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Abstract: The application of single homogeneous materials produced through the fused deposition
modelling (FDM) technology restricts the production of high-level multi-material components.
The fabrication of a sandwich-structured specimen with different material combinations using
conventional thermoplastics such as poly (lactic acid) (PLA), acrylonitrile butadiene styrene (ABS)
and high impact polystyrene (HIPS) through the filament-based extrusion process can demonstrate
an improvement on its properties. This paper aims to assess among these materials, the best material
sandwich-structured arrangement design, to enhance the mechanical properties of a part and to
compare the results with the homogeneous materials selected. The samples were subjected to tensile
testing to identify the tensile strength, elongation at break and Young’s modulus of each material
combination. The experimental results demonstrate that applying the PLA-ABS-PLA sandwich
arrangement leads to the best mechanical properties between these materials. This study enables
users to consider sandwich structure designs as an alternative to manufacturing multi-material
components using conventional and low-cost materials. Future work will consider the flexural tests
to identify the maximum stresses and bending forces under pressure.

Keywords: additive manufacturing; fused deposition modelling; multi-material 3D printing;
sandwich structure

1. Introduction

Additive manufacturing (AM) began in 1987 when it was known as generative manufacturing
or rapid prototyping [1]. Since then, it has represented a robust manufacturing development and
process of design for products in a wide variety of sectors, including aerospace, biomedical and
manufacturing [2–5]. AM technology can fabricate accurately and strengthened components in a
fast production, being able to either be combined with traditional manufacturing techniques known
as hybrid technologies, i.e., subtractive and additive remanufacturing [6,7], or even as an option to
displace them shortly [8]. Presently, extensive research on fused deposition modelling (FDM) materials
is being carried out on thermoplastic polymers and composites due to their cost-effective, lightweight,
and high strength-to-weight ratio [9]. Material selection methodologies have been developed to choose
optimal materials at the early design stages of the AM processes [10]. Berto et al. [11] conducted a design
tool for polymers in particular polyetheretherketone (PEEK) specimens with different notch geometries
to assess the tensile and fatigue behaviour on load-bearing applications. Marsavina et al. [12] studied
the tensile properties of two different polyamide materials (PA2200 and Alumide) based on the AM
process of selective laser sintering (SLS). The authors established the same technological parameters
except for the building orientation envelope of the sample. Moreover, research is being done by
combining materials, including polylactic acid and polycarbonate (PLA-PC), acrylonitrile butadiene
styrene and polycarbonate (ABS-PC) and polyethylene and polypropylene (PE-PP) [13].

Polymers 2020, 12, 651; doi:10.3390/polym12030651 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0001-9353-3380
http://www.mdpi.com/2073-4360/12/3/651?type=check_update&version=1
http://dx.doi.org/10.3390/polym12030651
http://www.mdpi.com/journal/polymers


Polymers 2020, 12, 651 2 of 13

In recent years, the fabrication of multi-material polymer-based products and sandwich structure
methods applied to the FDM process have brought the attention of the industry and research community.
The benefits of multi-material enable the performance of smart components by improving 3D printing
quality through topology optimization of different process parameters [14,15]. Thus, producing
multi-material components may enhance the mechanical properties, enable new functionality and
improve the performance of the AM process. [16]. In addition, sandwich structures made of different
polymers combinations have been considered an excellent option to achieve various material properties
for customized products [17], e.g. lightweight interior components in the automotive sector. Usually,
sandwich structures are applied to composite materials, which consist of outer skins (thin facings)
made of high-strength material sandwiching the inner core made of a lightweight material [18]. The
inner core usually consists of a honeycomb configuration due to its weight efficiency. However, it can
encounter problems such as water intrusion and delamination [19]. Daniel and Abot [20] suggested
that varying the materials for the skin and core can enable the desired stiffness and strength. Herranen
et al. [21] concluded that the optimal design to develop a lightweight sandwich composite appears to
be more accurate in the core material than in the core layer thickness. For homogenous thermoplastics
on the FDM process, Lanzotti et al. and Chacón et al. [22,23] studied the influence of the process
parameters (layer thickness, flow rate, deposition speed, feed rate and build orientation) for single
specimens made of PLA. In the first paper, it was concluded that all the fibers had to be oriented
along the loading line to maximize the value of Young’s modulus and stiffness. In the second paper,
it was realized that on-edge samples (build orientation) showed the best performance in terms of
strength, stiffness and ductility. Besides, as the layer thickness and feed rate are increased, ductility
is decreased. Kuznetsov et al. [24] studied the influence of shell, base thickness and infill density of
PLA to optimize the geometry of an FDM 3D printed part that can withstand higher loads. It was
found that, optimizing these process parameters and adding certain volume features such as fillets,
roundness and smooth contours can increase the part strength more than double of the original force
that was required to fracture the same part and with a significant reduction of part mass as well. Wang
et al. [25] conducted a micromechanical model with an experimental investigation to examine the
correlation between the influence of internal density pores and the influence of the process parameters
(raster angle and extrusion width) on the mechanical properties of PLA produced by the FDM process.
The results demonstrate that the model can help future designers predict the elastic properties of a
produced part without wasting material in future destructive testing.

Fernandez-Vicente et al. [26] evaluated the strength of different mesostructures for ABS
manufactured with the FDM process. For the evaluation, a tensile test was conducted with various
parameters including the material densities and infill patterns to select the optimal specimen. The best
combination to obtain the highest tensile strength was the rectilinear pattern with a 100% infill density.
Heechang [27] discussed the use of single and dual materials for the development of multi-material
printing. The paper proposed the influence of equipment variables, material ratio percentage and
different structural arrangements to identify and improve the mechanical behaviour of the specimens.
Lopes et al. [28] examined the effect of the boundary interface formed in different zones using dual
nozzles to fabricate multi-material parts. The tested specimens showed a decrease in their tensile
strength and Young’s modulus due mainly to switching between extruders. The author suggested that a
proper design for the boundary interface must be implemented to achieve higher mechanical properties.
Singh et al. and Kumar et al. [29,30] conducted mechanical tests to find the best material combination
among ABS, PLA and HIPS. The three materials were printed in the same geometry as a stack of
different multi-layers, and the twin extrusion method (TSE) was implemented. The conducted study
was influenced by the infill percentage and printing speed of each material combination. Saad [31]
fabricated a sandwich structure with ABS and PLA to test the variation of their mechanical and physical
properties. The study consisted of different infill percentages of honeycomb cores to identify the effect
of pore size volume on the mechanical properties and to validate the weight benefit. The results of
the tensile and bending test showed that the tensile strength increases as long as the infill density
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increases while the stiffness remains constant with bending stress. Brischetto et al. [32] proposed
three- and four-point bending tests for ABS and PLA using sandwich structures. The proposed
experimental analysis was influenced by the infill patterns (honeycomb and homogenous) as core
layers and by the number of extruders (two) to fabricate the specimens. All these parameters had a
significant influence on their modulus of elasticity especially in those specimens made of ABS skins
and PLA honeycomb core. Santosh et al. [33] prepared multilayers structures using ABS with PLA to
improve their mechanical behaviour. The mechanical properties were evaluated using the tensile test,
compressive test, bending test, microhardness and surface roughness. De Souza et al. [34] studied
the mechanical properties of blending ABS and HIPS to analyze the effect of shot size and particle
size via injection molding. The results suggest that increasing ABS in the ABS/HIPS blend leads to
an increase in the tensile strength and Young’s modulus, but it decreases the elongation at break.
Dinesh et al. [35] investigated the mechanical properties of a sandwich structured using carbon fibers
reinforced composites with different combs such as aluminum honeycomb, Rohacell and high density
polyurethane (HDPU) foam core. The tensile results observed that the aluminum honeycomb core
could easily tear in axial loading compared to the rest; however, for the bending test, it presented
the highest bending load among the other materials. Galatas et al. [36] proposed to enhance the
mechanical properties of composite sandwich structures for ABS with carbon fiber reinforced polymer
(CFRP). The parameters considered in the study were the infill densities and the number of CFRP
layers. The ultimate strength of these composite dog-bone specimens was evaluated, employing a
tensile test. The experimental results were compared with a developed artificial intelligence neural
network, and the influence of other properties such as Young’s modulus and specific strength was
also discussed. Mazzanti et al. [37] analyzed an extensive review on the mechanical properties of
3D printing polymers containing natural fillers. They found that classical thermoplastics filaments
such as PLA and ABS perform negatively when filler content is applied and therefore a reduction on
the mechanical properties is presented, while uncommon FDM plastics present better performance.
Caminero et al. [38] conducted a study to evaluate the effect of nanoparticle reinforcements on the
mechanical properties of polymeric materials, especially for PLA-graphene. The build orientation of the
printed specimen was critical to obtain the best mechanical performance. The PLA-graphene composite
showed the best mechanical values in terms of tensile and flexural stress and the study indicated that
printing reinforced composite materials concerning conventional manufacturing processes can increase
the mechanical properties of a part.

In the authors’ previous work, tensile tests for single material specimens made of PLA [22,23]
and ABS [26] were conducted. The proposed methodologies using image and statistical analyses
were used to evaluate the mechanical properties (tensile strength, tensile strain and elastic modulus)
of the produced samples following the ASTM 638 type. Besides, most of the experimental tests
employed for the sandwich structures in the past were conducted by considering the ASTM D790 and
the ASTM D6272 standards for flexural properties of un-reinforced and reinforced thermoplastics,
respectively. Based on the literature review and to the best of the authors’ knowledge, to date, the
use of sandwich structure applied to different combinations of materials via FDM for improving the
mechanical properties is lacking, which is the aim of this paper.

The present paper investigates and tests the influence of sandwich structures applied to
conventional 3D printing materials to improve the mechanical properties of 3D printed prototypes.
The new sandwich structure here proposed are specimens embedding rectilinear cores pattern with a
100% infill density and applying multiple independent nozzle extruders for each material within the
same carriage. This new scheme could provide a piece of knowledge for comparison on the effect of
combining conventional materials (ABS, PLA and HIPS) as a sandwich structure to achieve and enhance
higher strength of polymeric parts, which can be used for various applications, e.g. unmanned aerial
vehicles (UAV). The tensile experiments aimed to identify whether the use of conventional materials
printed as a sandwich structure is suitable and beneficial to implement and able to improve their
mechanical behaviour (tensile strength, elongation at break and Young’s modulus) when compared
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with a single material 3D printed part. Therefore, the contribution of this paper lies in finding the best
final product performance of the selected materials.

2. Materials and Methods

The first material selected for this study was PLA. It is widely used in FDM 3D printing [39] and
provides some benefits against other polymers such as environmentally friendly material, sustainable,
biocompatible and excellent plasticity in long-term use [40]. The second material implemented
was ABS. For the extrusion process, ABS provides excellent heat and high resistance, low thermal
conductivity, toughness and compatibility with other materials [41]. Lastly, high impact polystyrene
(HIPS) presents high impact strength and low tensile strength and provides simplicity for its fabrication
and machinability [29]. For this study, it was aimed to assess if these materials could enhance the
strength of a part by investigating the effect of different sandwich arrangements in the same geometry.
Understanding the behaviour of conventional materials by heat fusion as a single batch production will
enable in the future the use of more complex/engineering materials for FDM 3D printing composites.
The method proposes a sandwich structure with a total thickness of 3.6 mm. The two outer skins have
a global thickness of 2.4 mm and the inner core a thickness of 1.2 mm made of a different polymer with
a rectilinear infill pattern and 100% density. The materials used to manufacture the test specimens
were spools of 1.75 mm diameter of ABS, PLA and HIPS. The mechanical properties of these materials
are reported in Table 1 [22,42,43]. The filaments were all obtained through commercial suppliers. The
specimens were fabricated following the D638-Type 1 standard [44] to analyze how the structural
arrangement determines a change in their tensile strength. The main dimensions of the specimen are
shown in Figure 1.

Table 1. Typical properties of ABS, PLA and HIPS.

Material PLA ABS HIPS

Composition Polylactic acid Acrylonitrile butadiene styrene High-impact polystyrene

Physical properties Nominal Value

Density/Specific Gravity (23 ◦C) 1.24 to 1.26 g/cm3 1.03 to 1.08 g/cm3 1.04 to 1.06 g/cm3

Melt Mass-Flow Rate:
190 ◦C/2.16 Kg 2.8 to 23 g/10 min – –

200 ◦C/5 Kg – – 2.2 to 10 g/10 min
220 ◦C/10.0 Kg – 1.0 to 36 g/10 min –

Molding Shrinkage:
Flow: 23 ◦C·(mm/mm) 3.7 × 10−3 to 4.1 × 10−3 3.9 × 10−3 to 6.5 × 10−3 4.5 × 10−3 to 6.1 × 10−3

23 ◦C 0.30 to 1.1% 0.40 to 0.70% 0.50 to 0.55%

Mechanical Properties (23 ◦C)

Tensile Modulus 890 to 3647 MPa 1697 to 2826 MPa 1565 to 2290 MPa
Tensile Strength 17.6 to 64 MPa 32 to 53 MPa 20 to 31 MPa

Tensile Strength Yield 15.5 to 72 MPa 29 to 57 MPa 16.4 to 30 MPa
Tensile Strength Break 13.7 to 70 MPa 15 to 50 MPa 16 to 30 MPa

Tensile Elongation Yield 9.8 to 10% 2 to 21% 4 to 61%
Tensile Elongation Break 0.50 to 19% 0.90 to 57% 27 to 63%

Flexural Modulus 2275 to 4495 MPa 1420 to 2770 MPa 1372 to 2454 MPa
Flexural Strength 57.6 to 109 MPa 44.6 to 89 MPa 20.6 to 64.6 MPa

Thermal Properties

Glass Transition Temperature 56.6 to 57.7 ◦C 100 ◦C 100 ◦C
Melting Temperature 190 to 240 ◦C 210 to 240 ◦C 230 to 250 ◦C

Material Source Hatchbox Hatchbox Gizmodorks

www.hatchbox3d.com www.hatchbox3d.com www.gizmodorks.com

Firstly, specimens were printed as a single homogeneous material with fixed parameters to be
compared with the multi-material specimens. Secondly, the combination of materials for the sandwich
structure was performed with four-layer sections of each material. It contained symmetric 1.2 mm thick
polymeric inner and outer cores (four layers of 0.3 mm thick per material) giving a total dimension of

www.hatchbox3d.com
www.hatchbox3d.com
www.gizmodorks.com
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a 3.6 mm thick specimen in accordance with the dimensions of the standard test method for tensile
properties of plastics (ASTM D638-Type 1 standard) [44]. All specimens were printed in a flat direction
on the XY plane with a rectilinear pattern, stacking sequence of (45◦/−45◦) and vertically upwards
layer by layer within the Z direction.Polymers 2020, 12, x FOR PEER REVIEW 5 of 13 
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Figure 1. Standard test specimen in mm.

The material configurations to fabricate the sandwich structure specimen are shown below. Figure 2
illustrates the specimen designs for homogeneous materials and sandwich structure material combinations.
In addition, the printed parameters carried out to print the specimens are summarized in Table 2 [22]. The
values of the most printing parameters were based on other experimental studies [22,26,45]. The parameters
were carefully selected to be optimal for all printed specimens and by following the recommended printing
specifications from the 3D printer manufacturers. For the bed temperature, for the PLA printed on a
glass surface, a moderate adhesion force range based on previous studies is between 80 and 120 ◦C [46].
Other studies recommend that, for the ABS, the bed temperature should be set approximately 90–93 ◦C to
minimize the warpage while printing [47]; therefore, a bed temperature of 90 ◦C for all materials was
selected. Adding more parameters increases the complexity of the test, therefore for this particular study
the air gap was established as zero (beads just touch).

• PLA-ABS-PLA and PLA-HIPS-PLA
• ABS-PLA-ABS and ABS-HIPS-ABS
• HIPS-PLA-HIPS and HIPS-ABS-HIPS
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Table 2. Printing parameters.

Parameters, Units Value

Infill

Pattern Rectilinear
Angle, ◦ 45◦/−45◦

Density, % 100

Speed

Travel speed, mm/s 100
Retraction speed, mm/s 5

Infill speed, mm/s 25

Quality

Flow rate, % 100
Layer Thickness, mm 0.3

No. of perimeters 3

Temperature

Bed, ◦C 90
Nozzle, ◦C 240

3. Results

Experimental

For the present study, a multi-material 3D printer was developed and customized to allow the use
of multiple filaments. It was necessary to integrate a multi-nozzle head extruder to enable producing
different materials. The extrusion unit consisted of four nozzles within the same carriage. The module
is based on the Bowden extrusion system [48], where the extruder mechanism is away from the
printer’s heated head. The hot end of the extrusion nozzle integrated a water-cooled channel that
serves as a heatsink to keep it continuously cooled while printing. The nozzles used on this module
had a die diameter of 0.4 mm each. It was necessary to find the exact distance (height and width) and
offset values between each nozzle to ensure that, once it deposits material, an overlap between layers
exists (see Figure 3). To avoid nozzle influence while printing, the system disables the idle nozzle and
controls the pressure to avoid material oozing (retracts the filament) and prevent contamination. In
addition, nozzle leveling was carried out using a capacitive sensor, which was enabled in the Z-axis.
Figure 4 shows the multi-nozzle extruder with the sensor and the specimens while printing.
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The printed parts were measured before tested using an advanced Mitutoyo caliper. The
measurements were compared with the exact dimensions of the CAD model design (Figure 1). All
specimens were printed in a flat direction on the XY plane with a rectilinear pattern, stacking sequence
of (45◦/−45◦) and vertically upwards layer by layer within the Z direction. Table 3 shows the average
value of the dimensions from the manufactured test specimens, which were measured twice to validate
the results for further analysis. Based on the obtained values between the homogeneous and different
material combinations, no significant variations were observed. Hence, the results provide high
precision and align with material fabrication.

Table 3. Dimensions of the printed specimens.

No Material Length (L) Thickness (T) Width Overall (WO) Width Narrow (W)

1 ABS 165.12 3.66 19.10 13.20
2 PLA 165.10 3.60 19.08 13.15
3 HIPS 165.00 3.58 19.04 13.43
4 ABS-PLA-ABS 165.20 3.57 19.32 13.50
5 ABS-HIPS-ABS 165.15 3.62 19.13 13.25
6 PLA-ABS-PLA 165.00 3.65 19.30 13.50
7 PLA-HIPS-PLA 165.08 3.60 19.10 13.45
8 HIPS-PLA-HIPS 164.95 3.68 19.19 13.50
9 HIPS-ABS-HIPS 165.13 3.64 19.13 13.35

The machine used to perform the tensile tests was the Instron 5966. It was configured with
a minimum speed of 2 mm/min, a load cell of 10 kN and a gripper with a maximum load of
5 kN. The selection of the speed rate was in accordance with the loading rate used in other
studies [22,23,25,26,49,50].

The specimens were loaded along the longitudinal axis until failure. According to the standard
and for the evaluation of dispersion, five specimens were printed for each material configuration.
In, total, 45 specimens were printed to validate the results. The mechanical properties considered
for the comparison were the tensile strength, Young’s modulus and the elongation, as shown in
Figures 5–7, respectively.

The mechanical results obtained from the tensile test show differences between the homogeneous
materials and the different combinations of sandwich structures. PLA demonstrated the highest tensile
strength (47.46 MPa) and Young’s modulus (1396.90 MPa) among all specimens but presented the
lowest elongation at break (4.16 mm). HIPS exhibited plastic deformation and showed the lowest tensile
strength (20.06 MPa) and Young’s modulus (933.33 MPa) but had a higher elongation at break (6.69
mm) when compared to the other two. Moreover, it was expected that the performance of combining
different materials would have a positive impact on the mechanical properties in comparison to the
single material ones. In general, these three types of specimens showed higher ultimate strength
and elastic modulus when fabricated with the sandwich configuration compared to a single material.
Among these specimens, the combination of PLA-ABS-PLA had the best tensile strength and Young’s
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modulus with means of 44.40 and 1364.57 MPa, respectively. This behaviour may be due that both
polymers are considered rigid materials. Besides, this combination had a significant improvement in
the elongation at break with a mean of 6.14 mm. Considering that PLA had the highest tensile strength
but the lowest elongation followed by ABS as homogeneous materials, it was observed that combining
these two materials as a sandwich structure where PLA was printed as the outer skins and ABS as the
inner core of the specimen provided a significant performance combining their properties. Secondly,
PLA-HIPS-PLA had slightly higher tensile strength and Young’s modulus (38.77 and 1351.27 MPa)
compared to ABS-PLA-ABS with a tensile strength of 38.28 MPa and Young’s modulus of 1232.96 MPa.
In addition, the highest elongation at break exhibited from these three specimens was 6.14 mm from
the PLA-HIPS-PLA sandwich structure.
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4. Discussion

Figure 8 compares the stress–strain curves of all the specimens. The analysis shows that the
specimens at the beginning of the test presented a linear trend surpassing the stress of 15–20 MPa.
Consequently, this trend changed considerably in different stages for each specimen when the ultimate
strength was reached. The specimens with HIPS skins and ABS rectilinear core presented the worst
performance with a mean tensile stress of 22.21 MPa and Young’s modulus of 992.02 MPa, which is
less than 50% and 28%, respectively, of the best sandwich structure tested, which was PLA-ABS-PLA.
Similar behaviour was encountered with the specimens with HIPS skins and PLA core. They showed a
low mean tensile strength of 25.87 MPa and Young’s modulus of 981.45 MPa but performed better
when reaching the highest elongation of all with a mean of 8.57 mm.
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Figure 9 show representative examples of the tested specimens illustrating the failure mode. The
fracture in all specimens shows the different stress distributions of the material combinations. It can
be seen by comparing the specimens in Figure 9d,g,h that the fracture reveals the cracking pattern
generated closely to failure.
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ABS-HIPS-ABS; (f) HIPS-PLA-HIPS; (g) HIPS-ABS-HIPS; (h) PLA-ABS-PLA; and (i) PLA-HIPS-PLA.

The infill fibers of the skin layers deform rapidly and absorb the stress, causing to break the
bonds within materials. The location of the ruptures of the sandwich-structured specimens was
mostly generated near the jaws of the test equipment, and elsewhere for two cases (ABS-PLA-ABS and
ABS-HIPS-ABS). In addition, it was determined that the weakest sections of the specimens in which
the fractures occurred were due to the boundary interface within the transition between different
regions of the specimen. In addition, the fractures occurred due to the boundary interface between
materials. Despite this condition, using a sandwich structure arrangement for conventional materials
can improve the mechanical properties, as demonstrated and described previously. The generated
matrix of the corresponding results of the different sandwich structures is shown in Table 4 The data
listed in the table confirm the results obtained from the box plot graphs and the stress–strain diagram.
It is considered that the effect of interfacial energy is fundamental to identify the influence of layer
bonding between different thermoplastic materials. In addition, the importance of forensic analysis
to determine the cause of failure such as delamination is also critical. Therefore, the authors will
investigate the analysis of interfacial energy with an experimental study in future work.

Table 4. Experimental results on the tensile stress-strain response for the homogeneous and sandwich-
structured specimens.

No Material(s) Tensile Stress (MPa) Tensile Elongation at Ereak (mm) Young’s Modulus (MPa)

Mean StdDev Mean StdDev Mean StdDev

1 ABS 32.89 2.32 4.71 1.03 1049.78 54.81
2 PLA 47.46 2.37 4.16 0.20 1396.90 47.33
3 HIPS 20.06 0.26 6.69 1.92 933.33 14.69
4 ABS-PLA-ABS 38.28 0.16 6.02 0.07 1232.96 0.78
5 ABS-HIPS-ABS 29.67 0.07 5.16 0.52 1049.05 4.87
6 PLA-ABS-PLA 44.40 0.26 6.14 0.09 1364.27 16.68
7 PLA-HIPS-PLA 38.77 1.18 5.38 0.38 1351.27 2.50
8 HIPS-PLA-HIPS 25.87 0.06 8.57 1.56 981.45 141.42
9 HIPS-ABS-HIPS 22.21 0.05 6.10 0.12 992.02 3.59
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5. Conclusions

This research presented a unique polymer-based sandwich structure to evaluate the tensile
properties of different material combinations produced via the FDM process. The aim of the study was
applied to the fabrication of rectilinear infill cores and outer skins of several materials via multiple nozzle
extruders. Experimental findings in the 3D printing process showed that the best sandwich-structured
arrangement was the combination of outer skins of PLA and ABS cores. The average values were 44.40
MPa for the tensile strength and 1364.25 MPa for Young’s modulus. In addition, the elongation at break
(6.14 mm) for this configuration was higher when compared to a homogeneous material. Specimens
with outer skins of HIPS and ABS cores showed the lowest performance compared to the rest sandwich
specimens. The mechanical behaviour between the sandwich structures is different. The change of
the material arrangement determines mainly the tensile strength, elongation at break and stiffness
between 30% and 50%.

Ultimately, this study demonstrated the capabilities and flexibilities of conventional 3D printing
materials to be used to improve the efficiency of an AM product. Therefore, the use of the sandwich
structure applied to conventional 3D printing materials gain applicability in generating functional parts
that can withstand tensile loading for longer periods over single homogenous materials by integrating
the properties of two different materials in the same part. It can also provide higher elongation at
break, which can absorb energy and therefore give long-term use before failing. The advantages of
multi-material and sandwich structures methods are suitable to implement and able to achieve the
requirements of various applications using low-cost materials.
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