Supplementary Materials

Improving the Photostability of Small-Molecule-Based Organic Photovoltaics by Providing a Charge Percolation Pathway of Crystalline Conjugated Polymer

Jihee Kim ¹, Chang Woo Koh ², Mohammad Afsar Uddin ², Ka Yeon Ryu ¹, Song-Rim Jang ³, Han Young Woo ^{2,*}, Bogyu Lim ^{3,4,*} and Kyungkon Kim ^{1,*}

- ¹ Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea; jhkim3664@ewhain.net (J.K.); ryuky@ewhain.net (K.Y.R.)
- ² Department of Chemistry, Korea University, Seoul 136713, Korea; woocchang@korea.ac.kr (C.W.K.); soaibchebd@yahoo.co.uk (M.A.U.)
- ³ Future Technology Research Center, LG Sciencepark, LG Chem, 30, Magokjungang 10-ro, Gangseo-gu, Seoul 07796, Korea; songrimjang@lgchem.com
- ⁴ Green Fine Chemical Research Center, Advanced Convergent Chemistry Division, Korea Research Institute of Chemical Technology (KRICT), 45 Jongga-ro, Jung-gu, Ulsan 44412, Korea
- * Correspondence: hywoo@korea.ac.kr (H.Y.W.); bglim@krict.re.kr (B.L.); kimkk@ewha.ac.kr (K.K.)

Figure S1. Thermal stability of SM-OPV devices. All the devices were subjected to thermal stress at 80°C for 1000h.

Figure S2. 2D images of GIXRD as prepared (a) Binary, (b) Ternary-F and (c) Ternary-CN films and light soaked (d) Binary, (e) Ternary-F and (f) Ternary-CN films.

Table S1. In-plain π - π stack peak information of Binary, Ternary-F and Ternary-CN films before and after light soaking.

Direction	Material	(010) π-π stack		
		Scattering vector(q) [Å ⁻¹]	d-spacing [Å]	FWHM
In-plane	Binary	1.689	3.720	0.116
	Binary(L)	1.664	3.775	0.107
	Ternary-F	1.677	3.747	0.088
	Ternary-F(L)	1.630	3.855	0.107
	Ternary-CN	1.622	3.874	0.155
	Ternary-CN(L)	1.634	3.845	0.159

Direction	Material	(200) Lamellar stack			
		Scattering vector(q) [Å-1]	d-spacing [Å]	FWHM	
Out - of plane	Binary(D)	0.425	14.783	0.0349	
	Binary(L)	0.423	14.861	0.0391	
	Ternary-F(D)	0.427	14.706	0.0320	
	Ternary-F(L)	0.425	14.783	0.0307	
	Ternary-CN(D)	0.427	14.706	0.0568	
	Ternary-CN(L)	0.427	14.706	0.0693	

Table S2. Out-of-plain lamellar stack peak information of Binary, Ternary-F and Ternary-CN films before and after light soaking.

Figure S3. Plots of log (*J*sc) versus log (*I*) for all the devices.

	S value	Standard deviation
Binary	1.04	0.025
Binary(L)	1.02	0.037
Ternary-F	0.96	0.009
Ternary-F(L)	0.98	0.008
Ternary-CN	0.97	0.009
Ternary-CN(L)	0.98	0.018

Table S3. The *S* values of all devices before and after light soaking.