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Abstract: A micro-ultrasonic (MU) viscosity model based on ultrasonic-assisted vibration
micro-injection for high- flow length ratio polymer parts was established. This model considered
the effects of ultrasonic energy and the characteristic microdimension. Ultrasonic energy
parameters (such as the ultrasonic amplitude, frequency, and ultrasound velocity), the characteristic
microdimension, and the molecular chain length (MCL) were introduced into the MU viscosity model.
An ultrasonic micro-injection experimental platform was built on an injection molding machine.
Polypropylene (PP) filling experiments were carried out using microgrooves with different flow length
ratios (depth-to-width ratios of 3:1, 5:1, and 10:1). The validity and accuracy of the MU viscosity
model were examined through a filling experiment with polypropylene (PP) microgroove injection
molding and by a flow pressure difference experiment with polystyrene (PS). The results showed that
the MU viscosity model was in better agreement with the experimental results compared to other
models. The maximum error of the MU model was 4.9%. Ultrasound-assisted vibration had great
effects on the filling capacity for microgrooves with high flow length ratios (depth-to-width ratios
greater than 5:1). The filling capacity increased as the ultrasonic amplitude increased.

Keywords: micro-injection; MU viscosity model; ultrasonic energy; characteristic
microdimension; accuracy

1. Introduction

With the development of micro-electro-mechanical systems (MEMS), the development of
micro-structures is becoming more and more demanding, and the application value of the high-flow
length ratio parts market is gradually reflected. At present, the processing methods of high-flow
length ratio microstructure parts include LIGA [1], UV-LIGA [2], deep reflection ion etching [3],
and micro-injection molding [4]. Because of its low cost and high efficiency, micro-injection molding
can be continuously used in the processing and molding of high flow length ratio parts.

However, as the flow length ratio increases, the heat dissipation rate of the melt accelerates,
resulting in faster melt temperature drop, increased viscosity, reduced polymer flow ability,
and shrinkage warpage, welding defects and so on. In order to solve the defects of high flow
length ratio injection parts, there are two main research directions at present, one is to optimize the
micro-injection process parameters, such as mold temperature, polymer melt temperature, injection
pressure, injection speed, etc. [5–7]; the other is to change the external conditions to increase the
molding quality, such as gas-assisted in the mold system, vacuum or external ultrasonic energy field
for micro injection [8].

Ultrasonic processing technology, as a novel molding processing technology, has been widely
used in recent years for the injection molding, extrusion molding, and compression molding of
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polymers [9,10]. Despite different ways of applying ultrasonic energy, studies have found that
ultrasounds can affect the microstructure filling performance [11], change the material properties [12],
affect the extrusion swelling [13], improve the weld line strength of the plastic parts [14], and reduce
the interface friction during ejection [15]. However, current studies are mainly based on experiments.
There is little research on the influence of ultrasonic energy on the rheological properties of
polymers. Isayev [16] analyzed the relationship between the shear rate and viscosity for low-density
polyethylene (LDPE), polypropylene (PP), and polystyrene (PS) under different low-frequency
oscillations. Gao [17] analyzed the mechanism of longitudinal ultrasonic-assisted microinjection
molding (LUµIM). The longitudinal ultrasonic vibration energy was divided into transmission energy
and conversion energy. A viscosity model under ultrasonic energy was established based on the
Power-Law viscosity model and considering the interaction between the two types of energies.
However, the validity and accuracy of the model were not examined. Chen [13] designed an
ultrasonic vibration extruder based on the principle of viscosity measurements by a capillary rheometer.
The polymer viscosity under ultrasonic energy was measured. The data was fitted to obtain the
viscosity expression under ultrasonic energy: ln η = Ea

kEU
+ ln A, where η is the viscosity, Ea is the

viscous flow activation energy, k is a coefficient, EU is the ultrasonic energy, and A is a parameter.
However, the model does not consider the influence of the structural characteristic dimension on the
viscosity during microflow.

Based on the macroscopic Power-Law viscosity model, this paper established a MU viscosity
model that can reflect the flow characteristics under ultrasonic energy. The effects of ultrasonic vibration
energy, the molecular chain length (MCL), and the characteristic dimension of microparts on viscosity
were considered. The validity and accuracy of the model were examined through a filling experiment
with polypropylene (PP) microgroove injection molding and by a flow pressure difference experiment
with polystyrene (PS). This model can better predict the flow characteristics of micro injection molding
polymers under ultrasonic vibration conditions.

2. Establishment of MU Viscosity Model

Based on the power-law viscosity model (Equation (1)),

η = K
.
γ

n−1 (1)

where η is the viscosity, MPa.s; K is the consistency index, Pa.s;
.
γ is the shear rate, /s; and n is the

non-Newtonian index.
The relationships of the consistency index K and the non-Newtonian index n with the ultrasonic

vibration energy Eu can be established. The experimental data of ultrasonic-assisted vibration extrusion
in reference [13] showed that the higher the ultrasonic energy Eu, the smaller the consistency index K,
and the greater the non-Newtonian index n. Therefore, the ultrasonic energy has linear relationships
with lnK (consistency index) and the non-Newtonian index n. Equations (2) and (3) are thus obtained.
The model parameter values are obtained by data fitting.

lnK = a1 + b1 × Eu (2)

n = a2 + b2 ×
1

Eu
(3)

where a1 and b1 are consistency index correction parameters, a2 and b2 are non-Newtonian index
correction parameters, which can be obtained through experiments. Eu is the ultrasonic vibration
energy (W). Eu can be obtained as EU = 2π2ρu f 2A2Sα, where f is the ultrasonic frequency (Hz), A is
the ultrasonic amplitude (µm), S is the ultrasonic active area (m2), u is the propagation velocity of the
ultrasonic waves in the material (m/s), ρ is the material density (kg/m2), and α is the sound absorption
coefficient of the material.
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Substituting Equations (2) and (3) into the viscosity model (Equation (1)) to obtain the ultrasonic
viscosity model (Equation (4)) gives:

η = e(a1+b1×Eu)
×

.
γ
(a2+b2×

1
Eu−1) (4)

When the characteristic dimension of the microchannel is reduced, the movement space of
the macromolecular chains is reduced, the macromolecular chains and chain segments move more
significantly along the flow direction, and the viscosity of the melt is reduced [18]. Based on the
study in reference [19], correction parameters based on the characteristic dimension and the MCL are
introduced into Equation (4). The microviscosity model under ultrasonic energy is

ηmicro =
(
a3 ×

le
d + b3

)
× e(a1+b1×Eu) ×

.
γ
(a2+

b2
Eu −1)

EU = 2π2ρu f 2A2Sα
(5)

where a3 and b3 are the microdimension correction parameters, which can be obtained through
experiments. le is the MCL, and d is the characteristic dimension of the microstructure.

3. Experiments and Simulation

3.1. Experiments Device and Method

The ultrasonic-assisted vibration micro-injection experiment was performed on a Babyplast
microinjection machine (Babyplast-6/10P, Babyplast, Molteno, Italy). The ultrasonic equipment
consisted of an ultrasonic transmitter and an ultrasonic horn. The vibration frequency of the ultrasonic
generator (Ivyson, Shenzhen, China) is 38.9 KHz. A schematic diagram of the ultrasonic-assisted
vibration microinjection molding platform is shown in Figure 1. Ultrasonic vibration was directly
applied to the mold core in the form of transverse waves. The ultrasound amplitude was measured on
a CMOS laser displacement measuring device (LK-G5001, KEYENCE, Osaka, Japan). The characteristic
dimension of the microstructure was measured with a laser confocal microscope (VK-250, KEYENCE,
Osaka, Japan).
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Figure 1. The ultrasonic microinjection molding platform (a) schematic diagram (b) physical map.

Prior to microinjection, the polypropylene (PP, 2401, Yanshan Petrochemical, Beijing, China) was
dried in a vacuum drying oven (DZF-6050, Subo Instruments, Shaoxing, China) at 60 ◦C for 4 h.
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3.1.1. Rectangular Microgroove Structure of the Mold

The mold was fabricated on a slow-feeding wire-cut machine (AP250LS, Sodick, Kanagawa,
Japan). The design dimensions of the microgrooves are shown in Table 1. The actual widths (on top of
microgroove) and depths of the microgrooves (averaged after five measurements) were measured with
a laser confocal microscope. The results are shown in Table 1 and Figure 2. The actual dimensions of
the microgrooves were used for the calculation of the filling capacity in Section 3.2 below.

Table 1. Cross-sectional dimensions of the rectangular microgrooves.

Flow Length Ratio Design Dimension Actual Dimension

Width (µm) Depth (µm) Width (µm) Standard
Deviation Depth (µm) Standard

Deviation

3:1 150 450 161.022 1.661 418.909 1.063
5:1 200 1000 216.880 1.154 970.873 1.539
10:1 150 1500 168.466 1.269 1433.480 1.194

Polymers 2020, 12, 522 4 of 12 

 

Table 1. Cross-sectional dimensions of the rectangular microgrooves. 

Flow Length Ratio Design Dimension Actual Dimension 

 
Width 
(μm) 

Depth 
(μm) 

Width 
(μm) 

Standard 
Deviation 

Depth 
(μm) 

Standard 
Deviation 

3:1 150 450 161.022 1.661 418.909 1.063 
5:1 200 1000 216.880 1.154 970.873 1.539 

10:1 150 1500 168.466 1.269 1433.480 1.194 

 
Figure 2. Actual dimensions of the mold microgrooves (a) flow length ratio 3:1; (b) flow length ratio 
5:1; (b) flow length ratio 10:1. 

3.1.2. Ultrasonic Micro-Injection Experiment 

The experimental parameters are shown in Table 2. A series of experiments of ultrasonic micro-
injection were carried out to investigate the effect of processing parameters on filling capacity of PP. 
The processing parameters include injection pressure, injection speed, and ultrasound amplitude. 
Therefore, we conducted three groups of experiments (Group A, B, C) with only one variable to 
explore the influence of each parameter, and the variables and their values are listed in Table 2. The 
temperatures of PP melt and mold body were set as 200 °C and 25 °C, respectively. To achieve a 
steady and accurate filling capacity, experiments with the same parameters were conducted for five 
times and five results obtained were averaged as the final filling capacity under certain parameters. 
The height of the rectangle injection molded part was measured with a laser confocal microscope 
(averaged after five measurements) and then compared with the depth of the microgroove of the 
mold to obtain the filling capacity. The filling capacity can be obtained as ݂ =  where ,%100×(ܪ/ௌܪ)
Hs is the average value of the height of the rectangle injection molded part, and ܪ is the depth of the 
microgroove of the mold. 

Table 2. Experimental parameters. 

Parameter Injection Pressure (MPa) Injection Speed (mm/s) Ultrasound Amplitude (μm) 
Group A 6, 7, 8, 9, 10 40 19.55 
Group B 7 28, 40, 52, 64, 76 19.55 
Group C 7 40 0, 16.40, 19.55, 24.76 

  

Figure 2. Actual dimensions of the mold microgrooves (a) flow length ratio 3:1; (b) flow length ratio
5:1; (c) flow length ratio 10:1.

3.1.2. Ultrasonic Micro-Injection Experiment

The experimental parameters are shown in Table 2. A series of experiments of ultrasonic
micro-injection were carried out to investigate the effect of processing parameters on filling capacity of
PP. The processing parameters include injection pressure, injection speed, and ultrasound amplitude.
Therefore, we conducted three groups of experiments (Group A, B, C) with only one variable to
explore the influence of each parameter, and the variables and their values are listed in Table 2.
The temperatures of PP melt and mold body were set as 200 ◦C and 25 ◦C, respectively. To achieve a
steady and accurate filling capacity, experiments with the same parameters were conducted for five
times and five results obtained were averaged as the final filling capacity under certain parameters.
The height of the rectangle injection molded part was measured with a laser confocal microscope
(averaged after five measurements) and then compared with the depth of the microgroove of the mold
to obtain the filling capacity. The filling capacity can be obtained as f = (HS/H)×100%, where Hs

is the average value of the height of the rectangle injection molded part, and H is the depth of the
microgroove of the mold.
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Table 2. Experimental parameters.

Parameter Injection Pressure (MPa) Injection Speed (mm/s) Ultrasound Amplitude (µm)

Group A 6, 7, 8, 9, 10 40 19.55
Group B 7 28, 40, 52, 64, 76 19.55
Group C 7 40 0, 16.40, 19.55, 24.76

3.2. Simulation Modeling

To validate the MU viscosity model established in this study, two finite element models of the
ultrasonic-assisted vibration micro-injection process were built in commercial analysis software Fluent:
(1) simulation of microstructure filling capacity with PP material under ultrasound; (2) pressure
difference simulation with PS material under ultrasound.

3.2.1. Simulation of Filling Capacity

PP was selected as the research material. Equation (5) was imported into the preprocessing
module of simulation software FLUENT as a user-defined function to describe the polymer viscosity.
One short edge of the model was set as inlet and the other three edges were set as mold walls.
The ultrasonic frequency f = 38.9 KHz, the amplitude A = 19.55 µm. The flow length ratios of the
rectangular microgrooves were 3:1, 5:1, and 10:1, as shown in Table 1, and d were set as 161.002 µm,
211.839 µm and 171.142 µm, respectively. To compare with the experiments, the dimensions of the
rectangular microgroove used in the simulation were consistent with those in the experiments (Figure 2).
The injection pressures were set to 6, 7, 8, 9, and 10 MPa, the injection speed was 40 mm/s, and the
mold temperature was 25 ◦C. When the temperature of melted PP is 200 ◦C, the linear relationships of
lnK (consistency index) and the non-Newtonian index n with the ultrasonic energy Eu are obtained
by linear fitting of the data in reference [20], as shown in Figure 3. The microdimension correction
parameters a3 and b3 were obtained by reference [19].
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Therefore, the MU viscosity model for the ultrasonic micro-injection of PP is

ηmicro = (
−45.0388

d
+ 0.819) × e(10.033−0.003×Eu) .

γ
( −3.053

Eu −0.65) (6)

The simulated height of the micropart was subsequently obtained, to calculate the filling capacity
according to the formula f = (Hs/H) × 100%, where Hs is the average value of the height of the
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rectangle injection molded part, and H is the micro-groove depth of the mold. The model parameters
and process parameters of PP are shown in Table 3.

Table 3. MU viscosity model parameters and process parameters for PP.

Parameter Value Parameter Value

Consistency correction parameter a1 10.033 Ultrasonic amplitude A (µm) 19.55
Consistency correction parameter b1 −0.003 Frequency f (KHz) 38.9
Non-Newtonian index correction
parameter a2

0.350 Injection pressure (MPa) 6,7,8,9,10

Non-Newtonian index correction
parameter b2

−3.053 Injection speed (mm/s) 40

Microdimension correction
parameter [19] a3

−22.66 Mode temperature (◦C) 25

Microdimension correction
parameter [19] b3

0.819 Viscous flow activation energy [21]
Eη (kj·mol) 48.1

Chain length [22] le (nm) 2.18 Specific heat capacity [23] C
(kj/(kg·◦C)) 1926

Sound absorption coefficient [24] α 0.112 Density [23] ρ (kg/m3) 910
Ultrasound velocity [24] u (m/s) 1582 Thermo conductivity [23] W/(m·K) 0.138
Ultrasonic active area S (mm2) 25.13

3.2.2. Simulation of Pressure Difference

In order to verify the feasibility of the viscosity model for PS in this paper, a finite element model
was established according to reference [13]. Based on the material properties of PS, the microscale flow
was set as a generalized Newtonian fluid flow under isothermal conditions in the Fluent simulation.
Equation (5) was imported into the preprocessing module of simulation software as a user-defined
function to describe the polymer viscosity. The pressure difference obtained from the simulation was
compared with that obtained from the experiment in [13] to verify the accuracy of the viscosity model.

The injection part was a rectangular thin plate with a thickness × length × width of 500 µm ×
6.5 mm × 9.2 mm. In this model, d was set as 500 µm, and Eu was set as 50 W and 150 W. The initials
temperature of PS (PG-383M, Zhenjiang Chimei, China) was 200 ◦C, the wall temperature of the mold
was 25 ◦C. The inflow speed is set as the average flow velocity of the polymer in the reference [13] as
shown in Table 4. The model parameters a1, b1, a2, and b2 were obtained by fitting the experimental
data in reference [13], and the model parameters a3 and b3 were obtained by fitting the experimental
data in reference [25]. The fitted values are listed in Table 4. The material chosen in the simulation was
the same PS as that used in the experiment.

The MU viscosity model for PS is

ηmicro =
(
1−

25.194
d

)
× e(11.809−0.01×Eu) .

γ
(0.4546+ −14.498

EU
−1) (7)

The other parameters of model are detailed in Table 4. The pressure difference ∆P was defined as
the average pressure difference between inlet and outlet of mold.
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Table 4. MU viscosity model parameters and rheological parameters for PS.

Parameter Value Parameter Value

Consistency correction parameter a1 11.809 Ultrasonic amplitude A (µm) 20.30,
35.16

Consistency correction parameter b1 −0.01 Frequency f (KHz) 20
Non-Newtonian index correction
parameter a2

0.455 Ultrasonic energy EU (W) 50, 150

Non-Newtonian index correction
parameter b2

−14.498 Injection pressure (MPa) 6,7,8,9,10

Microdimension correction parameter a3 −12.597 Injection speed (mm/s) 40
Microdimension correction parameter b3 1.000 Mode temperature (◦C) 25

Chain length [22] le (nm) 2.00 Viscous flow activation energy [21]
Eη (kj·mol) 92.1

Sound absorption coefficient [24] α 0.0803 Specific heat capacity [23] C
(j/(kg·◦C)) 1389

Ultrasound velocity [24] u (m/s) 2320 Density [23] ρ (kg/m3) 1050
Ultrasonic active area S (mm2) 78.54 Thermo conductivity [23] W/(m·K) 0.095

4. Results and Discussion

4.1. Validation of the MU Viscosity Model

4.1.1. Filling Capacity of PP Ultrasonic Micro-Injection

The simulation results of the microgroove filling experiment using the MU viscosity model at
different injection pressures were compared with the experimental results (Figure 4). In addition,
the microgroove filling experiment was also simulated by using the ultrasonic viscosity model proposed
by Gao et al. (Gao viscosity model) [17] and the MCL microviscosity model [19]. When the flow length
ratio of the microgroove was 3:1 (Figure 4a), the simulated values from the three viscosity models were
very close to each other and were only slightly different from the experimental values. The differences
became more obvious at flow length ratios of 5:1 (Figure 4b) and 10:1 (Figure 4c). The maximum errors
between the values simulated by the MU viscosity model and the experimental values were 2.7% and
4.9%, respectively, while the errors between the simulated values of the Gao viscosity model and the
MCL microviscosity model were quite larger from the experimental values. The results indicate that the
MU viscosity model can better characterize the rheological properties of the polymer during ultrasonic
microinjection molding, especially when the microgroove flow length ratio is greater than 5:1. This is
because the MU viscosity model takes into account the effects of the microstructure characteristic
dimension and the ultrasonic energy. However, the values simulated by the MU viscosity model were a
little greater than the experimental value. This is because the model assumes that the ultrasonic energy
EU is completely absorbed by the material, while the actual ultrasonic energy is partly consumed by
the work done to overcome the friction of the horn.

As the microstructure flow length ratio increased, the MCL microviscosity model [19] had larger
errors and a lower simulated viscosity than those obtained by the Gao viscosity model [17] (Figure 4b,c).
The results suggest that the viscosity reduction effect by ultrasonic vibration is greater than the
microscale viscosity reduction effect during ultrasonic micro-injection molding, which affects the filling
performance of the polymer melt.
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4.1.2. Pressure Differences in PS Micro-Injection Molding

The pressure difference experiment of PS micro-injection molding was performed to further
examine the validity of the MU viscosity model. The MU viscosity model, the Gao viscosity
model, and the MCL viscosity model were imported into the finite element simulation software
Fluent as user-defined functions, while the physical and boundary conditions remained unchanged.
The simulated pressure differences obtained by the MU viscosity model, the Gao viscosity model [17],
and the MCL viscosity model [19] were compared with the experimental result [13] at different EU
values (Figure 5).
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At EU = 50 W, the simulated values of the MU viscosity model and the Gao viscosity model were
relatively close to the experimental values. The simulated values of the MCL viscosity model had a
large deviation from the experimental values because the MCL model does not consider the effect
of ultrasonic vibration on viscosity. The more the vibration, the lower the viscosity, the better the
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polymer flow performance, and the smaller the pressure difference. Therefore, the simulated values
obtained by the MCL model without considering ultrasonic vibration were larger than the experimental
values. When the ultrasonic energy EU was increased to 150 W, the ultrasonic viscosity reduction effect
increased. The maximum error of the MU viscosity model against the measured pressure difference
was 3.2%, which was significantly smaller than that of the Gao viscosity model. This is because the MU
model takes into account the change in the non-Newtonian index n under the influence of ultrasounds.
Moreover, the MU model describes the microflow from the perspective of the characteristic dimension
and molecular chain. The Gao viscosity model ignores the effect of microscopic size on viscosity and
the change of n under ultrasonic energy [26] which virtually magnifies the power exponent term and
the consistency index term in the model, thereby increasing the deviation between the simulated
viscosity and the actual viscosity. Therefore, the MU model can more accurately reflect the actual
microflow characteristics under ultrasonic energy.

4.2. Ultrasonic Microinjection Molding Process Analysis with Different Flow Length Ratios

4.2.1. Injection Pressure

The filling capacities of conventional micro-injection molding and ultrasonic micro-injection
molding at different injection pressures and different flow length ratios are shown in Figure 6.
The injection speed was set as 40 mm/s. A = 0 means conventional micro-injection molding, and A =

19.55 means ultrasonic-assisted vibration micro-injection with an amplitude of 19.55 µm. Figure 7a
shows that when the microgroove flow length ratios were 3:1, the polymer melt could easily and
completely fill the microgrooves. The increase in the microstructure filling capacity was not obvious
with the increase in the injection pressure. However, when the flow length ratio was high (exceeding
5:1), the filling capacity increased significantly as the injection pressure increased.

Polymers 2020, 12, 522 9 of 12 

 

10 20 30 40 50 60

2.5

5.0

7.5

10.0

ΔP
 (M

Pa
)

Inflow speed (mm/s)

 Experimental data
 Gao viscosity model [17]

 MU viscosity model
 MCL viscosity model [19]

(a) Eu=50 W

10 20 30 40 50 60

2.5

5.0

7.5

10.0

ΔP
 (M

Pa
)

Inflow speed (mm/s)

 Experimental data
 Gao viscosity model [17]

 MU viscosity model
 MCL viscosity model [19]

(b) Eu=150 W

 
Figure 5. Pressure differences in ultrasonic microinjection at different inlet inflow speed (a) Ultrasonic 
vibration energy EU = 50 W; (b) Ultrasonic vibration energy EU =150 W. 

4.2. Ultrasonic Microinjection Molding Process Analysis with Different Flow Length Ratios 

4.2.1. Injection Pressure 

The filling capacities of conventional micro-injection molding and ultrasonic micro-injection 
molding at different injection pressures and different flow length ratios are shown in Figure 6. The 
injection speed was set as 40 mm/s. A = 0 means conventional micro-injection molding, and A = 19.55 
means ultrasonic-assisted vibration micro-injection with an amplitude of 19.55 μm. Figure 7a shows 
that when the microgroove flow length ratios were 3:1, the polymer melt could easily and completely 
fill the microgrooves. The increase in the microstructure filling capacity was not obvious with the 
increase in the injection pressure. However, when the flow length ratio was high (exceeding 5:1), the 
filling capacity increased significantly as the injection pressure increased. 

In addition, as the flow length ratio increased, the filling difficulty increased, and the filling 
capacity gradually decreased (Figure 6b). When the flow length ratio was low (3:1), the effect of 
ultrasonic-assisted vibration on the filling capacity was not obvious. When the flow length ratio was 
greater than 5:1, the effect of ultrasonic-assisted vibration on the filling capacity was obvious, 
especially when the flow length ratio was high (greater than 13:1), the ultrasonic-assisted vibration 
can increase the filling capacity by 13.4%. The results indicate that the application of ultrasonic energy 
can promote the flow properties of the polymer molecules, reduce the viscosity, and thereby increase 
the filling capability. 

6 7 8 9 10
-10

0
10
20
30
40
50
60
70
80
90

100

 3:1  5:1  10:1  13:1  16:1 （A=0）
 3:1  5:1  10:1  13:1  16:1 （A=19.55）

Fi
lli

ng
 ca

pa
ci

ty
 (%

)

Injection pressure (MPa)

(a)

3:1 5:1 10:1 13:1 16:1
0

20

40

60

80

100

120

Fi
lli

ng
 ca

pa
ci

ty
 (%

)

Flow length ratio

 A=0
 A=19.55

0

3

6

9

12

15

ΔF
ill

in
g 

(%
)

(b)

 
Figure 6. Effect of injection pressure on the filling capacity. (a) Filling capacity at different injection 
pressures; (b) Filling capacity at different flow length ratios and an injection pressure of 8 MPa. 
Figure 6. Effect of injection pressure on the filling capacity. (a) Filling capacity at different injection
pressures; (b) Filling capacity at different flow length ratios and an injection pressure of 8 MPa.

In addition, as the flow length ratio increased, the filling difficulty increased, and the filling
capacity gradually decreased (Figure 6b). When the flow length ratio was low (3:1), the effect of
ultrasonic-assisted vibration on the filling capacity was not obvious. When the flow length ratio
was greater than 5:1, the effect of ultrasonic-assisted vibration on the filling capacity was obvious,
especially when the flow length ratio was high (greater than 13:1), the ultrasonic-assisted vibration can
increase the filling capacity by 13.4%. The results indicate that the application of ultrasonic energy can
promote the flow properties of the polymer molecules, reduce the viscosity, and thereby increase the
filling capability.
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4.2.2. Injection Speed 

The filling capacities of conventional micro-injection molding and ultrasonic micro-injection 
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4.2.2. Injection Speed

The filling capacities of conventional micro-injection molding and ultrasonic micro-injection
molding at an injection pressure of 7 MPa, different injection speeds, and different flow length ratios are
shown in Figure 7. Figure 7a shows that the filling capacity increased as the injection speed increased.
The higher the flow length ratio, the more significant the filling capacity increment as the injection
speed changed. This is because of the microscale effect. The higher the injection speed, the stronger
the shear effect of the polymer melt as it passes through the microstructure. The intensified shear
promotes intermolecular friction in the polymer and increases the melt temperature. As a result,
the viscosity reduction effect is more obvious, which leads to a better polymer flow performance and a
more significant increase in the filling capacity.

The filling capacities of conventional micro-injection molding and ultrasonic micro-injection
molding at an injection speed of 52 mm/s and different flow length ratios are shown in Figure 7b.
Similar to the case when the injection pressure was changed, the increase in the filling capacity was
most significant at high flow length ratios of 13:1 and 16:1. When the flow length ratio was 3:1, it is
more difficult to increase the filling capacity when a high filling capacity has already been achieved
because the mold does not have an exhaust system. Therefore, the increase in the filling capacity was
not obvious after the application of ultrasonic energy. When the flow length ratio increased, the flow
time of the polymer in the microstructure increased, and the degree of heat exchange between the
polymer and the mold increased. Consequently, the cooling of the polymer was accelerated, and the
filling capacity decreased while the mold cavity space increased. When ultrasonic energy was applied,
the cooling rate of the polymer slowed down because of the ultrasonic thermal effect, and the filling
capacity increased significantly. Therefore, the ability of ultrasounds to increase the filling capacity
was more obvious at high flow length ratios.

4.2.3. Ultrasonic Amplitude

The filling capacities at different ultrasonic amplitudes and different flow length ratios are shown
in Figure 8. When the flow length ratio was 3:1, the ultrasonic amplitude had little effect on the filling
capacity, and the filling capacity was basically constant as the amplitude increased. At all other flow
length ratios, the filling capacity increased as the amplitude increased because when the ultrasonic
amplitude increased, the ultrasonic energy Eu increased, the polymer viscosity decreased, and the
filling capacity increased.
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5. Conclusions 

(1) The MU viscosity model was established based on the ultrasonic energy, the characteristic 
microdimension, and the molecular chain length. The microgroove filling experiment with PP 
and the pressure difference experiment with PS were performed to examine the validity and 
accuracy of the MU viscosity model. The accuracy of the model was high when the microgroove 
flow length ratio was greater than 5:1 and the ultrasonic energy was 150 W. The maximum error 
was 4.2%. 

(2) Ultrasonic microinjection molding experiments were performed using microgrooves with 
different flow length ratios. The results show that the larger the flow length ratio and the larger 
the amplitude, the more obvious the increase in the filling capacity by ultrasonic-assisted 
vibration. Especially in the case of high flow length ratios (greater than 13:1), ultrasonic vibration 
can increase the filling capacity by 13.4%. 
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Figure 8. Effect of the ultrasonic amplitude on the filling capacity (injection pressure 7 MPa, injection
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5. Conclusions

(1) The MU viscosity model was established based on the ultrasonic energy, the characteristic
microdimension, and the molecular chain length. The microgroove filling experiment with PP
and the pressure difference experiment with PS were performed to examine the validity and
accuracy of the MU viscosity model. The accuracy of the model was high when the microgroove
flow length ratio was greater than 5:1 and the ultrasonic energy was 150 W. The maximum error
was 4.2%.

(2) Ultrasonic microinjection molding experiments were performed using microgrooves with different
flow length ratios. The results show that the larger the flow length ratio and the larger the
amplitude, the more obvious the increase in the filling capacity by ultrasonic-assisted vibration.
Especially in the case of high flow length ratios (greater than 13:1), ultrasonic vibration can
increase the filling capacity by 13.4%.
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