Supporting information

Switching from electron to hole transport in solution-processed organic blend field-effect transistors

Julia Fidyk ¹, Witold Waliszewski ¹, Piotr Sleczkowski ¹, Adam Kiersnowski ^{2,3}, Wojciech Pisula ^{1,4} and Tomasz Marszalek ^{1,4,*}

- ¹ Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; julia.fidyk@dokt.p.lodz.pl (J.F.); witold.waliszewski@dokt.p.lodz.pl (W.W.); piotr.sleczkowski@p.lodz.pl (P.S.); pisula@mpip-mainz.mpg.de (W.P.)
- ² Leibniz Institute of Polymer Research, Hohe Str. 6, 01069 Dresden, Germany; kiersnowski@ipfdd.de
- ³ Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
- ⁴ Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany

Figure S1. Transfer characteristics ($V_{DS} = +80V$) of OFETs based on PBTTT-C₁₄:PDI8-CN₂ composites obtained by spin-coating for 100 °C solution and: a) 1000 rpm, b) 2000 rpm, c) 3000 rpm, d) 4000 rpm, e) 5000 rpm, f) 6000 rpm rotation speeds

Table S1. Field-effect mobility values for PBTTT-C₁₄:PDI8-CN₂ composites obtained by spin-coating for 100 °C solution and different rotation speeds.

Rotation speed [RPM]	1000	2000	3000	4000	5000	6000
Thickness [nm]	80	68	42	55	53	38
Channel length [µm]	25	30	30	30	30	25
Field-effectmobility[10-4 cm²/(Vs)]	0.8	1.0	2.1	2.3	1.3	1

Figure S2. Transfer characteristic ($V_{DS} = -80V$) of OFETs based on PBTTT-C₁₄:PDI8-CN₂ composites fabricated with rotation speed of 4000 rpm and solutions at a) 80 °C , a) 100 °C , a) 120 °C , a) 140 °C.

Table S2. Field-effect mobility values for PBTTT-C₁₄:PDI8-CN₂ composites fabricated with rotation speed of 4000 rpm and different solution temperatures.

Figure S3. AFM images of solution temperature dependence for PBTTT-C₁₄:PDI8-CN₂ heterojunction composites additionally annealed at 200°C. PBTTT-C₁₄:PDI8-CN₂ films obtained at: a) 80 °C, b) 100 °C, c) 120 °C, d) 140 °C, e) 160 °C, f) 180 °C.

Figure S4. Transfer characteristic ($V_{DS} = -80V$) of OFETs based on PBTTT-C₁₄:PDI8-CN₂ composite with rotation speed of 3000 for various solution temperature after annealing at 140 °C

Figure S5. Transfer characteristic of OFETs based on PBTTT-C₁₄:PDI8-CN₂ composite with rotation speed of 4000 rpm a) *p*-type ($V_{DS} = -80V$) and b) *n*-type ($V_{DS} = +80V$) behavior.

Figure S6. Transfer characteristic of OFETs based on PBTTT-C₁₄:PDI8-CN₂ composite fabricated with rotation speed of 4000 rpm on substrate modified by OTS; a) before annealing - *n*-type type (V_{DS} = +60V) b) annealed at 200 °C - *p*-type (V_{DS} = -60V)

Table S3. Field-effect mobility values for PBTTT-C₁₄:PDI8-CN₂ composites fabricated with rotation speed of 4000 rpm on substrate modified by OTS.

Thermal annealing	None		200°C/2h	
Transport type	p-type	n-type	p-type	n-type
Field-effect mobility [10 ⁻² cm ² /(Vs)]	-	1.5	0.1	-

Figure S6. Vertical (q_z / vert. – upper plots) and horizontal ($q_{x,y}$, horiz. – lower plots) integrations of GIWAXS patterns shown in Figure 6 in the main part of the paper. The integrations correspond to PBTTT-C₁₄ (a), annealed PBTTT-C₁₄ (b), PBTTT-C₁₄:PDI8-CN₂ blend (c), and the annealed PBTTT-C₁₄:PDI8-CN₂ (d). In the horizontal integrations of PBTTT-C₁₄ the deconvolution of patterns is included. Open points correspond to the experimental data, color lines show contributions of the π - π -stacking components and amorphous halos whereas black solid line correspond to the fitted data. If not specified otherwise Miller hkl indices correspond to crystal structure of PBTTT-C₁₄.

Table S4. PBTTT-C₁₄ crystal structure parameters extracted from GIWAXS data shown in Figure SX. q_{max}, d, and t denote, respectively, peak position, interplanar spacing and crystal coherence length (Scherrer coherence) 100 and π - π subscripts correspond to 100 interplanar distance and π - π stacking distance. Since in PBTTT-C₁₄ there are two distinct π - π systems (see main text for details) there are π - π_1 and π - π_2 symbols.

	System						
Crystal structure	PBTTT-C ₁₄	PBTTT- C_{14} ,	PBTTT-	PBTTT-			
parameter			C_{14} :PDI8-CN ₂	C_{14} :PDI8-CN ₂			
		annealed		annealed			
$q_{max(100)}$ / Å ⁻¹	0.276	0.276	0.284	0.274			
d_{100} / Å	22.8	22.8	22.2	22.9			
t_{100} / Å	115	170	90.9	180			
$q_{max}\left(\pi\text{-}\pi_{1}\right)/\mathring{A}^{\text{-}1}$	1.44	1.44	n/a	n/a			
$d_{\pi-\pi 1}$ / Å	4.4	4.4	n/a	n/a			
$d_{\pi\text{-}\pi\text{-}1}/\; \mathring{A}$	19.4	26.8	n/a	n/a			
$q_{max}\left(\pi\text{-}\pi_{2}\right)/~\mathring{A}^{\text{-}1}$	1.64	1.64	n/a	n/a			
$d_{\pi-\pi 2}/$ Å	3.8	3.8	n/a	n/a			
$t_{\pi\text{-}\pi2}/ {\rm \AA}$	22.5	22.5	n/a	n/a			