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Abstract: A library of statistically random pentafluorostyrene (PFS) and methyl methacrylate (MMA)
copolymers with narrow molecular weight distributions was produced, using nitroxide mediated
polymerization (NMP) to study the effect of polymer composition on the performance of bottom-gate
top-contact organic thin-film transistors, when utilized as the dielectric medium. Contact angle
measurements confirmed the ability to tune the surface properties of copolymer thin films through
variation of its PFS/MMA composition, while impedance spectroscopy determined the effect of this
variation on dielectric properties. Bottom-gate, top-contact copper phthalocyanine (CuPc) based
organic thin-film transistors were fabricated using the random copolymers as a dielectric layer.
We found that increasing the PFS content led to increased field-effect mobility, until a point after
which the CuPc no longer adhered to the polymer dielectric.

Keywords: nitroxide mediated polymerization (NMP), Fluoropolymer; dielectric; organic thin-film
transistors (OTFT), interface engineering

1. Introduction

Organic thin-film transistors (OTFTs) are expected to be an integral component of next-generation
electronic devices due to their beneficial qualities such as reduced manufacturing-cost, lightweight and
flexibility. As charge transport in OTFTs is limited to the sub-nanometer interfacial region between the
semiconducting and dielectric layer [1–3], it is crucial to develop these two materials in parallel to
better control their interface, and ultimately engineer higher-performing devices. During fabrication,
the surface chemistry of the dielectric layer in bottom-gate configuration will dictate the growth of
the semiconductor film, as well as influence the structural packing, domain structures and grain
boundaries of the final film [4–6]. Hydrophilic surfaces, such as common inorganic oxides like SiO2 or
Al2O3, can unfavorably affect the growth mode of organic semiconducting films, as well as providing
an abundance of water-absorbing sites that act as a charge carrier traps, resulting in poor device
performance [5,7]. Therefore, hydrophobic polymers are frequently used to shield the hydroxyl
functional groups on the inorganic oxide dielectric, leading to improved organic semiconductor
morphology [1,8–10].

Among hydrophobic polymers, those containing fluorinated monomers, such as 2,3,4,5,
6-pentafluorostyrene (PFS), have been used to improve the surface characteristics of dielectric layers
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in OTFTs. Park et al. demonstrated that using poly(PFS) as an interlayer in bottom-gate top-contact
pentacene-based transistors improved gate-bias stability [11]. Jang et al. used poly(styrene-random-PFS)
copolymers to control the dielectric surface energy for high performing OTFTs [12]. The authors reported
decreases in field-effect mobility, as the difference in interfacial energy between the dielectric surface
and pentacene semiconductor increased. More recently, Jeong et al. used poly(PFS) homopolymer
to coat BaTiO3 dielectrics, leading to improved OTFT performance and operational stability [13].
They observed a reduction in leakage current, an increase in pentacene grain size and a decrease in hole
injection barrier due to favorable surface energetics. While these examples demonstrate poly(PFS)’s
ability to tune the inorganic dielectric/organic semiconductor interface, it is desirable to move towards
an all-organic solution-processable device for the large scale adoption of OTFT technologies.

When targeting an all-organic dielectric layer, the copolymers must be prepared by a living or
controlled free-radical polymerization, to ensure the homogeneity of the final material. Heterogenous
copolymers will lead to different and unpredictable self-assembly, ultimately resulting in different
material properties [14]. It is critical to be able to predict the polymer properties to better engineer the
surface properties of the films formed by the polymers. Fluoropolymers are known to segregate to
the surface during elevated temperature processing steps [15,16], further suggesting a homogeneous
polymer is required to avoid unwanted phase separation.

In this study, we develop a dielectric polymer that has tunable surface properties for improved
device performance. We report the copolymerization of methyl methacrylate (MMA), a well-known
polymer dielectric, with PFS, a unit which will tune the surface chemistry of the dielectric. The controlled
copolymerization of PFS [17] has been reported, using reversible addition−fragmentation chain-transfer
polymerization (RAFT) copolymerization with styrene [18], by atom transfer radical polymerization
(ATRP), to produce block copolymers with MMA [19] and styrene [20], as well as nitroxide mediated
polymerization (NMP) in both homopolymerizations [21], and as a comonomer with methacrylic acid
(MAA) [22]. We report the reaction engineering of the MMA/PFS system and characterize the resulting
polymers. The resulting MMA/PFS copolymers are then integrated into capacitors and transistors,
and characterized as a function of copolymer composition.

2. Materials and Methods

2.1. Materials

N-(2-methylpropyl)-N-(1-diethylphosphono-2,2-dimethylpropyl)-O-(2-carboxyprop-2-yl)
hydroxylamine (MAMA-SG1) (BlocBuilder-MA) was obtained from Prof. Marc Dubé (University of
Ottawa), who sourced it from Arkema (Colombes, France). N-tert-butyl-N-(1-diethoxyphosphoryl-2,
2-dimethylpropyl)aminooxyl (SG1) was synthesized following a literature procedure from
Hlalele et al. [23]. 2,3,4,5,6-Pentafluorostyrene (PFS, 98%) was purchased from Oakwood Chemical
(Estil, SC, USA). 2-Butanone (99%), methyl methacrylate (MMA, 99%) and poly(methyl methacrylate)
(poly(MMA), MW = 120,000 g/mol) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Xylenes
(98.5%) were purchased from Anachemia (Quebec, ON, Canada), while hexanes (99%), methanol (99%)
and tetrahydrofuran (THF, 99%) were purchased from Caledon Chemical (Caledon, ON, Canada).
Prefabricated glass/quartz substrates were purchased from Ossilla (Sheffield, UK). Prefabricated
one-inch by one-inch glass substrates were purchased from university wafers. Chromium (Cr, 99.99%)
and silver (Ag, 99.99%) electrode metals were sourced from Angstrom Engineering (London, ON,
Canada). Copper phthalocyanine (CuPc, 90%) was purchased from TCI Chemicals (Tokyo, Japan) and
purified using train sublimation before use.

2.2. Synthesis of 2,3,4,5,6-pentafluorostyrene/methyl Methacrylate (PFS/MMA) Random Copolymers

The synthesis of PFS/MMA copolymers is shown in Figure 1. The copolymerizations were
completed in a three-neck round-bottom flask, equipped with a condensation column and thermocouple,
which was used to modulate the temperature of the heating mantle and reactor. A series of experiments
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of molar compositions of PFS relative to MMA is provided in Table 1. The synthesis of PFS/MMA-20/80
is provided as an example: MAMA-SG1 (0.153 g, 0.40 mmol), SG1 (0.0177 g, 0.06 mmol), xylenes (10 g),
PFS (3.26 g, 16.8 mmol), MMA (6.74 g, 67.3 mmol), were added to the reactor with a stir bar. The reaction
mixture was stirred and bubbled with nitrogen for 30 min. The nitrogen purge was removed from
the mixture while still maintaining an N2 atmosphere for the entirety of the reaction. The mantle was
heated to 90 ◦C and t = 0 min was set to when the temperature in the reactor reached 90 ◦C. The samples
were taken periodically by syringe throughout the polymerization. After stopping the reaction and
allowing it to cool, the reaction mixture was precipitated into methanol, then re-dissolved into THF
and re-precipitated into hexanes, filtered and dried in a vacuum oven at 60 ◦C overnight to give the
final product. The number-average molecular weight Mn = 13.8 kg mol−1, dispersity (Mw/Mn = 1.15
and PFS molar fraction in the copolymer FPFS = 0.31).
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Figure 1. Chemical reaction scheme of 2,3,4,5,6-pentafluorostyrene/methyl methacrylate nitroxide
mediated copolymerizations.

Table 1. Formulations for 2,3,4,5,6-pentafluorostyrene/methyl methacrylate random copolymerizations
in 50 wt% xylenes solution at 90 ◦C initiated by BlocBuilder-MA.

Exp ID a) MAMA-SG1 b) SG1 c) PFS MMA Xylenes

mmol mg mmol mg mmol g mmol g mmol g mL

PFS/MMA-05/95 0.4 152.6 0.06 17.7 4.8 0.93 90.6 9.07 94.2 10.0 11.6
PFS/MMA-10/90 0.4 152.6 0.06 17.7 9.1 1.77 82.2 8.23 94.2 10.0 11.6
PFS/MMA-20/80 0.4 152.6 0.06 17.7 16.8 3.26 67.3 6.74 94.2 10.0 11.6
PFS/MMA-35/65 0.4 152.6 0.06 17.7 26.3 5.11 48.9 4.89 94.2 10.0 11.6
PFS/MMA-50/50 0.4 152.6 0.06 17.7 34.0 6.60 34.0 3.40 94.2 10.0 11.6
PFS/MMA-60/40 0.4 152.6 0.06 17.7 38.3 7.44 25.6 2.56 94.2 10.0 11.6
PFS/MMA-75/25 0.4 152.6 0.06 17.7 44.0 8.53 14.7 1.47 94.2 10.0 11.6
PFS/MMA-90/10 0.4 152.6 0.06 17.7 48.7 9.46 5.4 0.54 94.2 10.0 11.6
PFS/MMA-95/05 0.4 152.6 0.06 17.7 50.2 9.74 2.6 0.26 94.2 10.0 11.6
PFS/MMA-100 0.4 152.6 0.06 17.7 51.5 10.00 0.0 0.00 94.2 10.0 11.6
a) Experimental identification (ID) is displayed as PFS/MMA-Y: where PFS and MMA correspond to
2,3,4,5,6-pentafluorostyrene and methyl methacrylate, respectively. The number abbreviation refers to the molar
feed of PFS to MMA. b) N-(2-methylpropyl)-N-(1-diethylphosphono-2,2-dimethylpropyl)-O-(2-carboxyprop-2-yl)
hydroxylamine (MAMA-SG1) selected such that target Mn = 25,000 g/mol. c) Initial molar concentration ratio of SG1
free nitroxide to MAMA-SG1 = r = [SG1]0/[MAMA-SG1]0 = 0.15.

2.3. Metal-Insulator-Metal (MIM) Capacitor Fabrication

Metal-insulator-metal (MIM) capacitors were prepared in an atmospheric environment. First, glass
substrates (1” × 1”) were washed by sonicating in a sequence of solvents; soapy water, water, acetone,
then methanol, for 5 min each, then dried by blown nitrogen. Silver electrodes (60 nm) were deposited
on the prepared glass, using a shadow mask and physical vapor deposition. Then, the solution
deposition of the polymer layer was achieved by spin-coating a 50 mg/mL poly(PFS-ran-MMA) in
methyl ethyl ketone (MEK, 99%) solution at 2000 rpm, followed by an annealing step (150 ◦C, under
vacuum, 1 h). The procedure was then repeated: the same fluoropolymer solution was applied again
on the film-coated substrates, and annealing repeated to form the final pin-hole free insulating film of
approximately 500 nm. Next, the top Ag electrodes (60 nm) were evaporated, producing the completed
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MIM capacitors. The perpendicular overlap of the bottom and top Ag electrodes resulted in 10 unique
devices of differing areas from 0.35 mm2 to 2.88 mm2.

2.4. Bottom-Gate Top-Contact (BGTC) Thin-Film Transistor Fabrication

Bottom-gate top-contact (BGTC) thin-film transistors were fabricated under atmospheric conditions
on 20 mm × 15 mm Ossila quartz coated glass substrates. The glass substrates were cleaned by bath
sonication: soapy water, distilled water, acetone then methanol, each for 5 min. Similar to the MIM
fabrication, a 60 nm Ag gate was patterned on the cleaned substrates by PVD followed by spin-coating
of solutions (50 mg/mL in MEK) of poly(PFS-ran-MMA) at 2000 rpm for 1.5 min, followed by thermal
vacuum annealing at 150 ◦C for 1 h. This process was then repeated on the same polymers to give a
final polymer layer with a thickness of approximately 500 nm. A 50 nm layer of copper phthalocyanine
(CuPc) was then deposited on the PFS/MMA surface by PVD, using a shadow mask. The top Ag
source-drain electrodes (60 nm) were then deposited on top of the polymer. This process created
20 individual transistors with a channel length of 1000 µm and a channel width of 30 µm.

2.5. Characterization

Polymerization conversion was determined by gravimetry. Polymer compositions were
determined by 1H NMR and 19F NMR spectroscopy, and the use of an α-α-α-trifluorotoluene
marker and Bruker AVANCE II 400 MHz spectrometer (Figure S1). Polymer samples were dissolved in
chloroform-d. In the 1H NMR spectra, the integrals of the MMA peak at 3.6 ppm and the marker’s peak
at 7.3–7.6 ppm were compared, and in the 19F NMR spectra, the integrals of the PFS peak at −144 to
−140 ppm and the marker’s peak at −63 ppm were compared. From these two ratios, the composition
of poly(PFS-ran-MMA) copolymers was determined. Molecular weight charcteristics of the final
copolymers were determined by gel permeation chromatography (GPC)using an Agilent 1260 Infinity
at 30 ◦C, flowing of 1 mL·min−1 of THF, as the eluting solvent via two MZ-Gel SD plus Linear 5 µm,
300 × 8.0 mm2 columns. Triple detection was accomplished using a multi-angle light scattering
(MALS) detector (DAWN HELEOS II), differential viscometer (ViscoStar II) and a differential index
detector (Optilab T-rEX). The specific refractive index increment, ∂n/∂c of the PFS homopolymer was
determined via off-line, batch-mode differential refractive index (dRI) experiments. A succession of
solutions of sequentially increased concentrations of polymer in THF was injected directly into the dRI
detector with a syringe pump, followed by pure THF without any dissolved analyte for a baseline.
Figure 2, shows each step change of dRI of a known dilution of increasing poly(PFS) concentrations.
The dRIs are measured and plotted (after baseline subtraction from solvent) against the concentration
of each concentration (Figure 2 inset), then the data points are fitted linearly to give the ∂n/∂c of
the poly(PFS) at 30 ◦C in THF with a wavelength of 690 nm. The ∂n/∂c values of the poly(PFS)
homopolymer and poly(MMA) homopolymer were found to be 0.041 and 0.0831, respectively.

The ∂n/∂c of copolymers were determined from the ∂n/∂c values of the component homopolymers
and the mass fraction of the comonomer in the copolymer. For a generic poly(PFS-ran-MMA) copolymer,
its ∂n/∂c is calculated from the equation [24]:

(
∂n
∂c

)
PFS−MMA

= wPFS
(
∂n
∂c

)
PFS

+ wMMA
(
∂n
∂c

)
MMA

where
wPFS and wMMA are the mass fractions of PFS and MMA in the poly(PFS-ran-MMA) copolymers,
and (∂n/∂c)PFS and (∂n/∂c)MMA are the ∂n/∂c of the pure homopolymers determined under the
same experimental conditions. The glass transition temperatures (Tgs) were found using differential
scanning calorimetry (DSC; TA Instruments Q2000). A heating/cooling rate of 10 ◦C/min under a
nitrogen atmosphere across a temperature span of 10 ◦C to 170 ◦C was performed twice. The Tg was
then found by the midpoint from the second thermogram heating cycle. Contact angle measurements
were performed on a VCA Optima goniometer (AST Products Inc). Droplets (0.5 µL) of DI water
were deposited from a needle, imaged and contact angle were determined using a three-point
curve fitting. The thickness of poly(PFS-co-MMA) films were measured with a Bruker Dektak XT
profilometer. Prepared films were scratched using a diamond tip pen three times, and step edges
measured then averaged. Impedance properties of the polymers in a metal-insulator-metal (MIM)
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structure were measured using electrochemical impedance spectroscopy (EIS; Metrohm PGSTAT204).
An equivalent circuit model consisting of a resistor and a capacitor in parallel was used to extract the
effective capacitance, which was calculated from the equation: C = 1/(2π f Im(Z)), where f is the
frequency and Z is the measured impedance. Measurements were conducted over a frequency range
of 10−2–105 Hz with an AC amplitude of 10 mV under atmospheric conditions. Current-voltage (I-V)
characteristics of transistors were measured using a Keithley 2614B, holding the gate-source voltage
(VGS) constant, then sweeping the source-drain voltage (VSD), while measuring the source-drain current
(ISD). Voltage step increases were set with a delay of 200 ms between measurements. Each device was
characterized three times, and the obtained values were averaged. Transfer curves were measured
in the saturation regime and were modelled using the following equation: ID = W

2L Cµ(VGS −Vth)
2,

where L and W are the length and width of the channel, respectively; C is the capacitance density
determined from the thickness and dielectric constant of the gating medium, and µ is the field-effect
mobility which was calculated from the slope of trendline through the linear region of the square root
ISD plotted against VGS. All measurements were conducted in the atmosphere at room temperature.
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Figure 2. Specific refractive index increment (∂n/∂c) measurement of poly(2,3,4,5,6-pentafluorostyrene)
(poly(PFS)). Sample: PFS/MMA-100; Mw = 19.9 kg mol−1; tetrahydrofuran (THF), 30 ◦C, (λ0) = 690 nm;
0.5 mL min−1; 0.1–5 mg mL−1. Inset) Differential refractive index (dRI) of polymer dilution in THF, prior
to solvent baseline subtraction of seven solutions of increasing concentrations against time. The initial
and final steps represent the THF without polymer dissolved. Main figure dRI post baseline subtraction
of poly(PFS) homopolymer solutions plotted against concentration. The slope of the data points (dotted
line), determined by a linear fit, corresponds to the ∂n/∂c of PFS in THF, at 30 ◦C, under 690 nm
wavelength). The instrumental standard deviation of each data point issmaller than the size of the
data markers.

3. Results and Discussion

3.1. Copolymer Synthesis: Kinetics & Control

Pentafluorostyrene (PFS) has been successfully homopolymerized [21] using nitroxide mediated
polymerization (NMP), as well as other controlled free-radical approaches, such as ATRP and
RAFT [18–20,25]. Methacrylic monomers are notoriously challenging to polymerize in pseudo-living
fashion, due to their large equilibrium constant for propagation and unwanted side reactions [26,27].
To increase the number of living propagating chains methacrylate monomers are often copolymerized
with a slowly propagating comonomer, which is more compatible with NMP, such as styrenics [28–31],
acrylonitrile [32–35] or cyclic ketene acetal 2-methylene-4-phenyl-1,3-dioxolane [36,37]. PFS has
been demonstrated to behave as a controlling comonomer in the NMP of various methacrylic
monomers, such as methacrylic acid [22], 5-methacryloyloxy-2,6-norboranecarbolactone (NLAM) [38],
oligo(ethyleneglycol) methacrylate (OEGMA) [39] and, very recently, methyl methacrylate (MMA) [40].
Delaittre and coworkers demonstrated that ≈5 mol% of PFS could control the copolymerization of
MMA, leading to a high MMA-containing pseudo-living macroinitiator, suitable for the chain extension
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of styrene [40]. To further characterize this copolymerization at low through high PFS loadings we
performed a range of copolymerizations with a target number average molecular weight (Mn) of
25 kg mol−1 in a 50 wt% solution of xylenes at 90 ◦C, with feed compositions ranging from 5–100 mol%,
which is detailed in Table 1. The kinetics of NMP is typically characterized by kPK values, where kP

and K represent the propagation rate and activation-deactivation equilibrium constants, respectively.
The activation-deactivation constant (K) is a function of the propagating radicals, [P•], free nitroxide,
[N•] and dormant alkoxyamine-terminated species, [P−N] concentrations. K is calculated from
Equation (1) below:

K =
[N•][P•]
[P−N]

, (1)

Numerous assumptions are made to simplify Equation (1) to produce an estimate of the important
combination parameter kPK from the kinetic data. Within the initial stages of polymerization,
the concentration of free nitroxide radicals is high and relatively constant. Therefore, the initial
concentration of additional SG1, [SG1]0, is substituted for [N•], ([N•] = [SG1]0). The initial molar
ratio of SG1 and MAMA-SG1 concentrations is represented by r = [SG1]0/[MAMA-SG1]0 = 0.15 for all
polymerizations performed (Table 1), indicating the termination by B-hydrogen chain transfer to SG1
rate is low, and the primary mechanism of irreversible termination is from homotermination [27,41].
Initially, in the polymerization, when polymer chains are of a few repeat units, homotermination is low.
We can therefore assume the concentration of reversibly deactivated alkoxyamine-terminated species is
equal to the initial concentration of alkoxyamine initiator ([P−N] = [MAMA-SG1]0). The assumptions
made are valid if polymerization exhibits pseudo-living behavior; molecular weight increases linearly
with the conversion. Finally, kpK is calculated and the initial molar concentrations of SG1 and
MAMA-SG1 are substituted by r to result in Equation (2):

kpK = kp
[SG1•]0[P•]

[MAMA− SG1]0
= r · kp[P•], (2)

The slope of the ln(1−X)−1 vs time plot is equal to the apparent rate constant, kp[P•]. In this
study, gravimetric analysis was utilized to determine conversion, X. A representative ln(1−X)−1 vs
time plot used to calculate kp[P•] from the slope can be found in Figure 3, while all the resulting kp[P•]
values can be found in Table 2. PFS/MMA copolymerizations also demonstrate a linear increase in
Mn as a function of X, which is consistent with the previous assumptions suggesting Equation (2) is
valid (Figure 3). As the PFS content in the feed is increased, the kp[P•] decreases (Table 2), which is the
typical kinetic behavior of MMA/styrenic systems by NMP.
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versus apparent rate constant, kp[P•] found from the kinetic plots slope.
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Table 2. 2,3,4,5,6-pentafluorostyrene/methyl methacrylate (PFS/MMA) random copolymerizations in
50 wt% xylenes solution at 90 ◦C, using a MAMA-SG1 initiator.

Exp ID a) f PFS,0
b) FPFS,10

b) kp[P•] (s−1) c) Polymerization
Time

Final Conversion
d) (X)

PFS/MMA-05/95 0.05 0.08 (6.30 ± 0.66) × 10−5 4 h 0.61
PFS/MMA-10/90 0.10 - (5.88 ± 0.47) × 10−5 5 h 0.56
PFS/MMA-20/80 0.20 0.31 (4.41 ± 0.21) × 10−5 5 h 0.43
PFS/MMA-35/65 0.35 0.56 (2.50 ± 0.19) × 10−5 5 h 0.32
PFS/MMA-50/50 0.50 0.65 (7.93 ± 0.75) × 10−6 5 h 0.52
PFS/MMA-60/40 0.60 0.83 (4.47 ± 0.40) × 10−6 6 h 0.11
PFS/MMA-75/25 0.75 0.95 (3.07 ± 0.38) × 10−6 6 h 0.19
PFS/MMA-90/10 0.90 - (2.50 ± 0.07) × 10−6 7 h 0.08
PFS/MMA-95/05 0.95 0.99 (2.37 ± 0.06) × 10−6 7 h 0.08
PFS/MMA-100 100 1.00 (9.03 ± 1.28) × 10−7 10 h 0.38

a) Experimental identification (ID) is presented as PFS/MMA-Y: where PFS and MMA correspond to
2,3,4,5,6-pentafluorostyrene (PFS) and methyl methacrylate (MMA), respectively. The number abbreviation refers to
the molar feed of PFS to MMA. b) fPFS,0 is the initial molar fraction of PFS in the feed, and FPFS,10 = copolymer
composition at 10% conversion determined by gravimetry. c) kP[P•] = apparent rate constant, found using slopes
from the linear regions of the kinetic plots. d) Final conversion determined by gravimetry

3.2. Reactivity Ratio Determination

The final composition of the copolymer will be used to engineer and tune material properties;
therefore, it is necessary to have the ability to synthesize a copolymer of a specifically desired
composition. Knowledge of the comonomer reactivity ratios is therefore required. To determine
the comonomer reactivity ratios, a series of copolymerizations were performed using the same
protocol used in kinetic experiments; however, these copolymerizations were purposely ended at low
conversion (X < 0.10) to avoid compositional drift effects. Seven copolymers with initial PFS/MMA
compositions; fPFS,0 = 0.05, 0.20, 0.35, 0.50, 0.60, 0.75 and 0.95 were copolymerized. Copolymer
composition was determined by a combination of 1H NMR and 19F NMR spectroscopy, with the use
of an α-α-α-trifluorotoluene marker, and are shown in Figure 4, where the initial molar feeds are
displayed against the final copolymer compositions (X < 0.10). Reactivity ratios of the comonomers
were found with the Mayo-Lewis equation (Equation (3)) [42,43]:

FPFS =
rPFS f 2

PFS+ fPFS fMMA

rPFS f 2
PFS+2 fPFS fMMA+rMMA f 2

MMA+rMMA f 2
MMA

; where,

rPFS =
kp.PFS−PFS

kp.PFS−MMA
and rMMA =

kp.MMA−MMA
kpMMA−PFS

(3)

where the final molar copolymer composition FPFS is a function of initial molar feed compositions
fPFS,0 and fMMA,0 and the reactivity ratios rPFS and rMMA. ƒPFS,0 and FPFS,10 tabulated in Table 2, were
substituted into Equation (3) for a reactivity ratio determination. A non-linear least squares (NILS)
fitting of the Mayo-Lewis equation to the experimentally measured copolymer compositions was
performed to converge on the reactivity ratios, which are displayed in Figure 4 [44–46]. The fitting
shows rPFS > rMMA, indicating a preferred addition of the controlling PFS comonomer over MMA
suggesting the final copolymers synthesized may have a gradient composition where the initiation
end is heavily comprised of the fluorinated sytyrenic, and the propagating end is more MMA rich
in comparison. Earlier studies have determined a styrenics capability to maintain a pseudo-living
copolymerization of methacrylates is dependent on the reactivity ratios: if the propagation of the
styreneic is preferred, a pseudo-living copolymerization can be performed with MMA feeds as
significant as fMMA,0 ≈ 0.95–0.99 [47]. However, if the reactivities suggest a preferred propagation of
the methacrylate over styreneic, then a pseudo-living copolymerization will only be possible with feeds
extremely rich in the controlling styrenic monomer, for instance, methacrylic acid (MAA) and PFS
requires fPFS,0 > 0.60 to result in a pseudo-living copolymerization [22]. The results we found indicate
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that the copolymerization of MMA and PFS will exhibit pseudo-living copolymerization behavior over
a wide range of feed compositions.
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Figure 4. Mayo-Lewis plot of copolymer composition with respect to 2,3,4,5,6-pentafluorostyrene,
FPFS,10, versus monomer feed composition, fPFS,0. The experimental data for MMA/PFS
copolymerization is represented by solid circles, while the solid line shows the fit from the reactivity
ratios calculated from the non-linear least-square fitting to the Mayo-Lewis equation (rPFS = 3.50 ± 0.70
and rMMA = 0.20 ± 0.21). The straight dashed line indicates the azeotropic composition (f PFS,0 = FPFS).
Table 2 lists the experiments used for the plots.

3.3. Characterization of the Final Random Copolymers

After the polymer reaction engineering was performed, a subset of materials of broad
(FPFS = 0.08–1.00) composition was selected and extensively characterized to determine relationships
between the copolymer composition and material property (Table 3). The bulk material properties
were characterized by GPC and DSC. The molecular weights of the materials ranged from 19 kDa to
74 kDa, all with a relatively narrow dispersity, as expected by controlled polymerization. The glass
transition temperatures, Tgs ranged from (90 to 110 ◦C, Figure S2).

Table 3. Molecular Weight Distribution Data & Glass Transition for PFS/MMA copolymers.

FPFS
1) ∂n/∂c 2)

[mL g−1]
Mn (Da) 3)

[g mol −1]
Mw (Da) 3)

[g mol −1]
Ð 3)

Mw/Mn

Tg
4)

[◦C]

0.08 0.0767 21,100 25,310 1.20 110
0.18 0.0706 14,720 18,970 1.29 107
0.32 0.0632 13,790 15,860 1.15 100
0.57 0.0529 10,650 11,910 1.13 90
0.81 0.0455 10,550 13,060 1.24 88
0.89 0.0435 51,700 73,250 1.42 84
1.00 0.0411 17,400 19,900 1.14 79

1) Final molar copolymer composition, FPFS
2) ∂n/∂c used was weight average of the homopolymers (0.0411 for

poly(PFS) and 0.0831 for poly(MMA)) 3) Number-average molecular weight (Mn), weight-average molecular weight
(Mw) and the dispersity (Ð = Mw/Mn) were determined by gel permeation chromatography (GPC)*. 4) glass
transition temperature determined by differential scanning calorimetry (DSC).

Contact angle measurements were performed on thin-films of the PFS/MMA copolymers, as well
as blends of the respective poly(MMA) and poly(PFS) homopolymers (Figure 5). The blended films
possessed a contact angle of around 100◦, the same as the PFS homopolymer, which is due to the
migration of PFS homopolymer to the surface during annealing steps, this surface segregation of
fluorinated components has also been noted in polystyrene and vinyl acetate blended polymer
films [15,16]. The contact angles of the copolymer films ranged linearly from 83.3 ± 2.5 to 99.7 ± 1.9 at
compositions of FPFS = 0.08 to 0.89, which falls in between the respective homopolymer chracteristics
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(Figure 5). These results highlight the necessity of copolymers over simple blending techniques to tune
surface properties.
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Figure 5. Contact angle measurements of PFS/MMA thin-film copolymers (circles) and PFS/MMA
thin-film blends (squares) formed from spin-coating a 50mg/mL solution in MEK solvent after annealing
at 150 ◦C for 2 h.

Metal-insulator-metal (MIM) capacitors were fabricated to analyze the dielectric behavior of the
copolymers by electrical impedance spectroscopy (EIS). The MIM sandwich structure was fabricated
by spin coating the PFS/MMA copolymers between silver electrodes, which were deposited by physical
vapor deposition. Using EIS and the film thickness from profilometry, the dielectric constant was
determined using the equation:

k =
C·d
ε0·A

where C is the capacitance [F], d is the insulator thickness [m], A is the area of the electrode area [m2]
and ε0 is the permittivity constant [F/m]. The dielectric constant was shown to slightly increase at lower
frequencies (Figure S3) and exhibited no voltage dependence. As shown in Figure 6, the dielectric
constant of the copolymers clearly shows a linear decrease from 3.9 to 2.3, with increasing PFS content
at 100 kHz. These results demonstrate that the dielectric properties of the poly(MMA) polymer can be
tuned with the copolymerization of a known amount of PFS monomer.
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3.4. Poly(PFS-ran-MMA) Copolymers as Dielectric Materials in Organic Thin-Film Transistors

Bottom-gate top-contact (BGTC, Figure 7) copper phthalocyanine (CuPc) based OTFTs were
fabricated using poly(PFS-ran-MMA) copolymers as a dielectric layer to identify the impact of PFS
content on the hole transport mobility (µ), the on-off current (ION/OFF) and the threshold voltage (VT),
and can be found in Table 4. The µ of the OTFT devices was calculated using the capacitance densities
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for the corresponding copolymers obtained from the dielectric constants in the previous section.
The resulting OTFTs were characterized by having µ = 1 to 3 × 10−3cm2/Vs, ION/OFF 1 to 10 × 103 and a
VT = −4 to −17 V, which is typical for CuPc based OTFT devices [48–50]. Characteristic output and
transfer curves are shown in Figure 7. Fluorinated surfaces are electron-withdrawing, which have
been shown to improve the performance of p-type semiconductors [51]. In this case and highlighted in
Figure 8, the increase in the content of PFS reduces the VT, while having little effect on the µ, which is
consistent with what we would expect for the addition of fluorinated dielectrics [52]. This suggests
that the PFS molecules present on the dielectric surface reduce the concentration of charge trap sites at
the semiconductor/dielectric interface [11,12]. For the PFS/MMA copolymers with a PFS composition
greater than FPFS = 0.57, there were few functioning devices, and the results were unreliable with
large deviations. We identified that during fabrication, when the polymer was too rich in PFS content,
the CuPc semiconductor would no longer form uniform films (Figure S4). This was obvious from the
lack of blue color (CuPc, Figures S4 and S5) in the films and the drop in functioning devices (Table 4).
The devices that did function when FPFS > 0.57 were when some CuPc deposited in the channel (Figure
S5b). The microstructure of the organic semiconducting layer, especially at the dielectric interface where
the conductive channel is formed, has a significant effect on the charge transport properties [53–55].
Therefore, we performed powder X-ray diffraction on the CuPc layer, which was deposited on the
different copolymers, and the spectra can be found in the ESI (Figure S6). In all cases, we observed a
weak characteristic peak corresponding to the CuPc at 2θ = 7◦. No significant differences in diffraction
intensity (or peak location) between the CuPc films that grew on different surfaces was observed.
Further investigation would be necessary to probe the solid-state arrangement of these films and
identify the effect of the copolymer composition on the CuPc film growth. Regardless, these results
demonstrate that PFS comonomers can be introduced into poly(MMA) dielectrics to tune the surface
properties, dielectric properties and the resulting OTFT properties.Polymers 2020, 12, x FOR PEER REVIEW 11 of 15 
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Table 4. Bottom-gate top-contact (BGTC) copper phthalocyanine (CuPc) based OTFTs fabricated using
poly(PFS-ran-MMA) copolymers as the dielectric layer.

FPFS
a) µ (cm2/Vs) b) ION/OFF

b) VT (V) b)

0.08 1.23 ± 0.144 × 10−3 7.51 × 103 −16.35 ± 0.94
0.18 2.27 ± 0.473 × 10−3 1.83 × 104 −14.69 ± 1.22
0.32 2.41 ± 0.301 × 10−3 3.37 × 104 −6.35 ± 0.58
0.57 2.42 ± 0.423 × 10−3 1.07 × 104 −4.15 ± 1.18
0.81* - - -
0.89* - - -
1.00* - - -

a) FPFS = molar composition of PFS in the poly(PFS-ran-MMA) copolymers dielectric layer. b) hole transport mobility
(µ), the on-off current (ION/OFF) and the threshold voltage (VT). *At these molar compositions, the CuPc no longer
formed uniform films leading to device failure and irreproducible results.
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Figure 8. (a) Threshold voltage and (b) field-effect mobility for CuPc OTFTs with poly(PFS-co-MMA)
dielectrics of varying composition.

4. Conclusions

Poly(2,3,4,5,6-pentafluorostyrene) were synthesized in large yields by Nitroxide Mediated
Polymerization at 90 ◦C. The copolymerization exhibited pseudo-living behavior shown by the
apparent polymerization rate, which follows first order kinetics with reference to monomer conversion.
Additionally, the molecular weight increases in a linear relation to monomer conversion. Finally,
the molecular weights experimentally measured align with the theoretical values, and are of relatively
low dispersity (Mw/Mn ≤ 1.3). Thin-film contact angle and dielectric constant were shown to change
linearly with copolymer composition. We investigated the effects of copolymer composition with
respect to fluorinated content on bottom-gate top-contact CuPc OTFT performance characteristics,
and found a reduction in threshold voltage with increasing fluorine content; however, materials which
were too rich in fluorine content resulted in poor semiconductor adhesion and non-functional devices.
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Figure S1. 1H NMR and 19F NMR spectrum of the final copolymer PFS/MMA 80/20 with a-a-a-trifluorotoluene
marker. Figure S2. DSC exothermic thermograms of PFS/MMA copolymers. Figure S3. Dielectric constant
versus frequency from 102–105 Hz obtained by impedance spectroscopy on MIM capacitors utilizing PFS/MMA
copolymers. Figure S4. PFS/MMA copolymer OTFTs CuPc Visibility at varying PFS content. Figure S5. Microscope
images of CuPc deposited on PFS copolymers. Figure S6. X-ray diffraction pattern performed on CuPc films
deposited on PFS/MMA underlying films of varying compositions.
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