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Abstract: The strain energy released plays a crucial role in generating macroscopic failure in
unidirectional (UD) composites. This paper proposes two new strain energy-based failure criteria,
regarding fiber-dominated and matrix-dominated failure mode as independent and interactive,
respectively. The failure expression is formulated based on rigorous mathematical deducing,
accompanied by physical interpretation. Based on the lack of experimentally feasible multi-axial
strengths, a predefined assumption of infinite strength under bi-axial and tri-axial compressive stress
provides the possibility for determining all coefficients only by using conventional uniaxial strengths.
The failure envelopes predicted by the proposed criteria have been validated against experimental
results under biaxial, off-axis and tri-axial loading cases. A better agreement with physical reality
was achieved by the failure mode-interactive criterion, suggesting a wide range of applicability.
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1. Introduction

Failure theories, which can be classified as either being macroscopic or microscopic, have been an
utmost crucial issue in scientific research and even more so in engineering practice since the widespread
application in advanced composites. Through the series of World Wide Failure Exercises (WWFEs)
spanning the past two decades [1–4], the state-of-the-art has been well-reflected in an objective manner.
Macroscopic failure criteria, which are widely used in engineering practice, are classified into three
groups. The criteria in the first group predict failure status by directly comparing stresses (or strains)
with respective strengths. The representatives are the maximum stress and the maximum strain criteria.

Since the above strength limit criteria neglect interactions of stress or strain components,
failure theories of the second group are proposed to consider full stress interaction by employing a
single quadratic or higher-order polynomial function of all potential stresses. Tsai and his co-workers
originally proposed one of the most famous criteria of a single expression, i.e., the Tsai–Wu failure
criterion [5]. Although the Tsai–Wu criterion has achieved great success over the past decades, it has
been subjected to criticisms for being non-phenomenological or empirical [6]. These criteria of single
expression fundamentally combine distinctive fracture mechanisms occurring within unidirectional
(UD) composite materials, therefore, the debate on rationalism and robustness for failure predictions
is to continue due to different mechanisms found at the microscale [7]. Moreover, such criteria are
unable to distinguish internal failure modes that may cause difficulties in the subsequent analysis of
failure evolution.

The third group refers to phenomenological failure criteria that are based on physical aspects of
fracture. The Hashin failure theory [8,9] made a significant contribution to the formulation of composite
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failure criteria by employing a solid physical basis instead of purely empirical curve fitting. It initially
separated different modes of failure by defining corresponding stress invariants. The classification
regarding the failure of fibre reinforced plastic (FRP) composites (i.e., matrix cracking in tension and
compression and fiber damage in tension and compression) is usually adopted and has inspired, or laid
a basis for follow-up studies [10]. Despite extensive selection in engineering due to its simplicity of
concept, Hashin’s work could not present a reasonable interpretation of the shear fracture impeding
influence induced by a moderate transverse compressive stress [11]. Moreover, some inconceivable
results, from the physical point of view, may be gained since some arbitrary measures were taken,
as discussed in [12]. Following Mohr’s fracture hypothesis stating that failure would be exclusively
caused by the stresses acting on the fracture plane, Puck and Schurmann [13] introduced the concept
of the fracture plane into their phenomenological failure model. Puck’s criterion not only predicts
the stress level leading to crack initiation but also provides the results of crack direction. It was
ranked highly among all the nineteen participants in the WWFEs, and therefore, was suggested
by organizers [2]. A further modification, with high relevance to Puck’s theory, was performed by
incorporating in situ effects, shear nonlinearity and fiber kinking mechanisms [14,15]. However,
additional employment of artificially defined parameters, e.g., inclination parameters, may cause
disputes over the determination of their specific values [16].

So far, the majority of current phenomenological failure criteria for UD composites are constructed
based on stresses/strains, e.g., stress invariants [9,17–19] or stresses acting on the fracture plane [11,13–15].
Nevertheless, despite remarkable success achieved and convincing physical meaning in the definition
of failure-induced stress, it should be emphasized that the choice of quadratics is not based on physical
reasoning but curve fitting considerations [9]. There has been an issue of the failure theories which
has never been thoroughly investigated, and that is the physical interpretation of the order of failure
equations. The only explanation provided is that quadratic polynomials can fit test data well, indicating
no need to employ cubic or higher approximations. The authors would argue the rationality existing in
the explanation and the form as these criteria are proposed. Even though failure theories fall in the
category of phenomenological approaches, it should be clarified that this assumption remains empirical
or artificial, no matter how rational the subsequent deduction is in the formulation of the criteria.
Within the theoretical framework constructed by the stress invariant-based approach, it hardly seems
capable to “physically” explain why cubic or higher approximations are not employed. It seems feasible
to formulate a strain energy density criterion due to the quadratic nature of stress-energy density forms.

The macroscopic material failure, from a thermodynamic point of view, is the final consequence of
an energy-driven destabilization process and is associated with the collective disruption of atomic bonds
that is driven by the potential energy stored in the atomic bonds. In a mechanical system, a universal
failure criterion at the macroscopic scale can be defined by a specific elastic strain energy density with its
threshold value [20]. Efforts have been made to investigate the fracture behaviors of isotropic materials
by using the energy concept. However, if the attention is shift to UD fiber-reinforcement composite
materials, quite limited literature has been reported based on the strain energy release. The Tsai–Hill
criterion is the extension of the classical von Mises yield condition to orthotropic materials [21].
The main deficiency is that it cannot identify the difference of strengths in tension and compression.
Wolfe et al. [22,23] developed a strain energy-based failure model to predict failure behaviors of
composites under multi-axial loadings, taking into account the effect of hydrostatic stress. But there
would be no experimentally feasible scheme to measure certain parameters, which are introduced in
their criterion to define the shape of the failure surface in strain energy space.

For the existing failure criteria that divide composite failure into fiber-dominated and
matrix-dominated damage modes, conventionally most of them (e.g., the Hashin’s criterion and
Puck’s criterion) accept the hypothesis that fiber fracture and matrix cracking may be mutually
independent. This hypothesis is proposed based on the fact that the potential fracture planes regarding
matrix and fiber failure are perpendicular, but it has been questioned by a series of experimental
evidence [24]. This phenomenon is attributed to the mutual influence of localized micro-damages.
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Taking fiber failure, for example, it should be noted that micro-fractures of some fiber elements have
already occurred before the lamina reaches its macroscopic strength. The existence of microfiber
fractures will induce micro-cracks in the neighboring matrix and debonding of fiber–matrix interfaces.
Besides, the ability to resist fiber failure will be weakened due to the effects of defects. Even under
transverse stress, micro-cracks, initiating in the region of defects, may propagate along the fibers.
To establish a more reasonable criterion at the macroscale, the interactions of micro-damages are
required to be characterized from a macroscopic perspective. Hence Puck used a degradation factor to
consider the weakening effect. The major drawback, however, is the lack of reliable experimental or
mathematical methods to obtain the specific value of that factor.

The objective of the present paper was to propose new three-dimensional failure criteria for UD
composites from a strain energy release point of view. The formulation of the failure expression is
logically deduced based on physical interpretation, rather than through curve fitting considerations
made by stress invariant-based criteria (e.g., Hashin’s criterion). Also, a mode-interactive model is
further proposed to characterize the micro-interactions of matrix-dominated and fiber-dominated
failure modes in the view of the macro level. For both mode-independent and mode-interactive criteria,
all parameters required can be determined by conventional strength properties at the UD-lamina
level, without making any assumption sometimes arguable. Finally, the present failure criteria are
validated and compared, in terms of failure envelopes, by measurements in biaxial, off-axis tension
and tri-axial experiments.

2. Failure Mode-Independent Criterion Based on Strain Energy Release

The thermodynamics of irreversible processes, regarding energy conversion as an essential physical
process, is a rational framework that can be applied to formulate failure criterion. Neglecting thermal
effects, the mechanical work of the external load, W, is converted to the elastic strain energy Ue and the
dissipated energy Ud in a closed system. According to the first law of thermodynamics, it assumes

W = Ue + Ud (1)

where irreversible Ud denotes the plastic deformation and the internal damage induced by micro-cracks
or defects inside a material element, while Ue is releasable and reversible energy. When a material is
subjected to the external load, some fraction of the mechanical work imposed on the UD composite
is converted into the dissipated energy, which leads to a progressive deterioration in the cohesion
of microscopic structures and corresponds to a nonlinear stress–strain behavior at the macro scale.
Since material failure at different levels has different physical meanings, it should be noted that such
degradation in mechanical properties of micro material elements does not necessarily imply a material
failure on a macroscopic level. Taking uniform tri-axial compression for example, despite the property
deterioration caused by micro damages at the microscopic level, a UD composite may not fail due to
the pressure effect. Moreover, given that the intrinsic dissipation during a material brittle failure is
negligible, a specified elastic strain energy is suggested to macroscopically represent a failure of using
the energy density concept to define a universal macroscopic failure criterion [20]. For a UD composite
under a general stress state σi in a Cartesian coordinate, its total elastic strain energy is defined as

Ue =
1
2
σiεi(i = 1, 2, · · · , 6) (2)

where εi is the elastic strain. The Cartesian coordinate system is defined as follows: 1-direction
corresponds to the fiber direction, 2-direction lies perpendicular to the fiber direction and 3-direction
goes along the thickness-direction of the single layer. Given transverse isotropy that is usually sufficient
to characterize behaviors of UD composites, Equation (2) can be further written as

Ue =
S11

2
σ2

11 +
S22

2
(σ22 + σ33)

2 + S12σ11(σ22 + σ33)+
S44

2

(
τ2

23 − σ22σ33
)
+

S66

2

(
τ2

12 + τ2
13

)
(3)
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where Si j(i, j = 1, 2, · · · , 6) represent the components of the compliance matrix for a transverse
isotropic material.

As long as the stored strain energy Ue reaches a critical value Gc, it will be suddenly released,
resulting in macroscopic failure. Specifically for brittle material, of which failure is independent of
deformation history, the criterion may be generalized as

Ue
(
σi j

)
= Gc (4)

If the critical strain energy Gc is assumed to be constant, a simple criterion can be constructed by
substituting Equation (3) into Equation (4). That is

S11

2Gc
σ2

11 +
S22

2Gc
(σ22 + σ33)

2 +
S12

Gc
σ11(σ22 + σ33)+

S44

2Gc

(
τ2

23 − σ22σ33
)
+

S66

2Gc

(
τ2

12 + τ2
13

)
= 1 (5)

It is not surprising that Equation (5) reproduces a standard stress form of the classical Tsai–Hill
failure criterion [21], since the Tsai–Hill criterion is the extension of the distortion strain energy-based von
Mises yield condition to orthotropic materials. Nevertheless, such an assumption indicates the identical
tensile and compressive nature of UD composite failure. Therefore, in principle, the present form of
Equation (5) could only predict macroscopic failure of the composite material with exactly the same
released strain energy or strength under tension and compression. Another main irrationality of this
assumption may be the combination of fundamental fracture mechanisms that are distinct. The critical
energy release corresponding to the fiber fracture (e.g., uniaxial tension along the longitudinal direction)
is different from that corresponding to the matrix cracking (e.g., pure transverse shear). The above
analysis shows that the simple assumption of Gc as a constant is improper, the physical meanings
underlying is not in satisfying agreement with the observation of actual composite failure mechanisms.
As a result, in an attempt to provide reasonably rational physical explanations, the specific form of Gc

should meet the following conditions:
(a) In contrast to isotropic materials, the heterogeneous nature of UD fiber reinforcement composites

indicates that there are two primary failure modes on the lamina level, i.e., longitudinal, fiber-dominated
failure mode and matrix-dominated failure mode. So the critical energy release corresponding to
different failure modes naturally comes different.

(b) The release of strain energy stored in composite materials is related to tension stress and
compression stress, whereas pure shear stresses with opposite orientation play an identical role in
failure formation, namely having the same critical strain energy.

(c) It seems impossible to neglect the effect of the hydrostatic stress on mechanical behavior,
as polymers exhibit clear sensitivity to hydrostatic pressure. Experimental investigation on the effects
of hydrostatic pressure has found that the transverse compression modulus increased markedly with
pressure, while a slight increase appeared in the longitudinal modulus [25]. The phenomenon suggests
that the volume change associated with hydrostatic stress may significantly affect the strain energy
corresponding to transverse matrix failure modes.

As a consequence, a failure criterion is to be formulated from the viewpoint of energy, to distinguish
between longitudinal, fiber-dominated failure mechanisms and transverse, matrix-dominated failure
mechanisms on the lamina level. In general, it is appropriate to use four different formulas to describe
these two primary modes induced by tension and compression.

2.1. Fibre Failure Mode

For the fiber failure mode, the failure plane is about the 2–3 plane [26]. The strain energy, Uft,fc
e ,

producing this type of failure may be correlated with σ11, τ12 and τ13, resulting in the fiber-controlled
failure criterion as

Ui
e =

Sint
11

2g(I1)
σ2

11 +
Sint

12

g(I1)
σ11(σ22 + σ33) +

Sint
66

2g(I1)

(
τ2

12 + τ2
13

)
= Gi

c (i = ft, fc) (6)
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where I1 (I1 = σ11) is the first stress invariant with respect to the preferred direction coinciding with the
1-direction. The superscript ‘int’ denotes the initial status with I1 = 0. g(I1) is the functional relation
for the initial longitudinal elastic modulus, Eint

11 , (where I1 = 0) and Ehyd
11 under hydrostatic stress

(where I1 , 0). Tensile fiber failure and compressive fiber failure are denoted by superscripts i = ft
and i = fc, respectively. Rearranging Equation (6) turns into

Ui
e =

S11

2
σ2

11 + S12σ11(σ22 + σ33) +
S66

2

(
τ2

12 + τ2
13

)
= Gi

c (I1) (i = ft, fc) (7)

where the superscript ‘int’ is neglected for the sake of simplification. According to the experimental
observation that longitudinal elastic modulus is insensitive to hydrostatic stress, i.e., g(I1) = 1, the critical
strain energy related to fiber tensile and compressive failure is approximately constant, namely

Gi
c(I1) = ci (8)

By applying pure longitudinal shear strength, SL, to Equation (7), it follows

cft = cfc =
S66

2
SL (9)

Utilizing failure data of uniaxial stress state σ11 in Equation (7) results in

XT =

√
S66

S11
SL, XC = −

√
S66

S11
SL (10)

where XT and XC are tensile and compressive failure stress in the fiber direction, respectively.
Contradiction, however, emerges in most cases where the magnitude of XT is not equal to but higher
than that of XC. Thus rationally, the term of shear stress τ12 and τ13 is demonstrated to be not in the
criterion regarding fiber failure. Equation (7) is then degenerated into

Ui
e =

S11

2
σ2

11 + S12σ11(σ22 + σ33) = Gi
c(I1) (i = ft, fc) (11)

This conclusion is not only correct mathematically but has physical meanings as well. It can
be explained that in the case of pure longitudinal shear (τ12 or τ13), the strain energy required for
shearing off fibers is much higher than shearing off of matrix. In other words, the energy stored in
composite materials would be easier to release in the way of matrix cracking. Many micromechanical
analyses [27–29] have also reported that the longitudinal shear loading would cause matrix cracking or
fiber–matrix debonding at the 1-2 or 1-3 plane rather than shear-driven fiber breakage on the 2–3 plane.
In addition, this inference is proved through the conclusions of Atas’s [30] and Tserpes’s work [31].
Both pieces of research have shown that fiber damage would be typically overestimated, once the
conventional shear strength is applied in shear stress terms of the Hashin-type fiber tensile failure
criterion. Hence, the energy-based criterion for fiber failure can be finally constructed in a stress type
as fiber tension failure for I1 ≥ 0 (FFT)

Fft
11σ

2
11 + Fft

12σ11(σ22 + σ33) = 1 (12)

and fiber compression failure for I1 < 0 (FFC)

Ffc
11σ

2
11 + Ffc

12σ11(σ22 + σ33) = 1 (13)

with
Fi

11 =
S11

2ci
, Fi

12 =
S12

ci
(14)
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where the coefficients, Fi
11(i = ft, fc), can be determined directly from conventional tensile and

compressive strengths of the material along fibers as

Fft
11 =

1
X2

T

, Ffc
11 =

1
X2

C

(15)

The attempt of determining Fi
12(i = ft, fc) means the inevitable consideration of multi-axial stress

states, as the coefficients characterize a Poisson’s effect (reflected by the compliance matrix component
S12) and fiber compression failure for σ11 and transverse stresses (σ22 and/or σ33). Given the difficulties
in conducting this type of experiment and the lack of a standard experimental method, a case of
tri-axial compression (σ11 = σ22 = σ33 = −σ∗) is considered. A logical outcome is deduced from
the basic assumption supposing much higher strength that can be taken as infinite for mathematical
convenience (i.e., σ∗ →∞ ). Substituting this stress state into Equation (13)

Ffc
12 = −

Ffc
11

2
+

1

2(σ∗)2 ≈ −
Ffc

11

2
= −

1
2X2

C

(16)

On the other hand, by rearranging Equation (14), one obtains

Fft
11

Fft
12

=
Ffc

11

Ffc
12

(17)

Thus, Fft
12 can be approximated as

Fft
12 = −

1
2X2

T

(18)

2.2. Matrix Failure Mode

Similarly, the strain energy corresponding to matrix failure, Um
e , would be formulated in terms of

the stresses σ22, σ33, τ12, τ13 and τ23. Similarly, the matrix-controlled failure criterion is expressed of
the general form

U j
e = S22

2 (σ22 + σ33)
2 + S12σ11(σ22 + σ33) +

S44
2

(
τ2

23 − σ22σ33
)
+ S66

2

(
τ2

12 + τ2
13

)
= G j

c(I2) ( j = mt, mc)
(19)

where I2 (I2 = σ22 + σ33) is the second stress invariant representing a volume change of the UD
composite material caused by transverse normal stresses. Superscripts j = mt and j = mc distinguish
tensile matrix failure with compressive matrix failure. It has been pointed out previously that
hydrostatic stresses affect transverse elastic moduli significantly. So the critical energy G j

c, as a function
of I2, could be derived by using a second-order approximation of Taylor’s expansion. It has

G j
c = a j(σ22 + σ33)

2 + b j(σ22 + σ33) + c j (20)

Substituting Equation (20) into Equation (19) gives matrix tension failure for I2 ≥ 0 (MFT)

Fmt
22 (σ22 + σ33)

2 + Fmt
2 (σ22 + σ33) + Fmt

12 σ11(σ22 + σ33)

+Fmt
44

(
τ2

23 − σ22σ33
)
+ Fmt

66

(
τ2

12 + τ2
13

)
= 1

(21)

and matrix compression failure for I2 < 0 (MFC)

Fmc
22 (σ22 + σ33)

2 + Fmc
2 (σ22 + σ33) + Fmc

12 σ11(σ22 + σ33)

+Fmc
44

(
τ2

23 − σ22σ33
)
+ Fmc

66

(
τ2

12 + τ2
13

)
= 1

(22)
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with

F j
22 =

S11 − 2a j

2c j
, F j

2 = −
b j

c j
, F j

12 =
S12

2c j
, F j

44 =
S44

2c j
, F j

66 =
S66

2c j
(23)

Pure longitudinal or transverse shear stress (SL or ST), in absence of all other stresses, is taken into
account first by application of Equations (21) and (22)

Fmt
44 = Fmc

44 =
1

S2
T

, Fmt
66 = Fmc

66 =
1

S2
L

(24)

For MFC, the available simple information is σ22 = −YC for uniaxial transverse compression.
The following equation can be deduced from the above stress state

Fmc
22 Y2

C − Fmc
2 YC = 1 (25)

To achieve additional information, uniform biaxial compressive condition σ22 = σ33 = −YCbi is
imposed as a supplementary, leading to

4Fmc
22 Y2

Cbi − 2Fmc
2 YCbi − Fmc

44 Y2
Cbi = 1 (26)

Then coefficients Fmc
22 and Fmc

2 are solved by combining Equation (25) and Equation (26)

Fmc
2 = −

1
Y2

C

(
Y2

C
4Y2

Cbi
− 1

)
+ 1

4S2
T

1
YC

( YC
2YCbi

− 1
) (27)

Fmc
22 =

1
Y2

C

+
Fmc

2

YC
(28)

However, there is no standard experimental procedure to measure biaxial compressive strength
YCbi at present. Therefore for the convenience of application, it is assumed, following Hashin’s idea,
that uniform biaxial compressive strength is far larger than the uniaxial compressive strength [9].
That is

YC

YCbi
≈ 0 (29)

Substituting Equation (29) into Equations (27) and (28) obtains

Fmc
2 = −

1
YC

+
YC

4S2
T

(30)

Fmc
22 =

1
4S2

T

(31)

A uniform tri-axial stress state of compression (σ11 = σ22 = σ33 = −σ∗) is used here to determine
the expression of Fmc

12 . This approach is similar to the one proposed to gain the value of coefficient Ffc
12

(see in Section 2.1). Fmc
12 would be approximated as

Fmc
12 =

Fmc
44 − 4Fmc

22

2
= 0 (32)

Regarding MFT, utilizing Equation (20) to transverse tensile strength YT renders

Fmt
22 Y2

T + Fmt
2 YT = 1 (33)
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Failure data for combined stresses are needed to provide a necessary additional equation,
as the transverse tensile test information provides only one equation for the determination of the
two coefficients Fmt

22 and Fmt
2 . Alternatively, to avoid using extra experiments that are difficult to

be carried out, a feasible equation is constructed by expecting that the failure envelope surface is
completely smooth.

Hence a smooth condition of the failure envelope is employed as

∇FMFT
∣∣∣I2=0 = ∇FMFC

∣∣∣I2=0 (34)

where ∇FMFT and ∇FMFC are the gradients of the functions for MFT and MFC failure. The above
equation means that the slope of the tangent of the MFT function is equal to that for MFC at I2 = 0.
Finally, Equation (34) gives

Fmt
2 = Fmc

2 = −
1

YC
+

YC

4S2
T

(35)

Meanwhile Fmt
22 could be estimated by

Fmt
22 =

1
Y2

T

+
1

YTYC
−

YC

4YTS2
T

(36)

Combining Equation (23) and Equation (24) results in

cmt = cmc (37)

and Fmt
12 must satisfy

Fmt
12 =

cmc

cmt
Fmc

12 = Fmc
12 = 0 (38)

For both Fmt
12 and Fmc

12 , their values of zero may indicate a physical phenomenon that the Poisson’s
effect due to σ11 does not influence the occurrence of MFT and MFC.

Now the failure mode-independent criterion derived on strain energy can be summarized for UD
composites.

• Fiber tension failure σ11 ≥ 0
σ2

11

X2
T

−
σ11(σ22 + σ33)

2X2
T

= 1 (39)

• Fiber compression failure σ11 < 0

σ2
11

X2
C

−
σ11(σ22 + σ33)

2X2
C

= 1 (40)

• Matrix tension failure σ22 + σ33 ≥ 0(
1

Y2
T
+ 1

YTYC
−

YC
4YTS2

T

)
(σ22 + σ33)

2 +
(
−

1
YC

+
YC
4S2

T

)
(σ22 + σ33)

+ 1
S2

T

(
τ2

23 − σ22σ33
)
+ 1

S2
L

(
τ2

12 + τ2
13

)
= 1

(41)

• Matrix compression failure σ22 + σ33 < 0

1
4S2

T
(σ22 + σ33)

2 +
(
−

1
YC

+
YC
4S2

T

)
(σ22 + σ33) +

1
S2

T

(
τ2

23 − σ22σ33
)

+ 1
S2

L

(
τ2

12 + τ2
13

)
= 1

(42)
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3. Failure Mode-Interactive Criterion Based on Strain Energy Release

Following the previous statement, the strain energy related to fiber failure, Uf
e, has no impact on

matrix damages. This hypothesis is consistent with the one adopted by most of the existing criteria,
e.g., Hashin’s criterion [9] or Puck’s criterion [8], which treats fiber fracture independent of matrix
cracking because their potential fracture planes are perpendicular. However, the weakening effect of
σ11 on the transverse mechanical behavior has been clearly observed by experimental evidence [24].
In other words, the predictions gained by mode-independent criteria are not conservative in some
loading conditions, such as combined σ11 − σ22. From the microscopic point of view, the reason may
be that the existence of local fiber-matrix debonding and matrix micro-cracks will weaken the ability
of composites to resist both fiber- and matrix-dominated failure. However, if the focus is shifted to
describe above failure mode interactions on the lamina level, the existing methods introduce artificial
parameters that are hardly or even impossibly measured, e.g., portions of the failure function proposed
by Cuntze [17] and degradation factors used by Puck et al. [13,24]. In this paper, a method is proposed
below on a rational physical basis to eliminate empiricism, as far as failure mode interactions of UD
composites are concerned.

Obviously, both fiber failure and matrix failure in materials correspond to strain energy release.
As a consequence, if an interaction of fiber and matrix failure has to be executed, the strain energy
that causes ‘mixed’ material failure should physically involve two independent parts, i.e., the one
resulting in matrix failure and that causing failure, as discussed in previous Section 2. The strain
energies released at the macro level have already considered the effect of complicated and uncertain
factors (e.g., defects) at the microscale. The failure criterion can be given as

αi jUi
e + β

i j
U j

e = Gi j
c (I1, I2) (i = ft, fc j = mt, mc) (43)

where αi j and βi j represent the efforts of fiber-related and matrix related strain energy to the mixed
failure, respectively. Superscripts i and j denote specific failure mode. Gi j

c is the critical strain energy
for the corresponding failure mode, and can be derived by using a second-order approximation of I2

with consideration of different effects of the hydrostatic stress (I1 and I2) on the mechanical behavior of
UD composites. Substituting Equations (11) and (19) into Equation (43) obtains

αi j S11
2 σ

2
11 +

(
αi j + βi j

)
S12σ11(σ22 + σ33) + βi j S22

2 (σ22 + σ33)
2+

βi j S44
2

(
τ2

23 − σ22σ33
)
+ βi j S66

2

(
τ2

12 + τ2
13

)
= ai j(σ22 + σ33)

2 + bi j(σ22 + σ33) + ci j

(44)

Rearranging the terms gives

Fi j
11σ

2
11 + Fi j

12σ11(σ22 + σ33) + Fi j
22(σ22 + σ33)

2 + Fi j
2 (σ22 + σ33)+

Fi j
44

(
τ2

23 − σ22σ33
)
+ Fi j

66

(
τ2

12 + τ2
13

)
= 1

(45)

Considering the available uniaxial test information in Equation (45) and using the similar
approaches discussed in Sections 2.1 and 2.2, all the coefficients except Fi j

12 are equal to those of the

corresponding stress terms appearing in Equations (39)–(42). The coefficient Fi j
12 describes only the

interaction between direct stresses σ11, σ22 and σ33, indicating that a tri-axial stress state having an
independent σ11 in addition to σ22 = σ33 can deduce the analytical expression of Fi j

12. First assuming a
tri-axial compressive stress state σ11 = σ22 = σ33 = −σ∗ < 0 in Equation (45),(

Ffcmc
11 + 4Ffcmc

22 + 2Ffcmc
12 − Ffcmc

44

)
(σ∗)2

− 2Ffcmc
2 σ∗ = 1 (46)
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It is anticipated that the material would sustain a stress level significantly higher, which can be
treated as infinite for mathematical convenience, than its uniaxial compressive strength. This can be
re-written into

Ffcmc
12 = 1

2(σ∗)2 +
Ffcmc

2
σ∗ +

(Ffcmc
44 −Ffcmc

11 −4Ffcmc
22 )

2

≈ −
Ffcmc

11
2 = − 1

2X2
C

(47)

The failure in UD composites may be solely presented as FFT mode with respect to the stress
condition of σ11 ≥ 0 and σ22 = σ33 = −σ∗ < 0, due to the assumption that the MFC mode is not
activated under uniform biaxial compression (see in Equation(29)). According to the equivalence of
Equation (12) and Equation (45),

Fftmc
11 X2

T − 2Fftmc
12 XTσ

∗ +
(
4Fftmc

22 − Fftmc
44

)
(σ∗)2

− 2Fftmc
2 σ∗ = Fft

11X2
T − 2Fft

12XTσ
∗ (48)

Utilizing the condition of σ∗ at failure is extremely high, Fftmc
12 is approximated as

Fftmc
12 = Fft

12 −
Fftmc

2

XT
= −

1
2X2

T

+
1

XTYC
−

YC

4XTS2
T

(49)

Triaxial tensile test data for the determination of coefficients Fftmt
12 are considered. But since available

data is limited in the current literature and experimental methods are immature, an alternative method
is given to smooth the failure envelope at the point σ22 + σ33 = 0. Hence,

Fftmt
12 = Fftmc

12 (50)

Likewise, the application of the smooth condition, it gives

Ffcmt
12 = Ffcmc

12 (51)

So far, the failure mode-interactive criterion has been proposed, through a logical-mathematical
derivation regarding physical circumstances of strain energy release, as

• FFT and MFT σ11 ≥ 0 and σ22 + σ33 ≥ 0

σ2
11

X2
T
+

(
−

1
2X2

T
+ 1

XTYC
−

YC
4XTS2

T

)
σ11(σ22 + σ33) +

(
1

Y2
T
+ 1

YTYC
−

YC
4YTS2

T

)
(σ22 + σ33)

2

+
(
−

1
YC

+
YC
4S2

T

)
(σ22 + σ33) +

1
S2

T

(
τ2

23 − σ22σ33
)
+ 1

S2
L

(
τ2

12 + τ2
13

)
= 1

(52)

• FFC and MFT σ11 < 0 and σ22 + σ33 ≥ 0

σ2
11

X2
C
−
σ11(σ22+σ33)

2X2
C

+
(

1
Y2

T
+ 1

YTYC
−

YC
4YTS2

T

)
(σ22 + σ33)

2

+
(
−

1
YC

+
YC
4S2

T

)
(σ22 + σ33) +

1
S2

T

(
τ2

23 − σ22σ33
)
+ 1

S2
L

(
τ2

12 + τ2
13

)
= 1

(53)

• FFT and MFC σ11 ≥ 0 and σ22 + σ33 < 0

σ2
11

X2
T
+

(
−

1
2X2

T
+ 1

XTYC
−

YC
4XTS2

T

)
σ11(σ22 + σ33) +

1
4S2

T
(σ22 + σ33)

2

+
(
−

1
YC

+
YC
4S2

T

)
(σ22 + σ33) +

1
S2

T

(
τ2

23 − σ22σ33
)
+ 1

S2
L

(
τ2

12 + τ2
13

)
= 1

(54)
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• FFC and MFC σ11 < 0 and σ22 + σ33 < 0

σ2
11

X2
C
−
σ11(σ22+σ33)

2X2
C

+ 1
4S2

T
(σ22 + σ33)

2 +
(
−

1
YC

+
YC
4S2

T

)
(σ22 + σ33)

+ 1
S2

T

(
τ2

23 − σ22σ33
)
+ 1

S2
L

(
τ2

12 + τ2
13

)
= 1

(55)

4. Validation Studies

Experimental measurements from World-Wide Failure Exercise (WWFE), organized by Hinton,
Soden and Kaddour [32,33], are used here to evaluate the capability of the two proposed failure
criteria. The material properties are collected in Table 1. The Hashin criterion, which is admired for its
simplicity of concept and wide incorporation into FEA commercial codes, is also adopted to make a
parallel comparison.

Table 1. Strength properties of composites [34].

Material XT/MPa XC/MPa YT/MPa YC/MPa SL/MPa ST/MPa

E-Glass/LY556 1140 570 37.5 * 131.5 * 66.6 * 40
AS4/55A 27 91.8 51.3 26.8

E-glass/MY750 1280 * 800 * 40 * 145 * 73 50
T300/BSL914C 1433.6 * 853 * 27 200 73 * 41

AS4/PEEK 2128 954.6 93 205.9 133 72.7
T800H/2500EP 1934 - 48.5 120 77.8 40
S-glass/epoxy 1410 * 1147 * 63 180 72 50

A-S carbon/epoxy 2000 * 1500 38 150 72 40
T300/PR319 1378 950 40 125 76 * 45

* Average value.

Honestly, we should admit that there could be possibilities to achieve the wrong results in the
experiments. The evaluations obtained by direct comparisons with experimental results of a high
dispersion are certainly irrational. However, because a large number of experimental data from WWFE
have been used by a wide range of popular failure theories to estimate their predictability, as a result,
the reliability of experimental results from WWFE has been demonstrated by many researchers, so it
may be feasible to validate the proposed theory by using these results. In addition, in contrast to
the failure criteria that employ input parameters hardly determined by the existing test methods,
for our failure criteria, the input parameters, which should be provided as known conditions, are solely
conventional uniaxial strengths of the composite lamina. These strengths can be measured by mature
test methods, and corresponding test standards are formed, such as American Society for Testing
and Materials (ASTM) standards. Thus, it helps avoid experimental error or control high dispersions
regarding with input parameters, resulting in high fidelity of predictions given by our criteria.

4.1. σ22 − τ12 Failure Envelopes

Figure 1 shows the predicted σ22 − τ12 failure envelopes for two different materials:
E-Glass/LY556 [32] and AS4/55A [35]. It is observed that both the mode-independent criterion
and the mode-interactive criterion coincide exactly with each other and fit well the experimental
results obtained. For the stress interval of σ22 < 0, when the lamina is subjected to moderate transverse
compressive stress σ22, the phenomenon that higher shear stress (τ12 > SL) could be sustained
without fracture is successfully obtained. Better agreements between predicted and measured results
are achieved than those given by the Hashin criterion in the case of σ22 ≥ 0. The difference is
a logical consequence of whether the influence of hydrostatic stress on the critical strain energy.
The Hashin criterion overestimates the capacity of UD composites against MFT fracture, resulting in
non-conservative predictions. Besides, both proposed criteria eliminate the undesired sharp corner
existing at σ22 = 0.
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Figure 1. Failure envelopes and experimental results under σ22 − τ12 for (a) E-glass/ LY556 and (b)
AS4/55A.

4.2. σ11 − σ22 Failure Envelopes

Soden and Hinton [32] tested E-glass/MY750 lamina subjected to longitudinal and transverse
loading. The experimental data and the theoretical results for combined σ11−σ22 are presented in
Figure 2. The Hashin criterion degenerates into the maximum stress criterion, and the shape of its
failure envelope is a rectangle with the boundaries corresponding to basic tensile and compressive
strengths. A slight difference between failure envelopes of the mode-independent criterion and
Hashin criterion is observed and may be caused by the Poisson’s effect of longitudinal and transverse
directions according to Equation (11). However, the quadrilateral lines, indicating the independence
of two stress components σ11 and σ22, is not supported by the test data. In contrast, a relatively
better agreement between experiments and theoretical results, particularly in the tension-compression
quadrants, once on account for the interaction between fiber and matrix failure. It is worth mentioning
that in the compression–compression quadrant, the biaxial strength is predicted to exceed the uniaxial
longitudinal compressive strength by a maximum of 8% at the stress ratio σ11/σ22= 19.2.Polymers 2020, 12, x 13 of 19 
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Figure 2. Failure envelopes and experimental results under σ11 − σ22 for E-glass/MY750.

4.3. σ11 − τ12 Failure Envelopes

The predicted σ11 − τ12 failure envelopes of T300/BSL914C carbon epoxy [32] are plotted in Figure 3.
A high dispersion is found for test data, especially for that from Experiment-01. These experimental
errors, e.g., the average value of longitudinal shear strength SL = 73 MPa, would affect some theoretical
results, as shown in Figure 3a. But if we abandon the data from Experiment-01 due to significant data
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scatter, the accuracy of predictions could be improved with SL = 93.8 MPa. The failure envelope given
by the mode-independent criterion degenerates into a rectangle, meaning that σ11 and τ12 control
failure in fiber and matrix modes, respectively. The mode-interactive criterion is, compared to the other
criteria, more conservative in predicting fracture for the σ11 − τ12 diagram. At the same time, it achieves
the best agreement with the measurements. It should be noted that even though the envelope of
Hashin criterion stays consistent with the one gained by the mode-interactive criterion when σ11 ≥ 0,
their physical interpretation underlying is distinctly different. Hashin’s theory asserts the failure mode
is still FFT failure even under extremely small σ11, which is inconceivable because any fiber may not be
ruptured from a microscopic point of view. The proposed mode-interactive criterion, on the contrary,
provides a reasonable explanation that the potential failure mode will gradually change from fiber
failure into matrix failure with the decrease of σ11, which will always keep making contributions to
failure regardless of failure modes.
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4.4. Off-Axis Tension Failure

Figure 4 shows the experimental and predicted relations between the off-axis angle and the peak
tensile stress. Test data for materials AS4/PEEK and T800H/2500EP are reported from references [36,37].
All theories fit the experimental results well. The predicted failure mode transition angles from FFT to
MFT are listed in Table 2. It is mentioned that the inherent mode predicted by the mode-interactive
criterion may be estimated by comparing values of FF-related function and MF-related function.
As MFT fracture can be observed in the off-axis tension experiments if the loading angle exceeds
5◦, the mode transition angles predicted by both proposed criteria are more reasonable than the
Hashin criterion.
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Figure 4. Comparison between the predicted off-axial tensile strengths and experimental results for (a)
T800H/2500EP and (b) AS4/PEEK.

Table 2. Mode transition angles induced by the off-axial load.

Failure Criterion
Mode Transition Angle/◦

T800H/2500EP AS4/PEEK

Mode-independent criterion 2.2 3.4
Mode-interactive criterion 2.2 3.4

Hashin 8.9 11.8

4.5. σ22 − σ33 (with σ11 = σ33) Failure Envelopes

The predictions of the failure envelopes for E-glass/MY750 lamina [33] loaded with varied
combinations of σ22 and σ11 = σ33 are presented in Figure 5. MF fracture is predicted as the primary
failure mode by all failure theories in this stress state. In the quadrant of tri-axial compression,
both envelopes provided by Hashin’s and the mode-independent criteria are cut off by FF fracture,
as shown in Figure 5a, while the envelope of the proposed mode-interactive criteria is open due to
the adopted assumption stating infinite tri-axial compressive strength in mathematics. In fact, in a
real test, failure could be initiated by a local defect. The comparison between all failure theories and
experiments shows an exceptionally good agreement. Partial enlargement in Figure 5b demonstrates
that the proposed criteria provide relatively more conservative results and a smoother surface than the
Hashin criterion.
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4.6. τ12 − σ22 (with σ11 = σ22 = σ33) Failure Envelopes

Figure 6 presents a comparison between the predictions and test data under combined hydrostatic
pressure and shear stress for a composite lamina made of T300/PR39 [33]. In the tri-axial compressive
regime, an enhancement in shear strength is observed from Figure 6a. With increasing compressive
hydrostatic stress, the failure envelopes of the mode-independent criterion and Hashin criterion
are cut off by a vertical line, suggesting that the failure mode eventually changes to fiber fracture.
In contrast, the openness of the failure envelope can be seen for the proposed mode-interactive criterion,
due to the underlying manipulation of infinite strengths under hydrostatic pressure. MFT failure is
predicted by all failure theories in the tensile regime, as shown in Figure 6b, and the present criteria
provide relatively more conservative results at high shear stress. Nevertheless, all theories significantly
overestimate the effect of hydrostatic pressure on strength of the composite lamina. The possible reason
may be the hypothesis that the ratio of uniaxial compressive strength to biaxial compressive strength is
approximately zero (see in Equation (29)), resulting in an overestimation of the coefficient Fi j

2 related to
the linear stress term of (σ22 + σ33) mathematically.
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4.7. σ11 − σ22 (with σ22 = σ33) Failure Envelopes

The last cases are related to composite materials S-glass/epoxy and A-S carbon/epoxy [33].
The failure envelopes under varied combinations of σ11 and σ22 = σ33 are plotted in Figure 7.
All theories predict the failure envelopes are open in the presence of transverse pressures. In the
negative σ22 = σ33 regime, the loci obtained by Hashin’s fibre fracture (FF) criterion, which degenerates
into the maximum stress criterion, are two infinitely extended vertical lines. Meanwhile, the loci
obtained by the mode-independent criterion are not vertical due to the extra consideration of a
Poisson’s effect of transverse stresses. In the region characterized by tri-axial compression, it is evident
that the proposed failure mode-interactive criterion exhibits a better predictive ability, particularly
for S-glass/epoxy, despite the overestimation of infinite bi-axial and tri-axial compressive strengths.
Noted that in practice, composite materials will rupture due to their imperfect micro-structures, e.g.,
manufacturing defects. Thus, results predicted by the criterion considering the interaction effect are
acceptable for the reason of lack of accessible multi-axial experimental data. The distribution of data
in the tension–compression quadrant explains the reasonability that regarding FFT fracture as the
dominating failure mode for all analyzed criteria.
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In the present study, two new strain energy-based failure criteria, respectively referring to
mode-independent and mode-interactive criteria, are proposed and evaluated for fiber-reinforced
composite materials. All coefficients employed in the formulation of the theory are obtained by
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following logical deductions from a set of predefined assumptions. On the premise of the lack of
experimentally feasible multi-axial strengths, the assumption of infinite strength under bi-axial and
tri-axial compressive stress provides a condition for determining coefficients of the terms representing
stress interaction. The main conclusions are listed here.

(1) From the viewpoint of energy release, it demonstrates that the general expression for fiber
fracture mode should not involve the shear stress term due to a mathematical contradiction in the
formulation of failure theory. A genuine feature of physics purely from the mathematical and logical
deduction is explained. In the proposed theory, despite the work is based on strain energy density,
the specific value of energy is not required to be determined. Experimental data show that the inclusion
of the shear stress term in the Hashin FFT criterion leads to the underestimation of failure strength.

(2) The employment of linear stress terms is a logical outcome considering the different influences
of hydrostatic stress on longitudinal and transverse elastic moduli. The hydrostatic stress may not
result directly in macroscopic failure, but it could affect the strain energy density stored in composite
materials. The well-known phenomenon that moderate transverse compression impedes shear fracture
could not be predicted if abandoning the hydrostatic stress effect.

(3) A failure criterion at the lamina level is further proposed for characterizing microscopic
interactions between matrix-dominated and fiber-dominated failure modes. The interactive coefficients,
which represent the coupling effects of dominant stresses driving FF and MF are determined under
certain tri-axial stress states.

(4) Experimental verification has shown that both the present criteria, especially the
mode-interactive criterion, work reasonably well for predicting the failure of most UD-laminates under
biaxial, off-axis and tri-axial loading. The input parameters are limited to the conventional uniaxial
tensile, compressive and shear strengths, and no empirical or artificially defined input parameters
are required to calibrate. Thus the proposed criteria have a wide range of applicability and can be
incorporated into finite element (FE) codes in a relatively easy manner.
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