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Abstract: High-voltage direct-current (HVDC) dry bushing capacitor-core insulation is composed of
epoxy resin-impregnated insulating paper (RIP). To improve the thermal conductivity, breakdown
strength, and space charge characteristics of RIP, 0.1 wt % nano-cellulose fiber (CNF)-modified RIP
(CNF/RIP), 2.5–30 wt % hexagonal boron nitride (h-BN)-modified RIP (h-BN/RIP), and 2.5–30 wt %
h-BN + 0.1 wt % CNF-modified RIP (h-BN + 0.1 wt % CNF/RIP) were prepared. Scanning electron
microscopy (SEM) was implemented; the thermal conductivity, DC conductivity, DC breakdown
strength, and space charge characteristics were tested. The maximum thermal conductivity of
h-BN + 0.1 wt % CNF/RIP was 0.376 W/m.K with a h-BN content of 30 wt %. The thermal conductivity
was 85.2% higher than that of unmodified RIP. The breakdown strength and charge suppression were
the best in the case of 10 wt % h-BN + 0.1 wt % CNF/RIP. The maximum breakdown strength was
11.2% higher than that of unmodified RIP. These results can play a significant role in the research and
development of insulation materials for HVDC dry bushing.

Keywords: dry bushing; epoxy resin-impregnated paper; dielectric characteristics; thermal conductivity;
space charge; nanocomposite

1. Introduction

To meet the demand for electricity, attempts are being made to realize high-voltage power
transmission with large capacity. Direct-current (DC) transmission is better than alternating current
(AC) transmission for asynchronous grid connection; furthermore, power loss is less in the former case.
Specifically, for long-distance and under-sea transport, DC transmission is more advantageous than
alternating AC transmission [1]. High-voltage direct-current (HVDC) bushing plays an important role
in HVDC transmission. To meet the requirements of an oil-free valve hall, environmental friendliness,
convenient transportation, a flexible installation angle, and avoidance of secondary injury caused by
equipment failure, HVDC dry bushing is gradually replacing the traditional oil-impregnated paper
insulation bushing in the HVDC transmission system [2]. The development of HVDC dry bushing is
rapid. The capacitor core is the key component of HVDC dry bushing; it features a multi-electrode
concentric capacitor structure composed of epoxy resin-impregnated paper (RIP) and aluminum
foil. The RIP (for insulation) and aluminum foil play the role of homogenizing the electric field
distribution [3].
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A large amount of current flowing through the center conductor will result in the capacitor
core generating considerable heat. The heat cannot be released in time due to the poor thermal
conductivity of RIP. A higher temperature field will form in the insulation of the capacitor core. The DC
conductivity of RIP is a function of temperature. In the case of DC voltage, the electric field distribution
is closely related to DC conductivity. The temperature gradient will distort the distribution of the
electric field in insulation. Due to electric field distortion, the aging of RIP will accelerate, which will
reduce the service life of the HVDC dry bushing [1]. Jyothi proposed a method for calculating the
temperature distribution in the bushing, which can evaluate the maximum thermal voltage in the
bushing insulation [4]. Wang simulated the temperature distribution in the bushing according to the
actual operation of the bushing [5]. The influence of bushing structure parameters on temperature
distribution is discussed, and the bushing structure is optimized. They provided guidance on the
design and manufacture of bushing. Furthermore, the space charge injection can also distort the
electric field distribution. In serious cases, the existence of space charges may lead to the failure
of bushing insulation. Wu prepared RIP samples and tested their space charge distribution under
different electric field strengths [2]; through finite element simulation, Zhang proved that the existence
of space charge can distort the electric field distribution in the bushing [6]. Additionally, the breakdown
strength of RIP is also an important parameter of dry bushing. Shen, Wei, and Zhang prepared RIP
samples and tested their AC and DC breakdown characteristics, which laid a certain foundation for the
design and development of high voltage DC bushing [7,8]. The weight and length of a ±1100 kV wall
bushing are 18 t and 25 m, respectively. Enhancing the breakdown strength of RIP can significantly
reduce the volume and cost of bushing [9]. Therefore, improving the thermal conductivity, space
charge characteristic, and breakdown strength of RIP plays a significant role in HVDC dry bushing.
The research and development of insulating materials with excellent properties is one of the most
direct ways of solving the aforementioned problems.

However, most of the above studies are limited to the performance analysis of the RIP material
itself and the optimization of the bushing structure. There are relatively few studies on the modification
of RIP insulation materials. Nano-modification is a practicable method of improving the properties of
composite materials. Nano-modification of epoxy resin has achieved fruitful results. Tian found that
nano-SiO2/EP and Al2O3/EP composites can effectively inhibit the accumulation of space charge in
epoxy resin [10]. Song, Park, and Kim showed that graphene/epoxy composites have high thermal
conductivity [11]. However, nano-fillers increase the viscosity of epoxy resin, thereby rendering
its impregnation difficult. In addition, some scholars have conducted considerable research on
oil-impregnated nano-modified insulating paper. Lv found that nano-TiO2 can effectively inhibit the
space charge injection of oil-impregnated insulating paper [12]. A Bai study found that AlN can
effectively inhibit space charge accumulation in oil-impregnated meta-aramid paper [13]. These studies
provide a new way to improve the performance of RIP. According to the results of our previously
conducted research, hexagonal boron nitride (h-BN) can improve the space charge and thermal
conductivity characteristics of RIP [9]. However, the reduced breakdown strength of h-BN/RIP is
undesirable. Zeng and Wu used ball milling and scraper orientation methods to obtain h-BN/CNF
high thermal conductivity material [14,15]. The nano-cellulose fiber (CNF) features high surface energy,
and its structure is similar to that of paper cellulose. Therefore, CNFs are considered a “bridge” (they
can be closely combined with pulp cellulose and they can also be entangled with h-BN) between
h-BN and paper cellulose to improve their interface. To improve the breakdown strength of h-BN/RIP,
h-BN is modified by CNFs. Then, the modified h-BN is used to modify RIP. Moreover, an epoxy
anhydride-curing system with excellent insulation performance and low viscosity is used to impregnate
insulating paper.

This study investigates the DC dielectric and thermal conductivity characteristics of RIP. Experimental
research indicates that 10 wt % h-BN + 0.1 wt % CNFs/RIP feature excellent breakdown strength and
space charge suppression.
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2. Materials and Methods

2.1. Sample Preparation

Unbleached coniferous Kraft pulp was used as raw material for the insulating paper. Unmodified
insulating paper was produced through the processes of pulping, dissociating, shaping, compressing,
and drying.

Nano-modified insulating paper was prepared by the Mechanical Co. ultrasonic mixing method.
Epoxy resin, curing agent, and accelerator were included in the weight ratio of 100:85:0.3. Then, they
were stirred under vacuum at 333.15 K for 15 min. This mixture was used to impregnate the unmodified
and modified insulating paper under vacuum at 333.15 K. Lastly, the modified and unmodified RIP
were obtained by staged curing of the impregnated insulating paper. The curing conditions are 353.15 K
for 2 h, 373.15 K for 2 h, and 393.15 K for 4 h. The process of producing nano-h-BN + CNFs modified
RIP is detailed in Figure 1.
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Figure 1. Flow chart of the process of creating epoxy resin-impregnated nano-hexagonal boron nitride
(h-BN) + nano-cellulose fiber (CNF)-modified pressboard.

Silane coupling agent KH-550 was used as a surface modifier of nano-h-BN, and polyethylene
glycol (PEG) with a long chain structure was used as a dispersant [16]. The material parameters and
equipment models used in Figure 1 are listed in Table 1.
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Table 1. Material parameters and equipment models.

Material or Equipment Model or Parameter Manufacturer

Distilled water µ < 10 S/cm Prepared in our laboratory
h-BN Average diameter: 0.5 µm; thickness < 100 nm; purity > 99% Peng Da Technology Co., Ltd. (Yingkou, China)

Nanocellulose fibers (CNFs) Diameter: 3–50 nm; length: up to micron; purity > 99% North Century Technology Research and Development Co., Ltd. (Beijing, China)
Epoxy resin WSR618 (E-51) Xingchen Synthetic Material Co., Ltd. (Nantong, China)

Curing agent Methyl hexahydrophthalic anhydride (MHHPA) Huicheng Electronic Materials Co., Ltd. (Puyang, China)
Accelerant 2,4,6-Tri(dimethylaminomethyl)phenol (DMP-30) Shanfeng Chemical Co., Ltd., (Changzhou, China)

Isopropyl alcohol Analytical purity Tianjin Fuyu Fine Chemical Co., Ltd. (Tianjin, China)
Coupling agent KH-550 Nanjing Union Silicon Chemical Co., Ltd. (Nanjing, China)

Beater TD 6-23 Tongda Light Power Equipment Co., Ltd., Xianyang, China
Ultrasonic cleaning machine JP-020 Jiemeng Cleaning Equipment Co., Ltd., (Shenzhen, China)

Standard agitator DJ1C-100 Dadi Automation Instrument, (Jintan, China)
Hand-sheet former TD10-200 Tongda Light Power Equipment Co., Ltd.,(Xianyang, China)

Curing press XLB25-D Shuangli Automation Technology Equipment Co., Ltd., (Huzhou, China)
Vacuum drying chamber DZF-6210D Haixiang Instrument and Equipment Factory, (Shanghai China)

Polyethylene glycol (PEG) Degree of polymerization:2000 Tianjin Guangfu Chemical Research Institute, (Tianjin, China)
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2.2. Measurement System

According to ASMT-E1530, a thermal conductivity test was performed using the thermal
conductivity tester (DTC-300, TA Instruments, Newcastle, PA, USA) at 298.15 K [17]. The diameter
of the test sample was 50 mm. The thickness of the sample was measured and a thermal paste was
applied on both sides of the sample before testing.

A three-terminal electrode system was employed during the DC conductivity measurement.
The sample surfaces were aluminized as electrodes. The electric field was 10 kV/mm, and the temperature
was maintained at 298.15 K. The electrometer (6517A, Keithley Instruments, Inc., Cleveland, OH,
USA) was used to record the stable current (I). The average conductivities samples and the standard
deviation of 4 samples were used to evaluate the conductivity characteristics.

A DC breakdown strength test was conducted using a cylindrical electrode, in accordance with
ASTM-D149. The temperature was maintained at 298.15 K. The entire test system was placed in
transformer oil to avoid surface breakdown [18]. The average breakdown strength and standard
deviation of 15 samples were used to evaluate the breakdown performance.

The pulsed electro-acoustic (PEA) technique was applied during the space charge test. The test
field strength was 10 and 20 kV/mm, respectively, and a pulse field strength of 2 kV/mm was applied
simultaneously. The test temperature was maintained at 298.15 K. The structure of the PEA test system
is illustrated in Figure 2.
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Figure 2. Structure of the pulsed electro-acoustic (PEA) test system.

The scanning electron microscope (SEM, SU8020 Hitachi High Technologies Corp, Tokyo, Japan)
observation results are presented in Figure 3.

3. Results

3.1. SEM Test Results of the RIP

Figure 3a shows that nano-h-BN is stacked in layers. Figure 3b illustrates nano-h-BN sheets
covered with CNFs. CNFs can prevent the agglomeration of h-BN to some extent. Figure 3d shows
that there are many nanofibers between pulp cellulose and presents a good combination of CNFs and
pulp cellulose. Figure 3e,f shows that CNF-modified h-BN dispersed more evenly in pulp cellulose.
It is due to CNFs being able to serve as a “bridge” for strengthening the connection between pulp
cellulose and nano-h-BN sheets. Moreover, CNF can separate h-BN from each other.
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(d) CNF-modified pressboard, (e) h-BN-modified pressboard, and (f) h-BN + CNF-modified pressboard.

3.2. Thermal Conductivity Test Results of the RIP

The thermal conductivity and rate of rise in thermal conductivity of 0–30 wt % h-BN + 0.1 wt %
CNF/RIP and 0–30 wt % h-BN/RIP are presented in Figure 4. When the h-BN content is the same,
the thermal conductivity of 0.1 wt % CNFs/RIP is slightly higher than that of h-BN/RIP. The thermal
conductivity of 0–30 wt % h-BN + 0.1 wt % CNF/RIP and 0–30 wt % h-BN/RIP increased from
0.203 W/m.K to 0.376 W/m.K and 0.362 W/m.K, respectively. The higher the content of h-BN, the
higher the thermal conductivity. The rate of rise in thermal conductivity of 30 wt % h-BN + 0.1 wt %
CNFs/RIP and 30 wt % h-BN/RIP reached 85.2% and 73.4% respectively.

The rate of rise in thermal conductivity, η, is given by

η = (λm − λ0)/λ0 × 100% (1)

where λm and λ0 are the thermal conductivities of m wt % h-BN + 0.1 wt % CNF/RIP (or m wt %
h-BN/RIP) and unmodified RIP, respectively.
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3.3. DC Conductivity Test Results of The RIP

Figure 5 explains the relationship between DC conductivity of unmodified RIP, 0.1 wt % CNF/RIP,
2.5–30 wt % h-BN/RIP, and 2.5–30 wt % h-BN + 0.1 wt % CNF/RIP and h-BN (or CNF) content.
The conductivity of CNF/RIP is almost the same as that of unmodified RIP; the DC conductivity of
h-BN + 0.1 wt % CNF/RIP is lower than that of h-BN/RIP when the filler loadings of h-BN are the same.
As the filler loading of h-BN increases, the DC conductivity of 2.5–30 wt % h-BN/RIP decreases; the DC
conductivity of h-BN + 0.1 wt % CNF/RIP is lower than that of unmodified RIP, except for 15 wt %
h-BN + 0.1 wt % CNFs/RIP. As the filler loading of h-BN increases, the DC conductivity of 2.5–15 wt %
h-BN + 0.1 wt % CNF/RIP first decreases and then increases.
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3.4. DC Breakdown Strength Test Results of The RIP

Figure 6 presents the results of the DC breakdown strength tests conducted on unmodified RIP,
CNF/RIP, h-BN/RIP, and BN + 0.1 wt % CNF/RIP. The breakdown strength of CNF/RIP is almost the
same as that of unmodified RIP. When the filler loading of h-BN was in the range of 2.5–30 wt %, the
breakdown strengths of h-BN/RIP and h-BN + 0.1 wt % CNF/RIP first increased and then decreased.
However, the breakdown strength of h-BN + 0.1 wt % CNF/RIP was higher than that of h-BN/RIP
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when the contents of h-BN were the same. The breakdown strength of 10 wt % BN + 0.1 wt % CNF/RIP
was the highest—11.2% higher than that of unmodified RIP.
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Figure 6. DC breakdown strength of unmodified RIP, BN/RIP, CNF/RIP, and BN + 0.1 wt % CNF/RIP.

3.5. Space Charge Characteristics of the RIP

The results of the space charge tests conducted on unmodified RIP, CNF/RIP, 10 wt % h-BN/RIP, and
h-BN + 0.1 wt % CNF/RIP are presented in Figure 7. Figure 7 shows that with the increase of applied
voltage time, the amount of space charge injection increases gradually, the depth deepens, and finally
and gradually stabilizes. The figure indicates that more space charges are injected and the injection
depth is deeper when the electric field strength is higher. Figure 7a,b indicate considerable space charge
injection in the unmodified RIP and CNF/RIP. It can be concluded that only the addition of CNFs cannot
inhibit space charge injection. Figure 7a,c–g indicate that space charge injection in h-BN + 0.1 wt %
CNF-modified RIP is less than that in the unmodified RIP. However, the amount of charge at the cathode
has increased. Furthermore, the space charge injection in 10 wt % h-BN + 0.1 wt % CNF-modified RIP
is very little. According to the results in our previous research, only adding h-BN can also suppress
space charge injection [1]. Figure 7h shows that 10 wt % h-BN/RIP can suppress space charge injection
to some extent. This proves that h-BN plays an important role in suppressing the space charge.
However, it was observed that changes in specific mass fraction of h-BN + 0.1 wt % CNF had a more
significant effect on space charge suppression than the addition of h-BN alone.
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Figure 7. Space charge characteristics of unmodified RIP, CNF/RIP, and h-BN + 0.1 wt % CNF/RIP (a)
unmodified RIP, (b) 0.1 wt % CNF/RIP, (c) 2.5 wt % h-BN + 0.1 wt % CNF/RIP, (d) 5 wt % h-BN + 0.1 wt %
CNF/RIP, (e) 10 wt % h-BN + 0.1 wt % CNF/RIP, (f) 15 wt % h-BN + 0.1 wt % CNF/RIP, (g) 30 wt %
h-BN + 0.1 wt % CNF/RIP and (h) 10 wt % h-BN/RIP.

4. Discussion

In this section, we shall discuss the thermal conductivities of unmodified RIP and CNF/RIP.
The structures of CNFs and insulating paper cellulose are similar. Besides, the CNF content in CNF/RIP
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is very low. Therefore, adding CNFs alone did not lead to changes in the thermal conductivity of RIP;
the thermal conductivity of h-BN + 0.1 wt % CNF/RIP was higher than that of the unmodified RIP.
The thermal conductivity of h-BN is very high, and the h-BN in RIP can build a thermal network.
Moreover, the higher the h-BN content, the more complete the established thermal network [1].
Therefore, thermal conductivity increases with an increase in the h-BN content. The thermal conductivity
of 0.1 wt % CNFs+h-BN/RIP is higher than that of h-BN/RIP, when the h-BN content is the same.
It may be due to CNFs improving the interface of h-BN and pulp cellulose, which reduced the interface
thermal resistance.

The DC conductivities of unmodified RIP and CNF/RIP are almost the same because their
structures are similar and CNF contents are low; the DC conductivity of h-BN/RIP is higher than that of
unmodified RIP and decreases with an increase in the filler loading of h-BN. The significant difference
between the sizes of h-BN and paper cellulose is a reason why the interface interaction is weak. h-BN
affects the conductivity of h-BN/RIP by “scattering” [19]. The scattering effect is weak because the h-BN
content is low; furthermore, the adsorption of h-BN on the pulp cellulose will reduce cross-linking
points to affect cellulose cross-linking, which can make the movement of the cellulose molecular chain
easier. The carrier is easy to transport, so its conductivity increases. As the h-BN content increases, the
scattering increases, and the h-BN fills some voids between the pulp cellulose. The carrier transport is
inhibited, the conductivity of h-BN/RIP decreases. Therefore, the conductivity of h-BN/RIP increases
and then decreases as the filler loading of h-BN increases; the specific surface area and surface energy
of CNFs are large, so that they can interact with h-BN. The structures of CNFs and paper cellulose
are similar, which makes the CNFs easily combine with insulating paper cellulose. The CNFs can be
used as a “bridge” between h-BN and insulating paper cellulose. They can help in combining h-BN
and paper cellulose more effectively. In addition, coating h-BN with CNFs can play a supporting
role and prevent the agglomeration of h-BN. More interfaces are introduced, and carrier migration is
limited [20]. In addition, Figure 3e shows that there are many CNFs linking between the pulp cellulose
and pulp cellulose. These CNFs will make the movement of the cellulose molecular chain difficult and
fill the voids between the pulp cellulose. At the same time, the presence of CNFs enables h-BN not
only to be adsorbed on the pulp cellulose, but also to be fixed between the pulp cellulose by CNFs.
The decrease in free volume reduces the free travel of carriers and makes carrier transport difficult.
Therefore, the conductivity of h-BN + 0.1 wt % CNF/RIP is lower than those of unmodified RIP and
h-BN/RIP. When the filler loading of h-BN is up to 15 wt %, its conductivity increases owing to the
weakening of the interface. When the filler loading of h-BN reaches 30 wt %, its conductivity decreases
owing to the enhanced “scattering” of h-BN.

For the DC breakdown strength variations in unmodified, CNF/RIP, h-BN/RIP, and h-BN + 0.1 wt %
CNF/RIP, the free path of the carriers affects the progress of breakdown. The longer the free path of
the carrier, the higher the energy obtained in the process of carrier transmission, and the lower the
breakdown strength [9]. The carrier–transport process can be reflected by its DC conductivity. The DC
conductivity of h-BN/RIP is higher than those of unmodified RIP and h-BN + 0.1 wt % CNF/RIP, and
the carrier transport is easier. As a result, the breakdown strength of h-BN/RIP is lower than those
of unmodified RIP and h-BN + 0.1 wt % CNF/RIP. However, although the conductivity of 30 wt %
h-BN/RIP is lower than that of 15 wt % h-BN/RIP, its breakdown field strength is lower than that of
15 wt % h-BN/RIP. Because the content of h-BN is very high, some defects are introduced [21]; because
the conductivities of unmodified RIP and CNF/RIP are almost the same, the breakdown strengths of
RIP and CNF/RIP are almost the same; due to the strong interface effect, the breakdown strength of
2.5–10 wt % h-BN + 0.1 wt % CNF/RIP increases as the h-BN content increases. When h-BN content
≥15 wt %, the interface effect becomes weaker. Therefore, the breakdown strength of 15–30 wt % h-BN
+ 0.1 wt % CNF/RIP decreases.

The space charge characteristics of unmodified RIP, CNF-modified RIP, and h-BN + 0.1 wt %
CNF/RIP are affected by the interface and h-BN “scattering”. According to our previous study,
appropriate use of h-BN can achieve space charge suppression by “scattering” [19]. In addition, the
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interface effect also helps in suppressing the space charge. According to the results of DC conductivity
and DC breakdown strength, the interface effect is the largest in the case of 10 wt % h-BN + 0.1 wt %
CNF/RIP. Therefore, the effect of space charge suppression is the best in the case of 10 wt % h-BN 10 wt %
h-BN + 0.1 wt % CNF/RIP. Furthermore, as h-BN continues to increase, the “scattering” becomes
stronger. Therefore, 15–30 wt % h-BN + 0.1 wt % CNF/RIP can still achieve space charge suppression.

The 0.1 wt % CNFs+10wt % h-BN/RIP with the thermal conductivity of 0.29 W/m.K, the high
breakdown strength of 374.75 kV/mm, the low conductivity of 6.47318ˆ−16 S/m, and the good space
charge suppression effect is a good choice for HVDC dry bushing insulation.

5. Conclusions

This study investigated the dielectric properties of h-BN/RIP, CNF/RIP, and h-BN + 0.1 wt %
CNF/RIP. The following conclusions were drawn:

(1) CNF/RIP and h-BN/RIP did not increase the breakdown strength of RIP; however, they did
increase the breakdown strength of 2.5–10 wt % h-BN + 0.1 wt % CNF/RIP. h-BN and CNFs
were synergetic.

(2) The breakdown and space charge suppression performances were the best in the case of
10 wt % h-BN + 0.1 wt % CNF/RIP. It can be a potential insulating material in the manufacturing
of HVDC dry bushing.

(3) In comparison with unmodified RIP, the h-BN/RIP and h-BN + 0.1 wt % CNF/RIP can suppress
the space charge but CNF/RIP cannot. h-BN plays a significant role in suppressing the space
charge, and CNFs can enhance its role.
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