS- NPS(-) group and appeared no charges of control on the surface charges of CMCS/CS- NPS(-) group and appeared no charges of control on the surface charges of CMCS/CS- NPS(-) group and appeared no charges of control on the surface charges of CMCS/CS- NPS(-) group and appeared no charges of control on the surface charges of CMCS/CS- NPS(-) group and appeared no charges of control on the		opening upon	Xiaoping and	/			Polymers								sections found that TJs
hanoparticles for insulin Oral delivery		chitosan	Cheng, Xiaojie												on jejunum epithelium
for insulin Oral delivery then, Xiguang disappeared in insulin.CMCS/CS- NPs(-) group, partially existed in control. Surface charges of CMCs/CS- NPs(+) group and appeared no change in control. Surface charges of CMCs/CS- NPs(+) group and appeared no change in control. Surface charges of CMCs/CS- NPs triggered intestinal epithelial TIs opening through a down- regulation 4 was detected in both anoparticles groups, for phosphorylated claudin-4, the activating form, whose down-regulation		nanoparticles	and Liu Va and												completely
delivery Bits ingenty NPS(-) group, /CS- NPS(-) group, /CS- NPS(-) group, //SS- NPS(-) group, //SS- NPS(-) group, //SS-		for insulin Oral	Chen. Xiguang												disappeared in
NPs(-) group, partially existed in insulin:CMCS/CS- NPs(+) group and appeared no change in control. Surface charges of CMCS/CS- NPs triggered intestinal epithelial TIS opening through different mechanisms. Although a down- regulation of TIs protein claudin-4 was detected in both nanoparticles groups, for phosphorylated claudin-4, the activating form, whose down-regulation occurred only in insulfi-CMCS/CS-		delivery	chen, Alguang												insulin:CMCS/CS-
Alter and a state of the sta															NPs(-) group, partially
NPS(+) group and appeared no change in control. Surface charges of CMCS/CS- NPS triggered intestinal epithelial TJS opening through different mechanisms. Although a down- regulation of TJS protein claudin-4 was detected in both nanoparticles groups, for phosphorylated claudin-4, the activating form, whose down-regulation occurred only in insulin:CMCS/CS-															existed in
Nrski group and appeared no change in control. Surface charges of CMCS/CS- NPs triggered intestinal epithelial TJs opening through different mechanisms. Although a down- regulation of TJs protein claudin-4 was detected in both nanoparticles groups, for phosphorylated claudin-4, the activating form, whose down-regulation occurred only in insulin:CMCS/CS-															insulin:CMCS/CS-
appeared to triange in control. Surface charges of CMCS/CS- NPs triggered intestinal epithelial TIS oppening through different mechanisms. Although a down- regulation of TIS protein claudin-4 was detected in both nanoparticles groups, for phosphorylated claudin-4, the activating form, whose down-regulation occurred only in insulin-CMCS/C5-															NPS(+) group and
charges of CMCS/CS- NPs triggered intestinal epithelial TJS outputs Although a down- regeguation detected in both nanoparticles groups, for phosphorylated claudin-4, the activating form, whose down, whose detected in both nanoparticles groups, for consting occurred only in insulin:CMCS/CS-															appeared no change in
NPs triggered intestinal epithelial TJs opening through different mechanisms. Although a down- regulation of TJs protein claudin-4 was detected in both nanoparticles groups, for phosphorylated claudin-4, the activating form, whose down-regulation occurred only in insulin:CMCS/C5-															charges of CMCS/CS-
intestinal epithelial TJS opening through different mechanisms. Although a down- regulation of TJS protein claudin-4 was detected in both nanoparticles groups, for phosphorylated claudin-4, the activating form, whose down-regulation occurred only in insulin:CMCS/CS-															NPs triggered
opening through different mechanisms. Although a down- regulation of TJS protein claudin-4 was detected in both nanoparticles groups, for phosphorylated claudin-4 the activating form, whose down-regulation occurred only in insulfic)rCMCS/CS-															intestinal epithelial TIs
different mechanisms. Although a down- regulation of TJs protein claudin-4 was detected in both nanoparticles groups, for phosphorylated claudin-4, the activating form, whose down-regulation occurred only in insulin:CMCS/CS-															opening through
Although a down- regulation of TJs protein claudin-4 was detected in both nanoparticles groups, for phosphorylated claudin-4, the activating form, whose down-regulation occurred only in insulin:CMCS/CS- NBr(c) group Counting															different mechanisms.
regulation of TJs protein claudin-4 was detected in both nanoparticles groups, for phosphorylated claudin-4, the activating form, whose down-regulation occurred only in insulin:CMCS/CS-															Although a down-
protein claudin-4 was detected in both nanoparticles groups, for phosphorylated claudin-4, the activating form, whose down-regulation occurred only in insulin:CMCS/CS-															regulation of TJs
detected in both nanoparticles groups, for phosphorylated claudin-4, the activating form, whose down-regulation occurred only in insulin:CMCS/CS-															protein claudin-4 was
nanoparticles groups, for phosphorylated claudin-4, the activating form, whose down-regulation occurred only in insulin:CMCS/CS-															detected in both
for phosphorylated claudin-4, the activating form, whose down-regulation occurred only in insulin:CMCS/CS-															nanoparticles groups,
Claudin-4, the activating form, whose down-regulation occurred only in insulin:CMCS/CS-															for phosphorylated
activating form, whose down-regulation occurred only in insulin:CMCS/CS-															claudin-4, the
down-regulation occurred only in insulin:CMCS/CS-															activating form, whose
occurred only in insulin:CORCS/CS-															down-regulation
Insult_VICS/CIS-															insulin: CMCS/CS
															NPs(-) group Counting

														upon synergetic effects of Ca2+ deprivation from adherens junctions and claudin-4 dephosphorylation and degradation, CMCS/CS-NPs(-) triggered more extensive disintegration of TJs and stronger paracellular permeability than the positive
50	Effective protection and controlled release of insulin by cationic - cyclodextrin polymers from alginate/chitosa n nanoparticles	Nan Zhang; Jiahui Li; Wenfeng Jiang; Chunhong Ren; Jianshu Li; Jianyu Xin; Ke Li	201 0	Elsevier	China	Internation al Journal of Pharmaceu tics	7	151	in vitro	Nanoparticles	Oral	The nanoparticles can load insulin with the association efficiency (AE) up to 87%.	6 hours	In an alginate/chitosan nanoparticle system, insulin was protected by forming complexes with cationic - cyclodextrin polymers (CPCDs), which were synthesized from - cyclodextrin (-CD), epichlorohydrin (EP) and choline chloride (CC) through a one- step polycondensation. Due to the electrostatic attraction between insulin and CPCDs, as well as the assistance of its polymeric chains, CPCDs could effectively protect insulin under simulated gastrointestinal conditions. The nanoparticles have their mean size lower than 350 nm and can load insulin with the association efficiency

														(AE) up to 87%. It is notable that the cumulative insulin release in simulated intestinal fluid was significantly higher (40%) than that without CPCDs (18%) because insulin was mainly retained in the core of the nanoparticles and well protected against degradation in simulated gastric fluid. Far-UV circular dichroism analysis also corroborated the preservation of insulin structure during the nanoparticle preparation and release process.
51	Preparation and evaluation of chitosan- ethylenediamin etetra acetic acid hydrogel films for the mucoadhesive transbuccal delivery of insulin	Fuying Cui,Chunbai He, Miao He,Cui Tang, Lichen Yin,Feng Qian,Chunhua Yin.	200 8	Wiley Online Library	China	Journal of Biomedical Materials Research Part A	8	46	In vivo	Films	Transbuccal	Insulin loaded films with the dose of 5,14 and 83 IU/Kg	5 hours	This manuscript describes the development of a new porous, flexible bilaminated film for buccal protein administration by a simple and mild casting procedure. It consists of a mucoadhesive layer (chitosan- ethylenediaminetetraa cetic acid hydrogel film) containing protein drugs and an impermeable protective layer made of ethylcellose. The obtained mucoadhesive layer was characterized in terms of Fourier transform infrared spectroscopy, rheology, swelling, and mucoadhesion. Rheology results showed that chitosan- ethylenediaminetetraa cetic acid hydrogel (10:2) possessed the greatest degree of

							viscoelasticity and was
							well-structured
							compared with other
							hydrogels. The in vitro
							mucoadhesion studies
							also showed that the
							mucoadhesive force of
							the hydrogel remained
							over 17,000 N/m2
							during 4 h in the
							simulated oral cavity.
							The insulin loaded
							bilaminated film
							showed a pronounced
							hypoglycemic effect
							following buccal
							administration to
							healthy rats, achieving
							a 17% pharmacological
							availability compared
							with subcutaneous
							insulin injection.
							According to these
							results, the
							bilaminated film would
							be a promising delivery
							carrier for protein
							drugs via the buccal
							route

														For enhanced Oral
														insulin delivery, a
														strategy of acid-
														resistant and enteric
														hydrogels
														encapsulating insulin-
														loaded nanoparticles
														was developed. The
														nanoparticles were
														prepared by the
														formation of an
														anionic insulin/heparin
														sodium (Ins/HS)
														aggregate, followed by
														coating of chitosan
														(CS) on the surface.
														the nanoparticles,
														tagged as CS/Ins/HS
														NPS, exhibited
														excellent mucosa
														annity, effective
														and marked
	Dual Stimuli-													naracellular
	Responsive													permeation
	Nanoparticle-													enhancement
	Incorporated	Liang Liu, Ying				ACS						Encapsulating		Moreover, to improve
	Hydrogels as an	Zhang,				Biomaterial						insulin into	12 hours	the acid-stability of
52	Oral Insulin	Shuangjiang Yu,	201	ACS	China	s Science &	44	0	In vivo	Nanoparticle	Oral	chitosan/insulin	and 21	CS/Ins/HS NPs and
-	Carrier for	Zhiming Yang,	8	Publication		Engineerin		-	-			/heparin	davs	impart the capacity of
	IntestineTarget	Chaoliang He,				g						nanoparticles		intestine-targeted
	ed Delivery and	and Xuesi Chen				U						30 UI/Kg		delivery, a pH- and
	Enhanced													amylase-responsive
	Paracellular													hydrogel was
	Permeation													synthesized via free
														radical
														copolymerization,
														using methacrylic acid
														as the monomer and
														acrylate-grafted-
														carboxymethyl starch
														as the crosslinker. The
														resulting hydrogel
														exhibited sharp pH-
														sensitivity in
														gastrointestinal tract
														and rapid enteric
														behavior under
														intestinal amylase. The
														additional protection
														for insulin in artificial
														gastric fluid was
														confirmed by
														packaging CS/Ins/HS
														NPs into the hydrogel.
														The obtained
														nanoparticle-

							incorporated hydrogel
							was named as
							NPs@Gel-2. The
							release of insulin from
							NPs@Gel-2 was
							evidently accelerated
							in artificial intestinal
							fluid containing α-
							amylase. Furthermore.
							the hypoglycemic
							effects were evaluated
							with type-1 diabetic
							rats. Compared to
							subcutaneous injection
							of insulin solution, the
							relative
							pharmacological
							availability (rPA) for
							Oral intake of
							NPs@Gel-2 (30 IU/kg)
							was determined to be
							8.6% along with rPA of
							4.6% for Oral
							administration of
							unnackaged CS/Ins/HS
							NPs (30 IU/kg), Finally.
							the two-week
							therapeutic outcomes
							in diabetic rats were
							displayed after twice-
							daily treatments by
							Oral intake of
							NPs@Gel-2, showing
							the relief of diabetic
							symptoms and
							suppression of weight
							loss in the rats.
							Therefore, this dual
							stimuli-responsive
							nanoparticle-
							incorporated hydrogel
							system could be a
							promising platform for
							Oral insulin delivery.

														Oral insulin delivery
														that better mimics
														physiological pathways
														is a necessity as it
														ensures patient
														comfort and
														compliance. A system
														which is based on a
														vehicle of nano order
														where positively
														charged chitosan
														interacts with
														negatively charged
														insulin and forms a
														polyelectrolyte
														complex (PEC)
														solubilizate, which is
														then solubilized into
														an oily phase of oleic
														acid, labrasol, and
														plurol oleaque-
	Low Molecular													protects insulin against
	Weight													enzymatic
	Chitosan-Insulin	Amani M.												gastrointestinal
	Complexes	Elsayed, Aseel												reduction. The use of
	Solubilized in a	H. Khaled,												an anionic fatty acid in
	Mixture of Self-	Mayyas M. Al			Saudi									the oily phase, such as
53	Assembled	Remawi, Nidal	201	MDPI	Arabia/Jor	Marine	15	2	In vivo	Nanoparticles	Oral	Not informed	12 hours	oleic acid, is thought to
	Labrosol and	A. Qinna,	8		dan	Drug		_						allow an interaction
	Plurol Oleague	Hussam Abu												with cationic chitosan,
	and Their	Farsakh and												hence reducing
	Glucose	Adnan A.												particle size.
	Reduction	Badwan,												Formulations were
	Activity in Rats													assessed based on
														their hypogiycaemic
														capacities in diabetic
														rais as compared to
														conventional
														forms E0 III/kg Oral
														insulin strength could
														only induce blood
														glucose reduction
														equivalent to that of 5
														IU/kg (1 International
														unit = 0.0347 mg of
														human insulin).
														Parameters that
														influence the
														pharmacological
														availability were
														evaluated. A
														preliminary
														investigation of the
														mechanism of
														absorption suggests

														the involvement of the lymphatic route.
54	Biodistribution, pharmacodyna mics and pharmacokineti cs of insulin analogues in a rat model: Oral delivery using pH-Responsive nanoparticles vs. subcutaneous injection	Kiran Sonaje, Kun-Ju Lin, Shiaw-Pyng Wey, Che-Kuan Lin, Tzyy-Harn Yeh, Ho-Ngoc Nguyen, Chia- Wei Hsu, Tzu- Chen Yen, Jyuhn-Huarng Juang, Hsing- Wen Sung,	201 0	Elsevier	Taiwan	Biomaterial	9	158	In vivo	Nanoparticles	Oral	The formulations were released at pH 2.5, the cumulative amount of aspart-insulin released from test NPs was about 20%, while it was approximately 35% at pH 6.6.	24 hours	In this study, we report the biodistribution of aspart-insulin, a rapid- acting insulin analogue, following Oral or subcutaneous (SC) administration to rats using the single- photon emission computed tomography (SPECT)/computed tomography (CT). Oral delivery of aspart- insulin was achieved using a pH-responsive nanoparticle (NP) system composed of chitosan (CS) and poly(g-glutamic acid). The results obtained in the SPECT/CT study indicate that the Orally administered aspart- insulin was absorbed into the systemic circulation, while the drug carrier (CS) was mainly retained in the gastrointestinal tract. Via the SC route, the peak aspart-insulin concentration in the peripheral tissue/plasma was observed at 20 min
							6							
--	--	--	---	---	--	--	--------------------------							
							after injection. Within							
							3 h, half of the initial							
							dose (ID) of aspart-							
							insulin was degraded							
							and excreted into the							
							urinary bladder. In							
							contrast, via Oral							
							delivery, there was							
							constantly circulating							
							aspart-insulin in the							
							peripheral							
							tissue/plasma during							
							the course of the							
							study, while 20% of							
							the ID of aspart-insulin							
							was metabolized and							
							excreted into the							
							urinary bladder. In the							
							pharmacodynamic							
							(PD) and							
							pharmacokinetic (PK)							
							evaluation in a diabetic							
							rat model, the Orally							
							administered aspart-							
							insulin loaded NPs							
							nroduced a slower							
							hypoglycemic							
							response for a							
							prolonged period of							
							time whereas the SC							
							injection of							
							aspartingulin produced							
							a more propounced							
							hypoglycemic effect							
							for a relatively shorter							
							duration Finally							
							comparison of the							
							PD/PK profiles of the							
							Orally administered							
							aspart-insulin with							
							those of the SC							
							injection of NDH							
							insulin on							
							insulli, all							
							intermediate-acting							
							insum preparation,							
							of our ND custom to be							
							used as a nen investive							
							useu as a non-invasive							
							alternative for the							
			1	I			pasai insulin therapy.							

														Insulin was
														anconculated in
														calcium alginato boado
														calcium alginate beaus
														tte release from
														its release from
														alginate-chitosan and
														alginate-
														chitosangiutaraidenyd
														e beads was studied in
														artificial gastric (pH
														1.2) and intestinal (pH
														7.5) fluids. By
														comparing the release
														amounts, the ionic
														interaction between
	Encapsulation					Journal								alginate-chitosan
	of insulin in					Artificial								matrix with the
	chitosan-coated	Seçil Önal;	200	Taylor &		Cells, Blood		50					<u></u>	medium pH's,
55	alginate beads:	Figen Zihnioglu	2	Francis	Turkey	Substitutes	9	50	in vitro	Beads	Oral	not informed	6 hours	intestinal fluid was
	<u>Oral</u>					, and								found to be the better.
	therapeutic					Biotechnol								The degradation of
	peptide delivery					ogy								released insulin was
														also searched, even
														after 6 h incubation,
														the beads remained
														stable and the
														undegraded insulin
														seemed to be
														sufficient for the
														physiological
														conditions.
														Consequently, it can
														be said that the system
														can be offered for Oral
														delivery of the
														therapeutic peptide
														drug insulin.

Strings of search*:

PubMed: ((((chitosan) AND insulin) AND ((delivery system) OR controlled delivery system))

Science Direct: ((((chitosan) AND insulin) AND ((delivery system) OR controlled delivery system))

Engineering Village: (1) chitosan and insulin and controlled delivery system

(2) (chitosan and insulin and delivery system)

HubMed: ((((chitosan) AND insulin) AND ((delivery system) OR controlled delivery system))

 $\ensuremath{^*}\xspace$ All the searches were performed in the search advanced model of the websites.

Start tool:

Start tool (StArt 2.3,4.2) is available to download in <u>http://lapes.dc.ufscar.br/tools/start_tool</u> .