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Abstract: Numerical modeling of the thermoforming process of polymeric sheets requires precise 
knowledge of the viscoelastic behavior under conjugate effect pressure and temperature. Using two 
different experiments, bubble inflation and dynamic mechanical testing on a high-density 
polyethylene (HDPE) nanocomposite reinforced with polymethylsilsesquioxane HDPE (PMSQ–
HDPE) nanoparticles, material constants for Christensen’s model were determined by the least 
squares optimization. The viscoelastic identification relative to the inflation test seemed to be the 
most appropriate for the numerical study of thermoforming of a thin PMSQ–HDPE part. For this 
purpose, the finite element method was considered. 

Keywords: thermoforming; PMSQ–HDPE; viscoelastic; experimental; bubble inflation test; DMA; 
Christensen’s model; FEM 

 

1. Introduction 

The forming of thermoplastics in the plastic processing industry generally requires a high 
number of experimental tests to detect optimal conditions for mass production of products or 
optimizing of the manufacturing process. These experimental tests are costly and time-consuming. 
To circumvent the costs associated with these tests, many manufacturers are deploying computer-
assisted analysis for product design [1]. However, computer-assisted analysis of the processing of 
polymers and composites demonstrates the need for an accurate description of the behavior of these 
materials under the combined effect of applied forces and temperature [2]. The quality of behavioral 
characterization depends largely on the tools used in experimentation, modeling, and optimization. 
Regarding the behavior of thermoplastics used in thermoforming, associated with the manufacture 
of thin parts, it is generally of a viscoelastic nature and the generated strains can be linear or nonlinear 
[3]. Several behavioral laws are available in the scientific literature to represent thermoplastic 
polymers. Among them are Maxwell [4], Christensen [5], K-BKZ [6], and Lodge [7]. These laws are 
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generally constructed by combining the elastic and viscous responses of thermoplastics, in terms of 
spring and damper-based models. 

For the numerical characterization of the viscoelastic behavior of materials, experimental data 
from rheological and mechanical tests are often used [8]. Concerning the experimental tests used for 
viscoelastic identification, there are two classes in particular: unidirectional tests [9–11] (dynamic 
mechanical tests in shear and extension, compression, etc.) and multidirectional tests [12–16] 
(inflation of circular and cylindrical membranes, equibiaxial stretching of membranes, extensions and 
simultaneous inflations of membranes, etc.). 

At the level of the numerical identification of non-linear mechanical parameters, associated with 
the laws of viscoelastic behavior of thermoplastics, it is often necessary, with the help of mathematical 
modeling (analytical or numerical) and optimization, to reproduce, as faithfully as possible, the data 
measured in experimentation. Among the methods used for numerical modeling, the finite element 
method [2,11] and finite difference method [2] are used to model the experimental tests. Concerning 
the problem of identifying mechanical parameters by optimization algorithms, two classes are 
encountered: the class based on least squares algorithms [2,15,16] and the approach using artificial 
intelligence (neural networks) [12]. 

The deformations induced in thermoplastics, in the thermoforming process, are significant and, 
in general, of a biaxial nature. However, several works encountered in the literature on the 
construction of viscoelastic constitutive laws are based on experimental data from dynamic 
mechanical test (DMA). Thus, the following question arises: are the rheological data resulting from 
DMA tests reliable for the construction of a viscoelastic law? It is in this context that the present work 
is oriented and aims at a study on the reliability of the results obtained from two experimental tests: 
one was based on the inflation of the membrane and the other on a dynamic mechanical test (DMA). 
The two experimental tests were carried out at a temperature of 130 °C. For the viscoelastic 
characterization, we considered the Christensen model [5]. The mechanical parameters were 
identified using the Levenberg–Marquardt algorithm [17]. 

For the comparative study of the reliability of the results of the viscoelastic identification, 
compared to each experimental test, we considered the numerical modeling of the thermoforming of 
a thin part in PMSQ–HDPE. For this purpose, the finite element method was considered. 

2. Material 

This work is part of the work carried out on the development of a nanocomposite family based 
on polymethylsilsesquioxane (PMSQ, synthetized in our previous work [18]) and a high-density 
polyethylene (HDPE Hival-500354 with a melt flow index of 0.03 g min-1 (ASTM D1505) and a 
density of 0.954 g cm-3 (ASTM D1238) was supplied by IDES Prospector North America) matrix [19]. 
The method for the development of HDPE–PMSQ nanocomposites is based on a fusion mixing 
process. To this end, PMSQ nanoparticles were swollen in an organic solvent using an UltraTurax 
system (IKA, Wilmington, NC, USA) and sonication, then mixed with molten HDPE using a twin-
screw extruder (Coperion corporation, Sewell, NJ, USA). Then, the solvent was removed. 
Nanocomposites with different PMSQ contents (from 0 to 1%) were manufactured. Then, the 
nanocomposites were characterized (Fourier transformation in the infrared, Perkin Elmer, 
Woodbridge, ON, Canada; transmission electron microscopy, JEOL, Tokyo, Japan; differential 
scanning calorimetry, Mettler Toledo, Greifensee, Suisse; scanning electron microscopy, JEOL, 
Tokyo, Japan; mechanical tests, TA Instruments, New Castle, DE, USA; thermophysical 
characterization, TA Instruments, New Castle, DE, USA). The mechanical properties obtained from 
HDPE–PMSQ nanocomposites were compared with the barrier effect of PMSQ nanoparticles. The 
elastic modulus, yield stress, and elongation at break of the neat HDPE and its nanocomposites are 
shown in Table 1. Compared to HDPE, the modulus of elasticity of HDPE–PMSQ was slightly 
improved. 
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Table 1. Tensile mechanical properties of high-density polyethylene–polymethylsilsesquioxane 
(HDPE–PMSQ) nanocomposites [19]. 

% PMSQ–HDPE Elastic Modulus 
(MPa) 

Yield Stress 
(MPa) 

Elongation at Break 
(%) 

0.0% 1031 ± 26 26.8 ± 0.2 39.2 ± 2.3 
0.5% 1064 ± 60 27.9 ± 0.3 47.2 ± 3.1 
1.0% 1115 ± 54 30.1 ± 0.1 41.1 ± 2.3 

In this present work, only the rheological properties obtained for a concentration of 1% of PMSQ 
were considered to detect the viscoelastic behavior of HDPE–PMSQ nanocomposites in the semi-
solid state. 

3. Experimental Testing 

3.1. Bubble Inflation Testing 

For the free blowing test, we considered a circular PMSQ–HDPE composite membrane. The 
diameter and thickness of the membrane were 80 and 1.5 mm, respectively (Figure 1). The description 
of the set-up and the experimental test procedures are described in [20]. Figure 2, extracted from [20], 
shows the experimental set-up diagram. Figure 3 shows the experimental results of the evolution, 
over time, of the internal pressure and the height at the pole, respectively, of the PMSQ–HDPE 
membrane. 

 
Figure 1. PMSQ–HDPE membrane. 

 
Figure 2. Fixation module. 
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(a) Bubble pressure versus time evolution (b) Bubble height versus time evolution 

Figure 3. Bubble pressure and bubble height versus time evolution. 

3.2. Dynamic Mechanical Testing 

In our study, the oscillatory shear experiment was performed to determine the elasticity or 
storage modulus (G’) and the loss modulus (G”) of the PMSQ–HDPE material. The results obtained 
with respect to the frequencies are given in Figure 4 at a temperature of 130 °C. 

 
Figure 4. Experimental results of the storage moduli (G’) and loss moduli (G”) as a function of the 
frequency. 

  



Polymers 2020, 12, 2753 5 of 16 

 

4. Viscoelastic Behavior Model 

In this work, Christensen’s model [5], suitable for representing the viscoelastic behavior of 
thermoplastics in the semi-solid state, was used. For this model, in Lagrangian formulation, the 
second Piola–Kirchhoff stress tensor S at time t is given by: 𝑺ሺ𝑡ሻ = −𝑝ሺ𝑡ሻ𝐂ିଵ + 𝑔଴𝐈 + න 𝑔ଵሺ𝑡 − 𝜏ሻ௧

ିஶ 𝜕𝐄ሺ𝑡 − 𝜏ሻ𝜕𝜏 𝑑𝜏 (1) 

E is the Lagrangian strain tensor E. g0 is the hyperelastic modulus and  𝑔ଵ  is the material 
relaxation function given by equation: 𝑔ଵሺ𝑡 − 𝜏ሻ = ෍ 𝐶௞𝑒ି௧ିఛఛೖ௞  (2) 

where Ck is the stiffness modulus. The Lagrangian strain history E is related to Cauchy tensor 
deformation C by E = 1/2(C−I) and I is identity tensor. 

The tensor S is related to the Cauchy stress tensor σ by the following relationship: 𝐒ሺ𝑡ሻ = 𝐉ሺtሻ𝐅ିଵሺtሻ 𝛔ሺtሻ 𝐅ି୘ሺtሻ (3) 

J(t) and F(t) are, respectively, the Jacobian of the transformation and deformation gradient 
tensor. For incompressible materials, det(J(t)) = 1. For the blowing modeling of the PMSQ–HDPE 
membrane, we considered the following two assumptions: 

1. The state of plane stress; 
2. Material is incompressible. 
The first hypothesis induces the following forms for the matrices E(t) and S(t): 

𝐂ሺtሻ = ቎𝐶௫௫ሺ𝑡ሻ 𝐶௫௬ሺ𝑡ሻ 0𝐶௬௫ሺ𝑡ሻ 𝐶௬௬ሺ𝑡ሻ 00 0 𝐶௭௭ሺ𝑡ሻ቏ ;    𝐒ሺtሻ = ቎𝑆௫௫ሺ𝑡ሻ 𝑆௫௬ሺ𝑡ሻ 0𝑆௬௫ሺ𝑡ሻ 𝑆௬௬ሺ𝑡ሻ 00 0 𝑆௭௭ሺ𝑡ሻ቏ (4) 

With the assumption of incompressibility of the PMSQ–HDPE composite, the term Czz(t), 
appearing in Equation (4), can be directly calculated from the other components of the strain tensor 
C: 𝐶௭௭ሺ𝑡ሻ = ଷଶሺ𝑡ሻ = 1𝐶௫௫ሺ𝑡ሻ𝐶௬௬ሺ𝑡ሻ − 𝐶௫௬ሺ𝑡ሻ𝐶௬௫ሺ𝑡ሻ (5) 

λ3 is the principal stretch ratio in thickness direction defined by: 

ଷሺ𝑡ሻ = ℎሺ𝑡ሻℎ଴  (6) 

where h(t) and h0 represent the PMSQ–HDPE membrane thicknesses in the deformed and 
undeformed configurations, respectively. 

5. Viscoelastic Model Identification 

5.1. PMSQ–HDPE Viscoelastic Behavior Identification Conforms to Bubble Testing 

The mathematical formulation of the problem is described in [2,12]. To this end, the deformation 
of the circular membrane was assumed to remain axisymmetric during inflation. The strategy used 
for identification was as follows: first, for a given experimental thickness, the theoretical blowing 
pressure of the membrane, compatible with the measured thickness, was determined. For this 
purpose, we used the finite difference method with variable pitch. Then, using a modified 
Levenberg–Marquardt algorithm [17], the difference between the calculated and measured inflation 
pressure was minimized. Using this procedure, the material constants C0, gb, and τb were determined. 
However, it is important to note that the resolution of the equilibrium equations, which govern 
membrane inflation, can induce instabilities [12] that affect the numerical resolution. The choice of 
the initial values of the material constants is crucial for the convergence of the problem. As the 
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experiment was based on a single average air flow rate for blowing the membrane, we considered a 
single relaxation time. In other words, three parameters for Christensen’s model were determined: 
C0, C1, and τ1. 

The pressures and heights measured from the bubble to the pole were interpolated by 
polynomial functions and used in the identification problem. The predictions obtained with 
Christensen’s model gave very satisfactory results and are presented in relation to the experimental 
data in Figure 5. The mechanical properties obtained by numerical identification are given in Table 
2. 

(a) Bubble pressure versus height (b) Bubble pressure versus time 

Figure 5. Results of the optimization with the experimental data: a) bubble pressure vs bubble 
height and b) bubble pressure vs times. 

Table 2. Materials constants for PMSQ–HDPE at 130 °C. 

C0 (MPa) C1 (MPa) τ1 (s) 
0.71694 0.00001 772.00037 

Figure 6 illustrates, according to Christensen’s viscoelastic model, the main geometrical results 
relative to the PMSQ–HDPE membrane trace, at 0.05, 0.10, 0.15, 0.20, and 0.25 s: bubble height (Figure 
6a), thickness (Figure 6b), meridian extension (Figure 6c), and circumferential extension (Figure 6d). 

  
(a) Bubble height distribution (b) Bubble thickness distribution 
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(c) Meridian extension, λ1 (d) Circumferential extension, λ2 

Figure 6. Geometrical PMSQ–HDPE membrane according to Christensen’s model at 0.05, 0.10, 0.15, 
0.20, and 0.25 s : (a) Bubble height, (b) Bubble thickness, (c) Stretch ration λ1 and (d) Stretch ration λ2 

5.2. PMSQ–HDPE Viscoelastic Behavior Identification Conform to DMA Testing 

The least squares method was used to minimize the discrepancies between the experimental and 
theoretical values during the identification of the relaxation spectrum for PMSQ–HDPE material. This 
method is described by reducing the objective function defined by Equation (7) where N is the 
number of experimental data points: 

𝑍 = ෍ ቈ𝐺௜,௘௫௣ᇱ − 𝐺௜,௧௛ᇱ𝐺௜,௘௫௣ᇱ ቉ଶ + ቈ𝐺௜,௘௫௣ᇱᇱ − 𝐺௜,௧௛ᇱᇱ𝐺௜,௘௫௣ᇱᇱ ቉ଶே
௜ୀଵ  (7) 

The parameters 𝐺௜,௘௫௣ᇱ  and 𝐺௜,௘௫௣ᇱᇱ  represent the dynamic moduli from the experimental data 
while 𝐺௜,௧௛ᇱ  and 𝐺௜,௧௛ᇱᇱ  represent the theoretical values given by Christensen’s model (Equation (1)). 

𝐺௧௛ᇱሺ𝜔ሻ = 𝐶଴ + ෍ 𝐶௜𝜏௜ଶ𝜔ଶ2ሺ1 + 𝜏௜ଶ𝜔ଶሻே
௜ୀଵ   and   𝐺௧௛ᇱᇱሺ𝜔ሻ = ෍ 𝐶௜𝜏௜𝜔2ሺ1 + 𝜏௜ଶ𝜔ଶሻே

௜ୀଵ  (8) 

The parameter Ci is the stiffness constant and τi the relaxation time associated with the mode i, 
while ω is the frequency. The results obtained are given in Table 3. Figure 7 shows the results of the 
optimization in comparison with those of the experiment. 

Table 3. Stiffness modulus and relaxation time for the PMSQ–HDPE nanocomposite at T = 130 °C. 

PMSQ–HDPE at 130 °C 
C0 (MPa) C1 (MPa) C2 (MPa) C3 (MPa) C4 (MPa) C5 (MPa) 
−0.000633 6.414907 0.294631 0.170894 0.132937 0.062403 

 τ1(s) τ2(s) τ3(s) τ4(s) τ5(s) 
 0.01 0.06 0.1 1.0 10.0 
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Figure 7. Results of the optimization with the experimental storage moduli G’ and loss moduli G”. 

6. Reliability of Tests on the Viscoelastic Behavior of the PMSQ–HDPE on Thermoforming 

In order to identify the most reliable experimental test to characterize the viscoelastic behavior 
of PMSQ–HDPE for thermoforming applications, we considered the problem of numerical modeling 
of the thermoforming of a PMSQ–HDPE membrane. For this, we used a circular membrane, similar 
to the one used in the experiment (see Section 3.1), and a conical mold (see Figure 8). The nonlinear 
mechanical properties identified for Christensen’s model, with both DMA and biaxial inflation 
approaches, was used. 

6.1. Finite Element Analysis). 

For the analysis, the explicit dynamic finite element method with discretization in space and 
time was used to simulate the thermoforming of the PMSQ–HDPE membrane. The principle of 
virtual work was expressed on the undeformed configuration for the inertial effects and internal 
work. 

The spatial and temporal discretizations were both necessary for the virtual work due to the 
presence of the force of inertia. In the case of spatial discretization, the finite element method 
approach was considered [21]. However, for temporal discretization, the centered finite difference 
method, which is conditionally stable, was used. Consequently, the system of equations governing 
the blowing problem is given by [21]: 𝐌 𝐮ሷ ሺtሻ = 𝐅ୣ୶୲ + 𝐅୥୰ୟ୴ − 𝐅୧୬୲ (9) 

where 𝐅ୣ୶୲: Global nodal external force vectors 𝐅୥୰ୟ୴ ∶ Global nodal body force vectors 𝐅୧୬୲ ∶ Global nodal internal force vectors 
M: Global mass matrix 

The mass matrix M can be reduced to a diagonal matrix, Md, by using the diagonalization 
method. For the temporal scheme, we used the finite difference method centered. In this case, 
Equation (9) can be rewritten as Equation (10): u୧ሺt + ∆tሻ = ∆tଶM୧୧ୢ ቀF୧ୣ ୶୲ሺtሻ + F୧୥୰ୟ୴ሺtሻ − F୧୧୬୲ሺtሻቁ + 2u୧ − u୧ሺt − ∆tሻ (10) 

For the stability criterion of system 10, we used the Courant–Friedrichs–Lewy criterion [22]. 
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6.2. Plane Stress Assumption and Constitutive Equation 

For this, the hypothesis of plane stress and incompressibility of the thermoplastic material was 
considered. The behavior model used in the simulation was that of Christensen (see Section 3). 

6.3. Pressure Loading and Van der Waals Equation of State 

For the blower modeling of the PMSQ–HDPE membrane, we considered an air flow load. For 
this purpose, the Redlich–Kwong gas equation of state was considered [23]: 𝑃ሺ𝑡ሻ = 𝑛ሺ𝑡ሻ𝑅𝑇௚𝑉ሺ𝑡ሻ − 𝑏 𝑛ሺ𝑡ሻ − 𝑛ଶሺ𝑡ሻ𝑎𝑉ሺ𝑡ሻሾ𝑉ሺ𝑡ሻ + 𝑏 𝑛ሺ𝑡ሻሿඥ𝑇௚ (11) 

where: 
n(t): the number of gas moles introduced to inflate the thermoplastic-based composite membrane 
P(t): the internal pressure 
V(t): the volume occupied by the membrane at time t, 
Tg: the absolute gas temperature 
R: the universal gas constant (=8.3145 J mol−1 K−1) 
a and b: constants evaluated from the critical state of the gas [23]: 

𝑎 = 0.42748 𝑅ଶ𝑇௖ଶ.ହ𝑃௖   𝑎𝑛𝑑  𝑏 = 0.08664 𝑅ଶ𝑇௖𝑃௖   (12) 

where Tc and Pc are the critical temperature and pressure of the gas, respectively. In this study, the 
assumptions used for the calculation of the dynamic pressure are: 

(i) Gas temperature is assumed constant (Tg); 
(ii) The biocomposite sheet temperature is assumed constant (Tsheet = Tg); 
(iii) At every moment, the pressure between the sheet and the mold is assumed constant (ΔP); 
(iv) The contact between the biocomposite sheet and the mold is assumed to be a sticky contact as 

the polymer cools and stiffens rapidly during the sheet/mold contact. 

For a reference state in volume (V0) and number of molds (n0), Equation (11) becomes: 𝑃଴ = 𝑛଴𝑅𝑇௚𝑉଴ − 𝑏𝑛଴ − 𝑛଴ଶ𝑎𝑉଴ሾ𝑉଴ + 𝑏𝑛଴ሿඥ𝑇௚ (13) 

The dynamic pressure, responsible for inflating the thermoplastic membrane, represents the 
difference between the internal pressure, induced by the introduction of n(t) mole of gas, and the 
initial pressure P0: ∆𝑃ሺ𝑡ሻ = 𝑃ሺ𝑡ሻ − 𝑃଴ (14) 

Equation (15) describes, over time, the internal pressure induced by the fluidic charge (air). This 
pressure, in turn, is responsible for the inflation of the membrane (work). It follows that the following 
relation expresses the virtual external work in terms of closed volume [24]: δWୣ୶୰ = ∆Pሺtሻ δV (15) 

6.4. Analysis of Reliability of Experimental Tests Characterization on Thermoforming 

For the study, we considered the thermoforming of a circular PMSQ–HDPE membrane, similar 
to the one used in experiments for free blowing (with a radius of 4 cm and a thickness of 1.5 mm). 
For the applied load, we considered a non-linear airflow as shown in Figure 9. The geometries of the 
mold and the composite sheet discretized by triangular membrane elements are shown in Figure 8. 
The material temperature was assumed constant at 130 °C. The rheological parameters of the 
Christensen behavior law are given in Table 2 (relating to the DMA test) and Table 1 (relating to the 
free biaxial test). 
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Figure 8. Geometries of the mold and the wood plastic composite (WPC) sheet. 

 
Figure 9. Airflow versus time. 

In the following sections of the study, the viscoelastic behavior of the PMSQ-HDPE material 
relative to the biaxial and DMA tests will be referred to as MB and MD respectively. Figure 10 shows 
the evolution of the pressure, generated by the airflow, with the volumes for MB and MD. Figure 11 
shows the evolution, over time, of its volumes. According to this figure, and contrary to MB, we can 
see that MD resisted inflation and was unable to ensure its shaping by thermoforming for the treated 
example, which involved large deformations. To clarify this situation, we have presented in Figure 
12a comparison between the two models MB and MD with respect to the principal extensions λ3 and 
the von Mises stress at 0.0143, 0.0293, 0.0443, and 0.0593 s. It can be seen that the action of the air flow 
on the MD membrane induced, on the one hand, much higher von Mises stresses than those on MB 
and, on the other hand, a lower stretch. In Table 4, the critical values of the von Mises stresses as well 
as the principal stretching for the MB and MD models have been provided. Therefore, the MD 
material is not a candidate for thermoforming and blowing thin, hollow parts that typically induce 
large deformations. To illustrate this behavior for the MD model, we have presented views of the von 
Mises constraints at 0.0143, 0.0293, and 0.0443 s in Figure 13, and in Figure 14, we have presented a 
view of the distribution of its constraints in the proximity of the critical time of 0.0593 s. 

It should be pointed out that after the critical time of 0.06 s, the pressure loading had no 
significant effect on the deformation of the MD membrane, but it had a considerable effect on the 
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stresses. To this effect, we have presented in Figure 15, within the mold, a view of the final shape of 
the membrane (including the contact nodes), and a view of the von Mises stresses. The MD became 
quasi-rigid. 

  
Figure 10. Internal pressure versus volume of PMSQ–HDPE. 

  
Figure 11. Volume evolution with time of PMSQ–HDPE. 

 
(a) Time of 0.0143 s (b) Time of 0.0293 s 
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(c) Time of 0.0443 s (d) Time of 0.0593 s 

Figure 12. Transient evolution of the principal stretch and von Mises stresses at different instants: 
(a) time = 0.0143 s, (b) time = 0.0291 s, (c) time = 0.0443 s and (d) time = 0.0593 s. 

Table 4. Critical values of von Mises stress and principal stretch λ3. 

Time (s) 
Von Mises Stress MPa Principal Stretch λ3 

MB Model MD Model MB Model MD Model 
0.0143 0.04923 0.1116 0.9676 0.9788 
0.0293 0.2298 0.4866 0.8503 0.8736 
0.0443 0.6185 0.9467 0.6222 0.6966 
0.0593 1.158 1.658 0.408 0.5307 

   

(a) Time: 0.0143 s (b) Time: 0.0293 s (c) Time: 0.0443 s 

Figure 13. MD model: von Mises stresses induced in PMSQ–HDPE at times of 0.0143 (a), 0.0293 (b), 
and 0.0443 s (c). 
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(a) Time: 0.0593 s (b) Time: 0.060 s (c) Time: 0.0608 s 

Figure 14. Von Mises constraints induced in the HDPE–PMSQ with the MD model in the time-critical 
neighborhood 0.0593 s. 

  
(a) (b) 

Figure 15. Shape of the deformed MD and principal stretch λ3 in the time-critical neighborhood 0.06 
s. (a) Final shape of the deformed MD. (b) Distribution of the principal extensions λ3 in the final 
deformed MD. 

For the rest of the study, only the MB material is considered. Figure 16 illustrates the evolution 
of the nodes, which were in contact with the mold during the forming process, represented by the 
black dots. 

 

    

(a) t=0.0143 s (b) t=0.0291 s (c) t=0.0443 s (d) t= 0.0593 s 

Figure 16. Evolution of the distribution of the contact nodes with the mold at at different instants: (a) 
time = 0.0143 s, (b) time = 0.0291 s, (c) time = 0.0443 s and (d) time = 0.0593 s. 
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When simulating the thermoforming of a thin part, it is important to predict the thickness and 
stress distributions in the molded part. In fact, the predictions of the residual stresses and 
dimensional stability of the final shape of the molded part are closely related to the estimated stresses. 
In addition, the effect of localized thinning of the deformed membrane is usually accompanied by an 
increase in the Cauchy stresses (or actual stresses). For this purpose, we have presented in Figure 17 
the von Mises stress distribution and the main extensions on the trace of the thermoformed part. The 
maximum value of the von Mises constraint is of the order 5.4 MPa and is located at the positions 2.5 
and 4.5 m. For this critical stress value, the principal stretch λ3 is 0.093. In Figure 18, we have 
presented an overview of the von Mises stresses (Figure 18a) and the main extensions (Figure 18b) 
induced in the thermoformed part. 

 
Figure 17. Von Mises stress and stretch ratio, λ3, on the half plane of symmetry at the end of the 
forming cycle. 

  
(a) Thickness distribution (mm). (b) Von Mises stresses distribution (MPa). 

Figure 18. Thickness and von Mises stresses distributions in the thermoformed part: (a) Thickness 
distribution and (b) Von Mises stresses distribution. 
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In light of the results presented above, the following remarks can be made about the use of 
experimental tests for viscoelastic identification relative to Christensen’s model: 

- The experimental test used for the construction of the constitutive behavior law of polymers 
plays a key role on the qualities of the results; 

- The results obtained by the mechanical blowing test, which induces deformation modes similar 
to those encountered in thermoforming, seem to be the most appropriate; 

- The construction of viscoelastic laws from DMA is more suitable for small deformations for 
thermoforming applications; 

- The choice to use the finite element method with a pressure load, which is derived from a 
thermodynamic law, is judicious for the integrated analysis in large deformations of the forming 
of a thin part; 

- Experimental temperature can improve the quality of viscoelastic identification for 
thermoforming applications. The material becomes softer. 

7. Conclusions 

The study was conducted on the reliability of the experimental method for viscoelastic 
identification of a nanocomposite reinforced with Polymethylsilsesquioxane nanoparticles (PMSQ–
HDPE). To do so, two tests of different nature were used. One was based on free inflation of the 
membrane and the other on a dynamic mechanical test (DMA). The experiments were carried out at 
a temperature of 130 °C. The material constants for Christensen’s model were determined by the least 
squares optimization. The comparative study of viscoelastic behavior of PMSQ–HDPE shows that 
the biaxial test is more appropriate for the construction of a behavior law for applications in 
thermoforming. Concerning the viscoelastic identification obtained from the rheological data of the 
DMA, it does not seem to be able to represent the thermoforming of a part which requires large 
deformations. 

Following this study, comparative studies between the DMA and the free blowing should be 
carried out at temperatures above 130 °C for viscoelastic identification. This will make it possible to 
characterize the effect of temperature on the reliability of the tests in thermoforming. 

Author Contributions: Conceptualization F.E., H.K. and A.I.; methodology, F.E., K.Z. and A.B.; software, 
ThermoForm (house software developed by F.E.); validation, K.Z. and F.E.; formal analysis, F.E., H.K. and A.I.; 
data curation, A.B., K.Z. and F.E.; writing—original draft preparation, F.E., H.K. and A.I.; writing—review and 
editing, F.E.; supervision, F.E.; project administration, F.E. All authors have read and agreed to the published 
version of the manuscript. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Chyan, Y.; Shiu-Wan, H. Modeling and Optimization of a Plastic Thermoforming Process. J. Reinf. Plast. 
Compos. 2004, 23, 109–121. 

2. Derdouri, A.; Erchiqui, F.; Bendada, A.; Verron, E.; Peseux, B. Viscoelastic behaviour of polymer membrane 
under inflation. 20000-XIII Int. Congr. Rheol. 2000, 3, 394–396. 

3. Toth, G.; Nagy, D.; Bata, A.; Belina, K. Determination of polymer melts flow-activation energy a afunction 
of wide range shear rate. IOP Conf. Ser. J. Phys. 2018, 1045, 012040, doi:10.1088/1742-6596/1045/1/012040. 

4. Buckley, C.P.; Bucknell, C.B. Principles of Polymer Engineering (seconf edition); Oxford University Press, USA, 
2011. 

5. Christensen, R.M. A Nonlinear Theory of Viscoelasticity for Application to Elastomers. J. Appl. Mech. ASME 
Trans. 1980, 47, 762–768. 

6. Bernstein, B.; Kearsley, E.A.; Zapas, L.J. A study of stress relaxation with finite strain. Trans. Soc. Rheol. 
1963, 7, 391–410. 

7. Lodge, A.S. Elastic Liquids; An Introductory Vector Treatment Of Finite-strain Polymer Rheology. J. Am. 
Chem. Soc. 1964, 86, 5056. 



Polymers 2020, 12, 2753 16 of 16 

 

8. Engelmann, S. Advanced Thermoforming: Methods, Machines and Materials, Applications and Automation; Wiley 
Series on Polymer Engineering and Technology; John & Son Inc.-Wiley: Hoboken, New Jersy, 2012; ISBN 
978-0-470-49920-7. 

9. Janhui, H.; Wujun, C.; Fan, P.; Gao, J.; Fang, G.; Cao, Z.; Peng, F. Uniaxial tensile tests and dynamic 
mechanical analysis of satin weave reinforced epoxy shape memory polymer composite. Polym. Test. 2017, 
64, 235–241. 

10. Jerabek, M.; Major, Z.; Lang, R.W. Uniaxial compression testing of polymeric materials. Polym. Test. 2012, 
29, 302–309. 

11. Daiyan, H.; Andreassen, E.; Grytten, F.; Osnes, H. Shear Testing of Polypropylene Materials Analysed by 
Digital Image Correlation and Numerical Simulations. Exp. Mech. 2012, 52, 1355–1369. 

12. Erchiqui, F.; Ozdemir, Z.; Souli, M.; Ezaidi, H.; Dituba-Ngoma, G. Neuronal networks approach for 
characterization of viscoelastic polymers. Can. J. Chem. Eng. 2011, 89, 1303–1310. 

13. Souli, M.; Erchiqui, F. Experimental and Numerical Investigation of Instructions for Hyperelastic 
Membrane Inflation Using Fluid Structure Coupling. Comput. Modeling in Eng. Sci. 2011, 77, 183–200. 

14. Potter, S.; Graves, J.; Drach, B.; Leahy, T.; Hammel, C.; Feng, Y.; Baker, A.; Sacks, M.S. A Novel Small-
Specimen Planar Biaxial Testing System With Full In-Plane Deformation Control. J. Biomech Eng. 2018, 140, 
0510011–05100118. 

15. Meissner, J.; Raible, T.; Stephenson, S.E. Rotary clamp in uniaxial and biaxial rheometry of polymer melts. 
J. Rheol. 1981, 25, 1–28. 

16. Benjeddou, A.; Jankovich Hadhri, T. Determination of the parameters of Ogden’s law using biaxial data 
and Levenberg-Marquardt-Fletcher algorithm. J. Elastomers Plast. 1993, 25, 224–24. 

17. Marquardt, D., An Algorithm for the Least-Squares Estimation of Non-linear Parameters. SIAM J. Appl. 
Math. 1963, 11, 431–441. 

18. Baatti, A.; Erchiqui, F.; Godard, F.; Bussières, D.; Bébin, P. A two-step Sol-Gel method to synthesize ladder 
polymethylsilsesquioxane nanoparticles. Adv. Powder Technol. 2017, 28, 1038–1046. 

19. Baatti, A.; Erchiqui, F.; Godard, F.; Bussières, D.; Bébin, P. DMA analysis, thermal study and morphology 
of polymethylsilsesquioxane nanoparticles-reinforced HDPE nanocomposite. J. Therm. Anal. Calorim. 2020, 
139, 789–797. 

20. Ben Aoun, N.; Erchiqui, F.; Mrad, H.; Dituba-Ngoma, G.; Godard, F. Viscoelastic characterization of high-
density polyethylene membranes under the combined effect of the temperature and the gravity for 
thermoforming applications. Polym. Eng. Sci. 2020, 60:11, 2676. 

21. Erchiqui, F.; Gakwaya, A.; Rachik, M. Dynamic finite element analysis of nonlinear isotropic hyperelastic 
and viscoelastic materials for thermoforming applications. Polym. Eng. Sci. 2005, 45, 125–134. 

22. Courant, R.; Friedrichs, K.; Lewy, H. On the partial difference equations of mathematical physics. IBM J. 
Res. Dev. 1967, 11, 215–234. 

23. Redlich, O., J.N.S.; Kwong, V-An equation of state. Chem. Rev. 1949, 44, 233. 
24. Erchiqui, F. A New hybrid approach using the explicit dynamic finite element method and thermodynamic 

law for the analysis of the thermoforming and blow molding processes for polymer materials. Polym. Eng. 
Sci. 2006, 46:11, 1554. 

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional 

affiliations. 

 

© 2020 by the authors. Submitted for possible open access publication under the terms 

and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 

 


