Table S1. The characteristic FTIR data of the pure CA and light conversion films.

Sample	$v-\mathrm{O}-\mathrm{H}$	Δ	$v_{\text {as-COO }}$	Δ	v-COO-	Δ	$v_{\text {as-C-O-C }}$	Δ	v-C-O-C	Δ
CA	3480	0	1431	0	1737	0	1215	0	1031	0
CA-Eu	3396	-84	1475	+44	1721	-16	1225	+10	1027	-4
CA-Tb	3396	-84	1481	+50	1720	-17	1231	+16	1027	-4
CA-Eu-Tb	3396	-84	1479	+48	1718	-19	1231	+16	1027	-4

Table S2. Binding energy of C1s and O1s for CA and light-conversion films.

Sample	C1s					O1s		
	C-C (C-H)	C-O	C=O		-OH	C-O	C=O	
CA	284.8	286.774	289.002		531.493	531.907	532.693	
CA-Eu	284.8	286.771	288.839		531.945	532.393	533.131	
CA-Eu-Tb	284.8	286.730	288.733		531.740	532.297	533.060	

The above data is calculated by CasaXPS.

Measurement method of the conditional viscosity: The conditional viscosity was measured using the QNO-4 viscometer (Material Testing Machine Factory, Tianjin, China) and the test method was based on GB/T 1723-93, and five sets of films were tested in parallel. The conditional viscosity of CA and CA-Eu solutions was summarized in Table S3.

Table S3. The conditional viscosity of CA and CA-Eu solutions.

Sample	Conditional viscosity (s)					
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Mean
	21.34	22.21	22.22	24.01	24.91	22.9
CA-Eu	8.75	10.00	11.45	11.84	13.20	11.0

Figure S1. Fluorescence intensity of the light conversion films at the peak of 615 nm . a-the intensity of different proportions. b-the intensity of different reaction time. c-the intensity of different $\mathrm{Eu}^{3+}: \mathrm{Tb}^{3+}$
ratios. (For convenience, set the total amount of Eu^{3+} and Tb^{3+} to "1" and calculate the proportion of Tb^{3+} proportionally. And use the proportion of Tb^{3+} as the abscissa and the fluorescence intensity at 615 nm as the ordinate to plot Figure S(c).)

