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Abstract: Biopolymer-based aerogels can be obtained by supercritical drying of wet gels and endowed
with outstanding properties for biomedical applications. Namely, polysaccharide-based aerogels
in the form of microparticles are of special interest for wound treatment and can also be loaded
with bioactive agents to improve the healing process. However, the production of the precursor gel
may be limited by the viscosity of the polysaccharide initial solution. The jet cutting technique is
regarded as a suitable processing technique to overcome this problem. In this work, the technological
combination of jet cutting and supercritical drying of gels was assessed to produce chitosan aerogel
microparticles loaded with vancomycin HCI (antimicrobial agent) for wound healing purposes.
The resulting aerogel formulation was evaluated in terms of morphology, textural properties, drug
loading, and release profile. Aerogels were also tested for wound application in terms of exudate
sorption capacity, antimicrobial activity, hemocompatibility, and cytocompatibility. Overall, the
microparticles had excellent textural properties, absorbed high amounts of exudate, and controlled
the release of vancomycin HCl, providing sustained antimicrobial activity.

Keywords: biopolymers; polymer processing; biomedical applications; wound treatment; chitosan;
aerogels

1. Introduction

Aerogels are nanostructured, lightweight materials with open, high porosities and large surface
areas that currently find applications in many industrial sectors due to their thermal, optical, electrical,
or mechanical properties [1,2]. The outstanding textural properties of the aerogels have also attracted
the attention from other fields such as biomedical and environmental sciences [3-6]. Biomedical
applications of aerogels include the encapsulation of bioactive agents with solubility or stability
limitations, and their use as synthetic scaffolds for tissue engineering and wound dressing materials
for chronic wounds [7-16]. In the latter case, the large surface area of the aerogels confers them the
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ability to load and release bioactive agents, such as antibiotics or growth factors, which can facilitate
the wound healing process [17]. High porosity also provides the aerogels with the ability to absorb
exudate fluid in order to maintain a correct moisture balance at the wound site. This in turn alleviates
the inflammatory process and prevents the appearance of bacterial infections (one of the main barriers
for the wound healing process) [11,18]. Other advantages of aerogels include high stability upon
storage and protection of the drug from the environment [5].

Aerogels are usually processed by supercritical drying of polymeric wet gels with supercritical CO,
(scCOy) [19]. This drying technique can extract the liquid part of the gel under mild conditions of pressure
and temperature (P > 73.8 bar, T > 31.1 °C) whilst preserving the interconnected structure of the polymer
network without causing the pore collapse phenomenon. Biopolymer-based materials are preferred
for wound care applications, since their biocompatibility and biodegradability may avoid toxicity
problems. Natural polysaccharides such as alginate, pectin, cellulose, starch, or chitosan are widely used
since they are abundant and cost-effective, and have been approved and largely used in the food and
pharmaceutical industry [20-22]. The hemostatic, antimicrobial, and healing-promoting properties of
chitosan are suitable for wound healing applications [23,24]. Chitosan gels can be processed by physical
or chemical crosslinking, resulting in tunable mechanical properties and enhanced biocompatibility [25].

Particulate systems, such as micro- or nanoparticles, are attracting attention in the field of drug
delivery as carriers since they present a large surface area and can control the release of the drug [26].
Unlike nanoparticles, microparticles are unable to penetrate most biological barriers and remain in the
location of interest [27-29]. This feature entails an advantage for local delivery of drugs, where systemic
absorption is not desired and may result in toxicity issues. For the production of aerogel microparticles,
several technologies have been described [30]. The emulsion-gelation method is a suitable option to
obtain homogeneous particle sizes, but involves the use of emulsifying agents that may modify the
surface properties of the particles [31]. Other approaches are often modifications of the conventional
dripping method [30], applying different types of forces (electrostatic, vibrational, or mechanical) to
break the liquid jet into droplets. However, the mechanical forces are the only feasible option to process
solutions of high viscosity.

The jet cutting method is a simple strategy for the production of gel particles, and is based on the
application of mechanical forces to a liquid jet. This technique allows for the preparation of particles
with controlled diameters ranging from 100 pm to several millimeters at high production rates [32].
In the jet cutting technique the fluid is pressed out of a nozzle as a jet towards a rotating disc with small
wires placed below (Figure 1). This disc cuts the liquid jet into cylinders that would eventually form
spherical beads due to surface tension forces. The size of the beads can be modulated by the pressure
of the jet, the nozzle diameter, the number and diameter of wires, and the rotation velocity. A small
part of the fluid (1-5%) can be lost during the cutting because of its adhesion to the wires and non-zero
wire thickness [30]. The adjustment of the parameters to optimize the process along with reuse of the
lost solution can lead to production yields close to 100%, making it a very efficient and easy-to-scale
process [33].

Overall, chitosan aerogel microparticles are attractive drug carrier candidates for wound treatment,
but their processing difficulties, associated with the high viscosity of the chitosan precursor solution,
hamper their potential use. Alternative technologies must be sought to overcome the limitations in
the processing of chitosan aerogels as microparticles. In this work, the feasibility of the jet cutting
technique to obtain chitosan aerogel microparticles was studied, and their potential application in
wound treatment was assessed. Chitosan aerogel microparticles were prepared by the sol-gel method
using the jet cutting technique followed by supercritical drying with scCO, and evaluated for wound
healing purposes. The parameters of the jet cutting process were defined regarding the processability
of the chitosan solution and the characteristics of the produced particles. Chitosan particles were
loaded with vancomycin HC, a broad-spectrum antimicrobial drug, and the drug loading and release
were evaluated. Specific tests for the application in wound treatment, as the exudate sorption capacity,
antimicrobial activity, hemocompatibility, and cytocompatibility, were also carried out.
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Figure 1. Schematic representation of the jet cutting process. The chitosan solution was pressed out of
the nozzle as a fluid jet and cut into cylinders by the cutting disc. The cylinders acquired the spherical
shape of droplets before falling into the gelation bath due to surface tension.

2. Materials and Methods

2.1. Materials

Chitosan (degree of deacetylation 90%, viscosity 500 mPa-s, Mw 200-400 kDa) was purchased from
Heppe Medical Chitosan GmbH (Halle, Germany). Glacial acetic acid (100% purity) and ethanol (99.8%
purity) were obtained from Carl Roth (Karlsruhe, Germany) and CO, (purity > 99.5%) was supplied
from Praxair (Ratingen, Germany). NaCl and NHj3 (25% in H,O) were from PanReac AppliChem
(Barcelona, Spain). Triton X-100 was from Merck (Darmstadt, Germany). Vancomycin hydrochloride
(Mw 1486 g/mol, 94.3% purity, amorphous) was from Guinama (Valencia, Spain). BALB/3T3 clone
A31 mouse fibroblasts (ATCC CCL-163) and Dulbecco’s modified Eagle’s medium (DMEM) were
from the American Type Culture Collection (ATCC, Manassas, VA, USA). Fetal bovine serum (FBS),
phosphate buffer saline (PBS), and penicillin 10,000 U/mL-streptomycin 10 mg/mL, NaOH and HCI
37% were supplied by Sigma-Aldrich (Saint Louis, MO, USA). WST-1 reactive was purchased from
Roche (Basel, Switzerland).

2.2. Production of Chitosan Aerogel Microparticles

Chitosan gel particles were produced using a JetCutter Type S equipment (GeniaLab GmbH,
Braunschweig, Germany). Table 1 summarizes the combinations of parameters used in this study.
Briefly, the jetted chitosan solution (250 mL of 2 wt.% chitosan in 1% v/v acetic acid aqueous solution)
was extruded through a nozzle assisted by compressed air (P =2 bar). A protective piece of stainless
steel was placed around the cutting disc to collect fluid loss. Different nozzle diameters (350, 400, and
500 pm), number of wires (40 and 120) of the cutting disc, and cutting disc rates (1000 to 6000 rpm) were
used to test the feasibility of particle production and the morphology and particle size distribution
(PSD) of the resulting particles. The angle of the jet was in all cases perpendicular to the cutting disc.
A gelation bath consisting of 2 L of alkaline medium was placed below the jet cutter to form and collect
the gel microparticles. Preliminary tests were carried out in aqueous media (0.2 M NaOH) to avoid
the use of high volumes of ethanol and thus reducing the amount of organic solvents used in the
study. After a preliminary screening of the parameters for the processing of the chitosan solution, the
gelation of vancomycin-loaded chitosan particles was performed in 2 L of EtOH containing 26 mL of
25% aqueous NHj3. The loading of vancomycin HCl into the particles was performed by addition of
the drug to the initial chitosan solution (10 wt.% with respect to chitosan). The microparticles were left
in the gelation bath for 1 h for ageing and then the solvent was replaced with absolute EtOH twice.
Gel particles were placed in filter paper and dried for 3.5 h with supercritical CO, in a 250 mL high
pressure autoclave (120 bar, 40 °C, 15 g/min).



Polymers 2020, 12, 273 40f 13

Table 1. Experimental jet cutting parameters tested for the processing of chitosan gel particles.

Number of Wires Gelation Bath Nozzle Diameter Cutting Disc Velocity
in the Cutting Disc (um) (rpm)
4500
120 0.2 M NaOH (aq.) 350 1000
2000
0.2 M NaOH (aq.) 400 4000
40 6000
2000
0.2 M NaOH (aq.) 4000
500 6000
NH3/EtOH 6000

2.3. Morphology and Textural Properties

During the initial screening of the jet cutting process, gel particles processed using nozzle
diameters of 400 and 500 pm and gelified for 1 h in aqueous 0.2 M NaOH were examined by optical
microscopy (VisiScope TL384H, VWR International GmbH, Darmstadt, Germany) to qualitatively
monitor properties such as sphericity and homogeneity. After supercritical drying, the resulting
unloaded and vancomycin-loaded aerogels were studied by scanning electron microscopy (SEM) at
3 kV (FESEM ULTRA PLUS, Zeiss, Oberkochen, Germany). Prior to SEM-imaging, aerogels were
sputtered-coated (Q150 T/S/E/ES, Quorum Technologies, Lewes, UK) with a 10 nm layer of iridium to
improve the contrast. The PSD and sphericity of the aerogels were determined by dynamic image
analysis (CamSizer XT, Retsch, Haan, Germany). All data for the PSD were obtained based on the Xarea,
i.e., the particle diameter obtained from the area of particle projection. Sphericity was given as a value
between 0 and 1, with 1 being a perfect sphere.

Nitrogen adsorption-desorption measurements (ASAP 2000 Micromeritics Inc, Norcross, GA,
USA) were used for the determination of the textural properties of the aerogel particles loaded with
vancomycin HCI and gelified in a NH3/EtOH medium. Specific surface area (apgr) was calculated
using the Brunauer-Emmet-Teller (BET) method, whereas the Barrett-Joyner-Halenda (BJH) method
was applied for the determination of the pore size distribution, specific pore volume (V,, gjy), and
mean pore diameter (dp, gjir). Overall porosity (¢) was determined using Equation (1):

:(1 - M)xmo 1)
Pskel

where ppyk is the bulk density determined from the weight of particles of a known volume, and
Pskel is the skeletal density determined by helium pycnometry (MPY-2, Quantachrome, Delray Beach,
FL, USA).

2.4. Fluid Sorption Capacity Test

Approximately 40 mg of aerogel microparticles were placed in 6-well plate inserts of known
weight and immersed in Falcon tubes containing 50 mL of PBS (Phosphate Buffered Saline) pH 7.4
solution. At specific times (1, 2, 4, 8, and 24 h), the inserts were removed from the solution and weight
gain was determined. The experimental test was carried out in triplicate. The PBS sorption capacity
was calculated using Equation (2):

PBS sorption (%) = wa;ow"xloo 2)

where w( and w; are the weight of the particles before and after the immersion in PBS during a certain
time t, respectively.
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2.5. Vancomycin Entrapment Yield and Release Tests

Vancomycin-loaded chitosan aerogel particles (50 mg) were placed in glass vials containing 5 mL of
0.1 M HCI. After 4 h, the particles were dissolved and the concentration of vancomycin in the medium
was determined by UV/Vis spectrophotometry at a wavelength of 280 nm (Genesys10uv, Thermo
Spectronic, New York City, NY, USA). The absorbance of dissolved unloaded chitosan aerogels was
also determined to remove the influence of the polymer in the UV-measurements. The concentration of
vancomycin HCl was calculated using a calibration curve in 0.1 M HCl validated in the 20-300 pg/mL
range (R? > 0.9995). The entrapment yield of vancomycin into the aerogels was determined using
Equation (3):

Entrapment yield (%) = x—fxloo (©)]
where wp, is the amount of vancomycin HCI present in the particles and w is the total amount of
vancomycin added to the initial chitosan solution.

Vancomycin release tests were carried out in Franz cells consisting of a donor chamber and a
receptor chamber separated by a 0.45 um cellulose nitrate membrane filter (Whatman, Maidstone, UK).
The receptor chamber was filled with 6 mL of PBS (pH 7.4) and ca. 40 mg of particles were added to
the donor chamber. Surface available for drug diffusion was 1 cm?. The release tests were performed
in triplicate in an orbital shaker (VWR® Incubating Mini Shaker, VWR, Chester, PA, USA) at 37 °C and
400 rpm. At preset times, aliquots of 1 mL were taken from the receptor chamber and the withdrawn
volume was replaced with fresh PBS. The concentration of vancomycin HCl was determined by UV-Vis
spectrophotometry (8453, Agilent, Santa Clara, CA, USA) using a calibration curve in PBS validated in
the 25-200 pug/mL range (R? > 0.9997). Experiments were carried out in triplicate and results were
expressed as ug of vancomycin released per mg of loaded aerogel particles.

2.6. Antimicrobial Tests

Antibacterial activity of the aerogel microparticles was tested against S. aureus (ATCC 25923).
Exponential bacterial culture (10° CFUs/mL) was prepared in a simulated body fluid (SBF, pH 7.4).
The bacterial suspension (200 mL) and 7 mg of chitosan aerogel particles (with and without vancomycin)
were incubated at 37 °C and 150 rpm for 6, 24, and 48 h. After incubation, the planktonic population was
quantified by the colony-forming units (CFUs) method. A solution of vancomycin HCl (1.85 mg/mL)
and free bacterial suspension acted as positive and negative controls, respectively. Three independent
experiments were performed in triplicate. Results were expressed as the logarithmic concentration of
planktonic bacteria.

2.7. Biocompatibility Tests in vitro

2.7.1. Hemolytic Activity Test

The hemolytic activity of the vancomycin-loaded aerogel microparticles was tested using human
blood (Galician Transfusion Center, Spain) obtained in accordance with the rules of the Declaration of
Helsinki. A sample of fresh human whole blood was diluted to 33% (v/v) in 0.9% (w/v) NaCl and 1 mL
of the diluted blood was poured in Eppendorf tubes containing 5 mg of vancomycin-loaded chitosan
aerogel microparticles, 100 uL of 4% (v/v) Triton X-100 (positive control) or 100 pL of 0.9% (w/v) NaCl
(negative control). Samples were incubated for 60 min at 37 °C and 100 rpm in an orbital shaker and
then centrifuged at 10,000 g for 10 min (Sigma 2-16P, Sigma Laboratory Centrifuges, Germany). Then,
150 uL of the supernatant were transferred to a 96-well plate and the absorbance of the hemoglobin
was measured at 540 nm (FLUOStar Optima, BMG Labtech, Germany). The percentage of hemolysis
of the aerogels was determined using Equation (4):

Abss — Abs,,

Hemoly51s (/o) = m)(loo (4)
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where Abs; is the absorbance of the samples containing the aerogels, Absy, is the absorbance of the
negative control (0% of hemolysis), and Abs;, is the absorbance of the positive control (Triton X-100,
100% of hemolysis). Tests were carried out in triplicate.

2.7.2. Cytotoxicity Test

The compatibility of vancomycin-loaded aerogel microparticles was tested against BALB/3T3
mouse fibroblasts. Cells were seeded in 24-well plates (12,350 cells per well) in DMEM supplemented
with 10% FBS, penicillin 100 U/mL, and streptomycin 100 pg/mL and incubated overnight at 37 °Cin a
humidified atmosphere with 5% CO;. Then, four replicates of 5 mg of particles were sterilized using
UV radiation (30 min, 254 nm), placed in cell culture inserts (Thermo Fisher Scientific, Waltham, MA,
USA), and immersed in the wells. Cells cultured without particles were the positive control. After 24
and 48 h of incubation, the inserts with the particles were collected and 50 pL of WST-1 reactive were
added to each well. After 4 h of incubation, plates were shaken thoroughly for 1 min and 100 uL from
each well were transferred to a 96-well plate in triplicate. The absorbance was measured at 450 nm in
a plate reader (EnSpire, PerkinElmer, Madrid, Spain) and cytocompatibility was determined using
Equation (5):

Absg

Cell viability (%) = be x100 (5)
C

where Abss and Abs. are the absorbance of the wells cultured with and without (control) the
aerogels, respectively.

3. Results and Discussion

3.1. Jet Cutting of Chitosan Gels and Morphology and Textural Properties of the Resulting Aerogel Particles

The processability of a viscous chitosan solution with the jet cutter was studied producing gel
microparticles under different conditions, using an aqueous basic solution (0.2 M NaOH) as the gelation
bath. Chitosan gelation took place immediately after contact of the droplet of chitosan solution with the
surface of the gelation bath. The change from an acidic to alcaline medium caused the deprotonation
of the amino groups of the chitosan, and thus its gelation by a precipitation mechanism. In general,
smaller particle sizes were obtained when using smaller nozzle diameters and a higher number of wires
in the cutting disc that cut the fluid jet at a higher frequency. However, the use of the smallest nozzle
diameter (350 pm) in this study led to frequent events of clogging. Nozzle diameters of 400-500 pm
showed good processability and particles were produced at different cutting disc rates (2000, 4000, and
6000 rpm). The 120-wired cutting disc resulted in high fluid losses since it was not able to split the
fluid jet into cylinders and the solution remained attached to the wires until deviated to the collector of
fluid loss instead of the gelation bath. The chitosan solution successfully reached the gelation bath
when the 40-wired cutting disc was used.

In accordance with the literature [34], higher nozzle diameters led to larger particle sizes (Table 2
and Figure 2a,b) since the mass flow of the chitosan solution was higher, but similar PSDs were observed
using nozzle diameters of 400 or 500 um. Regarding the cutting disc velocity, aerogels processed at
2000 rpm had larger diameters and broader PSD than those processed at 4000 and 6000 rpm. In general,
a higher cutting disc velocity results in smaller particle sizes, but this trend was not herein observed at
4000 and 6000 rpm. This could be explained with the values of sphericity (Table 2) and SEM images of
the particles (Figure 3). When using the projected area as the parameter to estimate particle size, if
the particle is not spherical the value may be biased by its orientation. Thus, a flattened particle may
have the same projected area as a larger spherical particle. Particles processed at 6000 rpm were flatter,
probably because of their lower weight and subsequent deformation upon contact with the surface of
the gelation medium [35].
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Table 2. Particle size distribution of particles (CamSizer® measurements) processed by nozzle diameters
of 400 and 500 pm and using 40-wired cutting disc velocities of 2000, 4000, and 6000 rpm.

400 pm 500 um
2000 rpm 4000 rpm 6000 rpm 2000 rpm 4000 rpm 6000 rpm
Xarea | * 0 (um) 1105 + 238 790 + 130 754 +£101 1358 +393 820 + 141 877 + 141
Mean sph 2 0.84 0.90 0.89 0.714 0.92 0.84
% sph > 0.9 22 63 51 7 84 8

! Mean particle size (um) obtained from the projected area. 2 Sphericity of the particles.

30 30
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20 A __ 20 -
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g z
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Figure 2. Particle size distribution obtained from the dynamic image analysis of chitosan aerogel
particles processed using nozzle diameters of (a) 400 and (b) 500 um. Dotted, continuous, and dashed
lines represent cutting disc velocities of 2000, 4000, and 6000 rpm, respectively.

Figure 3. SEM images of chitosan aerogel particles processed with the nozzle diameter of 500 um at
(a,b) 4000; (c) 6000; and (d) 2000 rpm.

The aerogels obtained from chitosan gels processed by jet cutting with a nozzle diameter of
500 um and a cutting disc velocity of 4000 rpm were lightweight (ppy = 0.060 + 0.002 g/cm?) and
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highly porous (& = 95.6% =+ 0.2%), and presented excellent textural properties (aper = 188.0 + 9.4 m?/g).
Porosity and bulk density values were consistent with previous reports on chitosan aerogels gelified
using a similar precipitation method, but the specific surface area was slightly lower [36,37], probably
due to a higher degree of shrinkage of the gel during gelation in ethanol medium [38]. Chitosan
aerogels with higher specific surface areas have also been described, but involved the use of chemical
crosslinkers that could leave toxic residues in the gels, raising regulatory concerns [39].

3.2. Fluid Sorption Capacity

A good moisture balance is required at the wound site for adequate wound epithelization and
closure. However, wound exudates are environments rich in inflammatory cytokines and chemokines
and can also be a suitable medium for bacterial proliferation [40,41]. Thus, it is important that
materials used in wound dressings are able to absorb the exudates, maintaining good conditions for
the healing process.

The exudate sorption capacity of the aerogel microparticles was determined by a gravimetric
method (Figure 4). Due to their high porosity and large surface area, aerogels were able to absorb
up to nine times their weight in PBS after 24 h. Unlike chemical crosslinking, where bonds between
the polymer fibers are permanent and may lead to rigid structures with limited water sorption
capability [42], the physical precipitation of chitosan allowed for a certain degree of swelling in the
polymer network, so the microparticles could retain high amounts of water within their structure.

1000

800 A

600 A

400 A

weight gain (%)

200 A

O T T T T T T
0 4 8 12 16 20 24

time (h)

Figure 4. Weight gain after immersion in PBS at 25 °C of chitosan aerogel microparticles processed by
a nozzle diameter of 500 pum, a cutting disc velocity of 4000 rpm, and gelified in NH3/EtOH solution.

3.3. Drug Loading and Release

Vancomycin HCl is a highly hydrosoluble drug (solubility > 100 mg/mL), but it is poorly soluble
in ethanol [43]. Accordingly, chitosan gelation was performed in ethanol with NHj3 to mitigate drug
migration through diffusion to the gelation bath, which would result in low drug- loading efficiencies.
The entrapment efficiency for vancomycin contained in the chitosan aerogel microparticles was of
24.6 + 0.3%, being the final loading in the particles of 22.4 + 0.3 pg of vancomycin/mg of aerogel particles.
The obtained drug loss can be explained by drainage of the water containing the drug from the chitosan
solution when dropped in the ethanol of the gelation bath. In any case, the loading was still high if
compared to other drug-loaded aerogel formulations prepared in aqueous medium (= 12%) [36].

In the release studies, aerogel microparticles formed a layer on the membrane of the donor
compartment of the Franz cells, simulating their application in the wound. Microparticles only
released 50% of the drug payload after 4 h (Figure 5) and complete release was observed after 24 h (the
release profile reached a plateau that was kept after 48 h). The microparticles provided concentrations
above the MIC (2 ug/mL) for susceptible bacteria already at a short time period, as confirmed in the
antimicrobial activity tests (cf. Section 3.4).
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Figure 5. Drug release of vancomycin HCl from the chitosan aerogels (37 °C, 400 rpm, PBS pH 7.4) was
sustained over time, reaching 100% of release after 24 h.

3.4. Antimicrobial Tests

The antimicrobial activity of the vancomycin-loaded aerogel microspheres was tested in an SBF
medium against S. aureus (Figure 6), since it is the most common Gram-positive bacteria in chronic
wounds [44]. The aerogel microparticles loaded with vancomycin showed a fast antimicrobial effect,
being able to completely inhibit the bacterial growth after 6 h of incubation. Bacterial growth inhibition
of the vancomycin-loaded aerogels was maintained during the evaluated time (48 h). On the other
hand, non-loaded aerogels did not inhibit the bacterial growth.
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Figure 6. Antimicrobial effect against S. aureus strains of vancomycin-loaded chitosan aerogels and
dissolved vancomycin HCI (positive control) compared with the negative controls: Free bacterial
culture (diagonal bars) and unloaded chitosan aerogels (dotted). Vancomycin in the aerogels and
the positive control provided a fast antimicrobial effect, with complete bacterial inhibition after 6 h
of incubation.

The antimicrobial effect of the drug-loaded aerogels indicated that the aerogels preserved the
active form of vancomycin HCl and released it at an adequate rate. The use of a polymeric matrix that
releases the drug instead of the direct use of the drug powder allows for a more precise adjustment
of the dosage, avoiding toxic effects [45]. Although many studies have evaluated the antimicrobial
capacity of chitosan [46], it has been reported that chitosan only presents antimicrobial activity when
dissolved in acidic media [47], probably due to the protonated free amino groups that interfere with
the bacterial membrane.
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3.5. Biocompatibility and Hemocompatibility of Vancomycin-Loaded Chitosan Aerogel Particles

3.5.1. Hemocompatibility

Biomaterials to be applied directly to the wound need to be compatible with red blood cells, so they
do not interfere with the hemostatic activity. A good hemostatic response to the aerogel formulation is
crucial, since the first stage of the wound healing process is intended to reduce blood loss and to start the
formation of a provisional wound matrix [48]. In later stages of cell proliferation and repair, a process of
formation of new blood vessels (angiogenesis) also takes place. The determination of the hemoglobin
released from red blood cells from diluted human blood samples after incubation with the material is a
simple method to evaluate hemocompatibility. Results showed that the vancomycin-loaded chitosan
aerogel microparticles were compatible with the red blood cells compared to the negative control (saline
solution), and even the hemolytic activity was lower (=7.7%). According to ISO 10993-4, materials
with hemolysis values lower than 5% can be safely used.

3.5.2. Cytocompatibility

Vancomycin HCl is frequently applied by intrawound to prevent post-surgical infection, but it
may have a cytotoxic effect at certain concentrations [49]. Therefore, a fibroblast cell line was used
to test cell viability after incubation with the vancomycin-loaded chitosan aerogel microparticles
(Figure 7). Fibroblasts are the functional cells of the dermis and are responsible for the production of
the extracellular matrix, mainly composed of collagen and elastin [50]. During the proliferative stage
of the wound healing process, fibroblasts migrate to the wound site and participate in the granulation
process by deposition of collagen fibers that will constitute the scar tissue [51]. Overall, the aerogels
presented good biocompatibility, with values higher than 80% (after 24 and 48 h).

100 A T

£ 80 - T
: |
=
8 60 -
£
[=]
]
1;’40-
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20 |

0

24 48
Incubation time (h)

Figure 7. Cytocompatibility of the vancomycin-loaded aerogel microparticles with BALB/3T3 mouse fibroblasts.

4. Conclusions

The use of the jet cutting technology in combination with supercritical fluid-assisted drying
technique represents an excellent strategy for the processing of aerogels from highly viscous precursor
solutions. Chitosan aerogels were successfully produced in the form of spherical microparticles through
this combined technology, and presented as suitable drug carriers for wound healing applications.
Rotation speed and number of wires of the cutting disc along with nozzle diameter were the key
parameters for the jet cutting process to obtain spherical and unimodal aerogel particles in the 700-900 pm
range. The processing approach presented is compatible with the loading of drugs in the aerogel
structure without the involvement of additional steps. The use of ethanol instead of aqueous baths
for chitosan gelation turned an attractive strategy for vancomycin loading since the drug entrapment
yield in the resulting aerogel particles was significantly improved. The in vitro drug release from the
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chitosan aerogels provided local concentrations of vancomycin able to inhibit the microbial growth of
S. aureus bacteria in less than 6 h after treatment. High fluid sorption capacity, hemocompatibility, and
cytocompatibility with fibroblasts of the chitosan aerogel formulation were suitable for the intended
biomedical application. This aerogel-based formulation can meet the requirements to prevent infections
for those cases of treatment of chronic wounds shortly after debridement. Vancomycin-loaded aerogel
particles can be directly applied at the wound site or included as a component of a multi-layered dressing.
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