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Abstract: Amphotericin B (AmB) is a widely used antifungal that presents a broad action spectrum
and few reports on the development of resistance. However, AmB is highly toxic, causing renal
failure in a considerable number of treated patients. Although when AmB is transported via polymer
micelles (PMs) as delivery vehicles its nephrotoxicity has been successfully attenuated, this type of
nanoparticle has limitations, such as low encapsulation capacity and poor stability in aqueous media.
In this research, the effect of modifying polyethyleglicol-block-poly(ε-caprolactone) (PEG-b-PCL) with
1,2-distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE) on the performance of PMs as vehicles
for AmB was studied. PEG-b-PCL with two different lengths of a PCL segment was prepared via
ring opening polymerisation and modified with DSPE at a post-synthesis stage through amidation.
Upon modification with DSPE, a copolymer was self-assembled, thereby producing particles with
hydrodynamic diameters below 100 nm and a lower critical micelle concentration than that of the raw
copolymers. Likewise, in the presence of DSPE, the loading capacity of AmB increased because of the
formed intermolecular interactions, such as hydrogen bonds, which also caused a lower aggregation
of this drug. The assessment of in vitro toxicity against red blood cells indicated that the toxicity
of AmB decreased upon encapsulation; however, its antifungal action against clinical yeasts was
maintained and enhanced, as indicated by a decrease in its minimum inhibitory concentration.

Keywords: amphotericin B; polymer micelle; phospholipid-modified copolymer

1. Introduction

Amphotericin B (AmB) is a drug that belongs to a group of polyenic antifungals; it
is also used to treat viral and parasitic diseases [1,2]. In spite of its toxicity and multiple
reported side effects caused by its bioaccumulation in organs such as the liver, lungs
and kidneys, AmB is considered the ‘gold standard’ in the treatment of invasive fungal
infections because of its broad action spectrum, and few reports of resistant strains [3–7].
However, the administration of AmB is challenging because it is amphiphilic and ampho-
teric; it also has a very low solubility at physiological pH [6–8]. Nevertheless, AmB can be
formulated with different methods, including colloidal dispersions stabilised by sodium
deoxycholate such as Fungizone®. Although these formulations display the highest effi-
cacy, they are toxic, causing side effects, such as renal failure, which is recurrent in treated
patients [9]. Upon the use of liposomal formulations, some of the toxic effects are avoided,
but high dose requirement, high cost and other characteristics limit their usage [10–12].

Although AmB, which has been used since 1959, is an antifungal, its mechanism of
action is still under debate. The formation of ‘barrel type’ pores from AmB molecules
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embedded in a lipid membrane allows the leakage of ions and other substances vital
for cell growth; as such, this mechanism is the most generally accepted proposal. Polar
channels are produced via the assembly of adjacent AmB molecules with sterols and
phospholipids [13]. AmB is highly active in cells that contain ergosterol and thus confers
drug selectivity. However, AmB can destabilise the membranes of mammal cells that
contain cholesterol, inducing toxicity. Other mechanisms have also been proposed. For
instance, oxidative cell damage caused by reactive oxygen and nitrogen species generated
by AmB harms cells and causes cell death [7]. In addition, sterols are sequestered by AmB
aggregates located on the surface of cells (sterol sponge) [14].

The toxicity of AmB is mostly associated with its aggregates present at concentrations
>1 mg/L [15]. It can be characterised through in vitro haemolysis assays, which have
revealed that the toxicity of AmB has a good correlation with nephrotoxicity detected
in vivo [16,17]. Nevertheless, its toxicity can be attenuated through its encapsulation
in colloidal structures, such as polymer micelles (PMs) that release monomeric AmB
in a controlled manner [18–26]. PMs can be produced spontaneously in an aqueous
medium through the self-assembly of amphiphilic polymeric molecules. Therefore, they
are promising vehicles because of their simple encapsulation and release mechanisms.

Despite the advantages of PMs, they present some disadvantages, such as poor sta-
bility under physiological environments and low encapsulation capacity, thereby limiting
their translation to clinical applications. For example, PEG-b-PCL copolymers are biocom-
patible, but they do not have functional groups that favour chemical interactions with
drugs; as such, they yield a low loading capacity (LC). These copolymers can be modified
with biomolecules that enhance polymer/drug affinity without altering their biocompati-
bility. Early reports showed that the modification of PEG-b-PCL with cholesterol [27] and
retinol [28] enhances their AmB loading capacity. Similarly, modification with linoleic acid
and π-conjugated moieties improves the performance of this copolymer in the fabrication
of micellar vehicles for curcumin [29] and doxorubicin [30], respectively. An appropriate
modification of PM precursors focused on enhancing LC and affinity with the physiological
target allows one to design drug vehicles that can be employed as treatment for several
diseases, including cancer and neurological disorders [31,32].

In this research, PEG-b-PCL copolymers with two lengths of PCL segments were syn-
thesised and modified with terminal 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine
(DSPE) through N,N′-dicyclohexylcarbodiimide (DCC)-activated amidation. These materi-
als were proposed as micellar vehicles of AmB under the hypothesis that their components
act synergically, thereby improving the AmB delivery system. In the presence of DSPE, a
phospholipid found in cellular membranes, the loading of AmB increases as its toxicity
decreases. DSPE has an amphiphilic nature. As such, it can interact hydrophobically
through polyenic segments of AmB, which concomitantly prevents its aggregation. It can
also act through polar interactions such as hydrogen bonds that involve polar groups on
AmB and DSPE.

2. Materials and Methods

Methoxy-poly(ethylene glycol) (mPEG) with a molecular weight of 5.31 kDa, ε-
caprolactone (CL, 98%), tin octanoate (Sn (Oct)2 98%), succinic anhydride (98%), triethy-
lamine (TEA, 99%), 4-(dimethylamino)-pyridine (DMAP, 99%), N-hydroxysuccinimide
(NHS, 98%), N,N′-dicyclohexylcarbodiimide (DCC, 98%), 1,2-distearoyl-glyceros-n-3-
phosphoethanolamine (DSPE, ≥99%), pyrene (Py, 98%) and other reagents and solvents
used in the synthesis, purification and characterisation protocols were purchased from
Sigma-Aldrich (St. Luis, MO, USA). Before the syntheses, some reagents were dried using
different protocols. In particular, toluene and tetrahydrofuran were dried via distillation,
and sodium and benzophenone were used as an indicator of humidity. mPEG was sub-
jected to azeotropic distillation with dry toluene. Dioxane, dichloromethane and CL were
dried with calcium hydride as a humidity adsorbent.



Polymers 2021, 13, 1747 3 of 16

2.1. Synthesis of PEG-b-PCL Copolymers

PEG-b-PCL copolymers were synthesised through ring opening polymerisation under
previously reported conditions [27,28]. In a typical synthesis, mPEG (5 g, 1 mmol), CL
(5.3 mL, 50 mmol) and Sn (Oct)2 catalyst (162 µL, 0.5 mmol) were added to a round-
bottom flask and dissolved in 30 mL of toluene. The reaction mixture was stirred under
Ar atmosphere for 24 h at 110 ◦C. The reaction product was dissolved in dichloromethane
(CH2Cl2) and precipitated with diethyl ether at 0 ◦C. Subsequently, the precipitate was
filtered and dried in vacuum for 12 h at room temperature to obtain a yield of 4.77 g (85%).
1H-RMN (400 MHz, TMS) PEG δ (ppm) = 3.4 (s, CH3–O–), 3.6 (s, –CH2–CH2–O–). PCL δ

(ppm) = 1.4 (s, –C(O)–CH2–CH2–CH2–), 1.6 (q, –CH2–CH2–CH2–), 2.3 (t, –C(O)–CH2–),
4.0 (t, –CH2–O). Two copolymers with PCL segments with lengths of 3 and 6 kDa were
synthesised and designated as PP3 and PP6, respectively.

2.2. Synthesis of mPEG-b-PCL-COOH

PP3 and PP6 copolymers were reacted with succinic anhydride [33]. In a typical
procedure, PP3 (4 g, 0.5 mmol), succinic anhydride (0.27 g, 2.7 mmol) and DMAP (0.33 g,
2.7 mmol) were dissolved in dioxane (15.0 mL) and then added with TEA (0.3 mL, 2.2 mmol).
The mixture was reacted at room temperature for 24 h under Ar atmosphere, a rotary
evaporator was used to eliminate dioxane, and it was cooled by adding water. The resulting
aqueous mixture was extracted with DCM (3 × 15 mL). The product was precipitated with
diethyl ether at 0 ◦C, filtered and dried under vacuum, obtaining a yield of 78%. 1H-NMR
(400 MHz, TMS) PEG δ (ppm) = 3.4 (s, CH3–O–), 3.6 (s, –CH2–CH2–O–). PCL δ (ppm)
= 1.4 (s, –C (O) –CH2–CH2–CH2–), 1.6 (q, –CH2–CH2–CH2–), 2.3 (t, –C(O)–CH2-), 4.0 (t,
–CH2–O). succinic ester δ (ppm) = 2.6 (t, C (O)–CH2–CH2–C (O)).

2.3. Conjugation of PCL-DSPE Copolymers

DPSE was conjugated to previously carboxylated PP3 and PP6 through amidation. In
a typical procedure, PP3 (1.5 g, 0.2 mmol), DCC (0.035 g, 0.3 mmol) and NHS (0.0626 g,
0.3 mmol) were dissolved in dichloromethane (19.0 mL). Then, TEA (43 µL, 0.3 mmol) was
added. The mixture was reacted for 16 h at room temperature under an inert atmosphere.
Subsequently, DSPE (0.25 g, 0.34 mmol) was added, and the reaction was allowed to proceed
for 24 h. The reaction mixture was evaporated with a rotary evaporator to remove DCM.
The resulting product was purified by being precipitated with diethyl ether at 0 ◦C, and
filtered and dried in vacuo to obtain PP3-DSPE (yield: 72.8%). 1H-NMR (400 MHz, TMS)
PEG δ (ppm) = 3.4 (s, CH3–O–), 3.6 (s, –CH2–CH2–O–). PCL δ (ppm) = 1.4 (s, –C(O)–CH2–
CH2–CH2–), 1.6 (q, –CH2–CH2–CH2–), 2.3 (t, –C(O)–CH2–), 4.0 (t, –CH2–O). COOH δ (ppm)
= 2.6 (t, C (O)–CH2–CH2–C (O)). DSPE δ (ppm) = 0.89 (t, CH3– (CH2)16), 1.27 (m, CH3-
(CH2)16), 1.8 (d, CH3–CH=CH–), 2.4 (m, –CH2–CH2–NH), 3.5 (q, C (O)–NH–CH2–CH2–O),
4.1 (NH–CH2–CH2–O) 4.2 (d, OCH2–CH–H2–O–), 4.7 (t, C (O) –NH–CH2–CH2–O), 5.5
(q, OCH2–CH–H2–OR–). A sample of PEG-DSPE taken as a reference was synthesised
following a similar procedure.

2.4. Characterisation Techniques

Proton nuclear magnetic resonance spectra (1H-NMR) were obtained using a Bruker
spectrometer at 400 MHz. The samples were dissolved in CDCl3. Chemical shifts (δ)
were expressed in parts per million (ppm) with respect to a tetramethylsilane reference.
The molecular weight of the mPEG initiator was evaluated through MALDI-TOF mass
spectrometry by using an ultrafleXtreme mass spectrometer (Bruker), and a weight of
5.31 kDa was obtained.

The molecular weight distribution of the polymers was determined through gel
permeation chromatography (GPC) by using a 5 µm 1 × 103 Å Phenogel™ column in
a chromatographer (Waters, Pittsburgh, PA, USA). THF was used as the mobile phase
(flow rate 0.7 mL/min at 35 ◦C). Column calibration was performed with polystyrene (PS)
standards between 1.5 and 50 kDa.
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2.5. Critical Micelle Concentration Measurement

Critical micelle concentration (CMC) was determined in accordance with previously
reported methods [34]. The dilutions of 0.05–100 mg/L copolymers containing a fixed
amount of pyrene were analysed via fluorescence spectroscopy. The excitation spectra of
Py from 300 to 360 nm was monitored at an emission wavelength of 390 nm by using a
Cary Eclipse fluorescence spectrometer (Agilent, Santa Clara, CA, USA).

2.6. AmB Encapsulation

AmB-loaded PMs were prepared through a modified nanoprecipitation procedure [35].
First, an organic phase containing AmB and each copolymer was obtained by mixing a
solution of AmB in methanol (1 mg/5 mL) and the corresponding copolymer in THF
(1 mg/mL). The resulting solution was added to 25 mL of distilled water dropwise under
constant stirring to promote the formation of dispersed nanoparticles upon the evaporation
of the organic solvents. Subsequently, the suspension was centrifuged at 4400 rpm for
30 min to remove non-encapsulated AmB, and the remaining liquid phase was lyophilised.
The amount of encapsulated AmB was determined as follows: each dried formulation
(approximately 1 mg) was dispersed in methanol and homogenised through sonication;
the volume was adjusted to 10.00 mL; and the dispersion was centrifuged. The supernatant
was analysed through UV–vis to determine the amount of AmB.

2.7. Hydrodynamic Diameter and ζ-Potential Measurements

The hydrodynamic diameter (Dh) of each formulation and blank particles prepared
via the same procedure but without AmB was determined through dynamic light scatter-
ing (DLS). ζ-potential was measured at pH 7.0 and 25 ◦C by using a DIP-type cell with
gold electrodes. Both measurements were performed with Nano ZS Zetasizer equipment
(Marvel Panalytical, Worcestershire, UK).

2.8. Characterisation of AmB/PMs through DSC

The thermal properties of AmB/PMs were characterised as follows: lyophilised
samples were cooled from room temperature to −60 ◦C at 10 ◦C/min. Then, they were
heated to 150 ◦C at a rate of 10 ◦C/min. The analysis was carried out in a DSC 1 STAR
equipment (Mettler Toledo, Colombus, OH, USA).

2.9. X-ray Diffraction

X-ray diffraction (XRD) experiments were performed in Xpert equipment (Marvel
Panalytical, Worcestershire, United Kingdom) composed of an anode copper tube with
a wavelength (λ) of 0.154069 nm. XRD was performed under the following conditions:
collection time of 1 s per step, scan of 2θ = 2◦ to 50◦, an increase of 0.1◦ and a detector
opening of 0.5◦.

2.10. X-ray-Induced Photoelectron Spectrometry

X-ray-induced photoelectron spectrometry (XPS) was performed to determine the
composition of DSPE-conjugated copolymers and their interaction with AmB in the corre-
sponding formulations. Measurements were made on a NAP-XPS spectrometer (SPECS
Surface Nano Analysis GmbH, Berlin, Germany) equipped with a PHOIBOS 150 1-D
detector and a monochromatic A1-Kα X-ray source (1486.7 eV, 13 kV and 100 W).

2.11. AmB Release Assessment

Approximately 1 mg of each lyophilised formulation was dispersed in 2.0 mL of
distilled water and homogenised through sonication. The resulting dispersion was placed
in a tube capped with a 3500 Zellutrans MWCO dialysis membrane and immersed in
15.0 mL of a release medium composed of a mixture of 1% aqueous sodium deoxycholate
and DMSO in a volume ratio of 2:1. The releasing setup was maintained at 37 ◦C under
stirring. Aliquots (1.00 mL) were withdrawn at intervals of 1, 2, 3, 6, 9, 12, 24, 36, 48, 72,
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100, 120 and 144 h, and the volume of the release medium was maintained at a constant
by adding a fresh medium. The amount of AmB in each aliquot was determined through
UV–vis spectrometry at 415 nm. The following values were computed using Equation (1)
to obtain the corresponding cumulative release (Q) at each time:

Q = CnV + ∑i=n−1
i=1 CiVi, (1)

where V is the volume of the release medium, and Cn and Ci are the concentrations of AmB
at a given time and the former aliquots of volume Vi, respectively.

2.12. Aggregation State

The aggregation of AmB encapsulated in PMs was assessed through UV–vis spec-
trophotometry. Each formulation and Fungizone® were dispersed in phosphate buffer at
pH 7.4 (PBS) to a final concentration of 7.0 µg/mL. A reference of monomeric AmB was
obtained by dissolving AmB in methanol. The resulting dispersions were analysed using a
UV–vis Evolution 300 spectrophotometer from 300 to 450 nm.

2.13. Haemolysis

Haemolysis was analysed in accordance with a previously published protocol [27].
Blood taken from O+ donors was added to a 1 mM EDTA solution and then centrifuged at
500× g for 5 min to separate red blood cells (RBC). The collected RBCs were washed twice
with a phosphate buffer solution (PBS) at pH 7.4 and diluted with the same buffer until an
absorbance of 0.5 AU at 540 nm was obtained. Then, 190 µL of the RBC dispersion was
treated with 10 µL of each formulation dispersed in PBS. Triton X-100 and PBS were used
as positive and negative controls, respectively. The treated RBC dispersions were incubated
at 37 ◦C under continuous shaking for 1 h. Subsequently, the plate was centrifuged at
500× g for 5 min to separate the non-lysed cells. Haemolysis percentage was determined
by measuring the absorbance of haemoglobin in a solution at 540 nm:

Haemolysis(%) =
As − ANC

APC − ANC
× 100 (2)

where As is the absorbance of drug- or polymer micelle-treated RBCs, and ANC and APC
are the absorbances of the negative and positive controls, respectively.

2.14. Minimum Inhibitory Concentration

An antifungal susceptibility test was performed in accordance with the microdilution
in broth method of the Institute of Clinical and Laboratory Standards following the M27-
A3 guidelines [36]. The dilutions of the micellar formulations and Fungizone® were
evaluated in the range of 0.11–15 µg of AmB/mL. Minimum inhibitory concentrations
(MICs) were, visually and through turbidity measurements after 24 h, taken as the lowest
drug concentration that inhibits the growth of the yeasts. The measured values were further
corroborated using resazurin (7 mM) as a redox indicator. Resazurin is a cell-permeable,
non-toxic blue compound that does not fluoresce. Upon entering living cells, resazurin is
reduced to resorufin, a compound that is violet to pink and highly fluorescent [37].

3. Results and Discussion

In this research, micellar vehicles for AmB were obtained from amphiphilic block
copolymers composed of a hydrophilic segment of mPEG and a hydrophobic block of PCL
terminated in DSPE. mPEG with a molecular weight of 5.3 kDa was used as the initiator
for CL polymerisation via ROP (Scheme 1a). The molecular weight of the hydrophobic
PCL segments was controlled on the basis of the molar ratio of CL to mPEG in the feed.
The obtained copolymers were characterized via 1H-NMR and GPC. Figure S1a presents
a representative 1HNMR spectrum of PP3 and shows the signals attributed to PCL and
mPEG segments. The molecular weight of the PCL block in PP3 and PP6 copolymers was
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estimated by integrating the signal at δ = 4.0 (t, –CH2–O) of PCL and the signal at 3.6 ppm
assigned to mPEG, which was taken as a reference for determining the values listed in
Table 1. In addition, molecular weight dispersity indices (Ð) determined by GPC indicated
that CL polymerisation was controlled in concordance with the characteristics of ROP by
using Sn(oct)2 as a catalyst.
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Table 1. Average composition, molecular weight, Ð and CMC.

Sample Average Composition Mn (kDa) Ð CMC (µg/mL)

PEG m(PEG)121 5.3 * 1.1

PP6 m(PEG)121-(PCL)75 13.8 1.2 0.66

PP3 m(PEG)121-(PCL)26 8.2 1.2 1.4

PEG-DSPE m(PEG)121-DSPE 5.3 1.1 8.5

PP6-DSPE m(PEG)121-(PCL)75-DSPE 14.5 1.2 0.30

PP3-DSPE m(PEG)121-(PCL)26-DSPE 9.0 1.2 1.1

Mn was estimated via 1HNMR. * Determined through MALDI-TOF.

PP3 and PP6 were reacted with succinic anhydride (Scheme 1b) to obtain –COOH-
ending copolymers. The occurrence of carboxylation at the end of PCL bocks was verified
via 1H-NMR through the appearance of a signal at around δ (ppm) = 2.6 (t, C (O)–CH2–
CH2–C (O)) that integrated for approximately four protons. This result indicated that
carboxylation was complete (Figure S2).

The carboxylated copolymers were further conjugated with DSPE through amidation
by using DCC as a coupling agent (Scheme 1c). The elemental composition of the reaction
products was corroborated through XPS. Figure 1a presents a representative spectrum of a
PP3-DSPE sample. It shows signals at 532 and 287 eV attributed O and C, respectively, and
signals at 400 and 134 eV corresponding to the BE of N1s and P2p electrons, respectively.
These findings confirmed the capping of PP3 with DSPE molecules. Likewise, the 1HNMR
spectra of the same sample revealed the resonance of protons in PEG and PCL segments
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and signals due to DSPE moieties, as shown in Figure 1b. Therefore, the conjugated
structure was achieved.
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Figure 1. Spectral characterisation of a representative DSPE-terminated copolymer (PP3-DSPE). (a) XPS and (b) 1NMR spectra.

3.1. CMC

The CMC of the copolymers was determined through fluorescence spectroscopy by
using Py as a fluorescent probe. Py is a hydrophobic compound with low solubility in
water. In the presence of micellar arrangements, Py is solubilised in the lipophilic micellar
nucleus, which in turn changes its optoelectronic properties [34,38], such as an increase in
fluorescence intensity and a bathochromic shifting of the maxima in the excitation spectrum
from 332 to 335 nm, as shown in Figure 2a for the micellization of the PP3-DSPE sample.
The CMC was estimated as the inflection point in the plot of the ratio of the intensities at
332 and 335 nm (I335/I332) as a function of concentration (Figure 2b and Table 1).
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The CMC was dependent on the molecular weight of the PCL segment, which was
the smallest for the copolymer with the highest Mn (Table 1). This finding was consistent
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with a decrease in the solubility of the copolymer and an increase in its hydrophobicity.
Upon conjugation with DSPE, CMC decreased, suggesting that dispersion forces amongst
non-polar segments intensified, driving the micellization of the copolymers. A lower
CMC corresponds to a more favourable self-assembly process and a higher stability of
nanoparticles against dilution; this property, summed to kinetic stabilisation via the en-
tanglement of polymer segments, allows longer circulation periods for nanoparticles and
permits the controlled release of drugs [39]. The CMC of PPx-DSPE was smaller than that
of the corresponding PPx precursor; it also decreased significantly compared with that of
the PEG-DSPE reference widely used as a surfactant in the development of micellar drug
formulations [40]. Therefore, PCL and DSPE acted synergically and enhanced the stability
of the PMs against dilution.

3.2. Encapsulation Capacity

The capacity of PEG-b-PCL copolymers to encapsulate AmB was compared with the
corresponding DSPE-conjugated structures (Table 2), as measured in formulations prepared
via nanoprecipitation. The results showed that a short PCL segment (PP3 sample) favoured
a larger loading of AmB, which could be explained by a more favourable mixing entropy.
Similarly, the loading capacity significantly enhanced after the conjugation with DSPE. The
obtained encapsulation order agreed with the solubilisation profiles given in Figure S2. In
the evaluated range of polymer concentrations, the solubilisation of AmB was twofold in
the presence of DSPE with respect to the initial PEG-b-PCL copolymers.

Table 2. Characterisation of micellar formulations. Drug content, hydrodynamic diameter (Dh) and ζ-potential values of
empty and AmB-loaded nanoparticles measured at pH 7.0.

Sample AmB Loading (%wt.)
Empty PMs AmB/PMs

Dh nm (PDI) ζ-Potential (σ) mv Dh nm (PDI) ζ-Potential (σ) mv

PP6 8.37 ± 0.34 75 (0.41) −5.8 (0.65) 198 (0.27) −4.2 (0.9)
PP3 10.62 ± 0.78 74 (0.43) −5.4 (0.39) 206 (0.33) −3.0 (1.3)

PP6-DSPE 15.29 ± 0.34 93 (0.40) −18.0 (0.72) 217 (0.26) −7.5 (1.9)
PP3-DSPE 16.40 ± 0.18 93 (0.44) −13.3 (0.73) 226 (0.25) −8.8 (0.1)
PEG-DSPE 84 (0.26) −12.7 (0.67) 149 (0.24) −10.4 (1.6)

The enhanced capacity of the conjugated copolymers to encapsulate AmB suggested
that the strength of intermolecular forces allowing drug encapsulation was enhanced in
the presence of DSPE. Weak interactions such as Van der Wals forces were suspected, given
that each DSPE moiety contains two long alkyl chains. The occurrence of intermolecular
interactions that involved polar groups on the drug and the copolymer was assessed
through XPS. The high-resolution spectra of phosphorus in PP3-DSPE and the correspond-
ing AmB/PP3-DSPE nanoparticles depicted in Figure 3 were fitted to Gaussian functions.
Although the signal of P2p in PP3-DSPE (Figure 3a) fitted to one Gaussian peak, the same
signal in AmB/PMs (Figure 3b) required two peaks, suggesting that P presented two
different chemical environments. The most intense peak centred at 133 eV corresponded to
the signal observed in PP3-DSPE. However, the presence of a second peak corresponding
to electrons with a lower binding energy (132 eV) indicated that the electrons belonging to
2p orbitals experienced greater shielding in the presence of AmB. This increased shielding
could be a consequence of the establishment of hydrogen bonding interactions between
the P–OH group in the DSPE and the amino group in AmB that acted as an electron donor.
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Figure 3. High-resolution XPS spectrum of P2p in PP3-DSPE (a) and AmB/PP3-DSPE (b).

3.3. Particle Size and ζ-Potential Measurement

DLS was conducted to determine the size of AmB/PMs and the corresponding empty
nanocontainers. Dh values are listed in Table 2. The empty micelles obtained from the
copolymers with different PCL lengths exhibited a similar Dh of approximately 75 nm.
After their conjugation with DSPE, the diameter of the particles increased to 93 nm. By
comparison, AmB/PMs exhibited diameters of about 200 nm (Figure 4). The growth of
particles in the presence of AmB could suggest the formation of co-assembled structures
comparable with the micellization of surfactant blends [41]. AmB, owing to its amphiphilic
nature, could also have provoked the formation of micelle aggregates, as deduced from
the noticeable shifting of particles size distributions to larger values. The size of the
micelles was further corroborated through the AFM images of the representative samples,
as displayed in Figure S3.
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The ζ-potential of AmB/PMs and the empty PMs was determined by using the
electrophoretic mobility technique (Table 2). The nanostructures exhibited a negatively
charged surface that increased in magnitude in the presence of DSPE. The most negative
values of DSPE-conjugated copolymers could be attributed to the negative charge of the
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phosphate group in the DSPE due to the partial dissociation of the P–OH group. This
result indicated that the polar groups of DSPE were probably exposed to the water micelle
interface though they were attached to PCL segments.

The structure of AmB/PM composite nanoparticles was further studied by character-
ising the lyophilised formulations through XRD and DSC. Figure 5a shows the diffraction
profiles of the formulations obtained from PP3 and PP3-DSPE. The diffraction profile of
PP3 exhibited diffraction peaks associated with PEG at 2θ of 19.3◦ and 23.5◦ [42] and
a small shoulder at approximately 20◦ due to the crystalline nanodomains of PCL [43],
which were formed upon lyophilisation. By contrast, in the profile of the nanoparticles of
PP3-DSPE, the diffraction peak associated with PCL intensified. This result suggested that
this substance promoted the folding of PCL blocks, inducing their crystallisation.
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Figure 5. Characterisation of lyophilised formulations based on PP3 and PP3-DSPE. (a) DRX profiles and (b) DSC traces.

These two formulations were analysed through DSC (Figure 5b). The samples were
cooled to −20 ◦C and then heated at 10 ◦C/min to 100 ◦C without any thermal erasure to
obtain the traces given in Figure 5b. As such, the determined properties were found to
be closely related to the morphological characteristics of the copolymers in the polymeric
micelles. Although the thermogram of PP3 only showed a broad endothermic peak, mainly
due to the melting of PEG crystalline domains at 52.7 ◦C, the nanoparticles obtained
from DSPE-conjugated copolymers exhibited two peaks at 51.1 and 55.0 ◦C. These peaks
corresponded to the domains of PCL and PEG that crystallised to a larger extent, and this
observation was consistent with XRD results. The increase in PCL crystallisation in the
presence of DSPE also explained the lowest CMC exhibited by the conjugated copolymers
(Scheme 2).

3.4. Release Study

The release kinetics of AmB from micellar formulations was studied through dialysis.
Solid formulations with a known amount of AmB were dispersed in PBS and dialysed
against a medium composed of a sodium deoxycholate solution and DMSO that guaranteed
sink conditions. The released AmB was monitored for 100 h by withdrawing aliquots
at certain time intervals (Figure 6). The results revealed that the micellar formulations
followed a bimodal release behaviour through which the occurrence of two different stages
were clearly distinguished. Thus, the data corresponding to each period were separately
fitted to the kinetic models used to study the release mechanisms [44–47].
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In raw copolymers, hydrophobic PCL segment forming the nucleus was highly amorphous allowing for AmB dissolutions.
Upon conjugation, PCL crystallized and AmB encapsulation was enabled by interactions with DSPE moiety.
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Table 3 indicates that the initial stage in most of the samples fitted the Hixson Crowell
and Higuchi models; this finding suggested that the release rate depended mainly on the
diffusion of AmB from the particles and its dissolution in the medium [47]. Likewise, the
release rate constant depended on the composition of the copolymer; that is, it decreased
after conjugation with DSPE, but it was maxima for PEG-DSPE taken as a reference. First,
adding DSPE to the copolymer enhanced their interaction with AmB, thereby causing
an increase in the activation energy of the process. In the case of PEG-DSPE, the highest
release rate was attributed to its high CMC. Therefore, the unimer exchange process was
more favourable thermodynamically, enhancing the AmB dissolution. The second release
stage observed after 6 h (Table S1) did not fit a particular model, indicating that multiple
release mechanisms occurred when the drug was depleting.
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Table 3. Kinetic analysis of the release models.

Model Parameter
PP6 PP3 PP6-DSPE PP3-DSPE PEG-DSPE

0–6 h

Orden 0
R2 0.978 0.979 0.987 0.952 0.988
Ko 4.570 3.833 2.789 2.265 5.227

Orden 1
R2 0.664 0.621 0.632 0.603 0.635
k 1.026 0.957 0.976 0.897 0.966

Korsmeyer–Peppas
R2 0.843 0.814 0.823 0.799 0.825

kKP 1.895 1.858 1.922 1.888 1.818
N 3.250 3.080 3.130 2.905 3.094

Higuchi R2 0.952 0.994 0.996 0.986 0.995
kH 0.157 0.134 0.097 0.080 0.182

Hixson Crowell
R2 0.973 0.984 0.990 0.957 0.992

kHC 0.017 0.0138 0.0098 0.0079 0.0194

Baker–Lonsdale
R2 0.913 0.842 0.874 0.814 0.853
kBL 0.0601 0.0546 0.0476 0.0421 0.0625

Similarity analysis (f 2) was performed to quantitatively compare the release profiles of
the formulations obtained from each of the copolymers and PEG-DSPE as a reference [47].
f 2 (Table S3) was computed using Equation (3), which compares the cumulative release of
two different samples at a given time (R):

f2 = 50log


[

1 +
1
n

n

∑
t=1

(Rt − Tt)
2

]−0.5

× 100

. (3)

The comparison of the pairs PP3/PP6, PPx/PPx-PDSE and PP3-DSPE/PP6-DSPE
showed that f 2 was larger than a critical value of 50, indicating that the samples did not
significantly differ. However, when each of the formulations was compared with PEG-
DSPE, significant differences were detected. Therefore, the release of AmB from PMs
was likely controlled by the unimer exchange dynamics. In the case of the copolymers,
this dynamic depended on CMC and polymer segment entanglement that delayed the
dissolution of the nanostructures.

3.5. Haemolysis Behaviour

The haemolytic behaviour of AmB encapsulated in PMs was compared with that of
Fungizone ® at different AmB concentrations in the range of 0.11–7.5 µg/mL (Figure 7a).
At concentrations below 1.87 µg/mL, the haemolysis of the micellar formulations and
Fungizone® was lower than 5%. However, as the concentration of AmB increased, Fungizone®

became more cytotoxic. The dependence of the haemolytic effect of Fungizone® with
concentration correlated with the presence of aggregates, which spontaneously formed
when the concentration of AmB exceeded 1 µg/mL.

UV–vis spectroscopy provided reliable information about the aggregation state of
AmB in the aqueous medium, given that the monomers (non-aggregated form) and the
aggregates presented distinctive absorptions. In Figure 7b, the spectra of Fungizone® and
a representative micellar formulation (AmB/PP3-DSPE) exhibited λmax at 408, 385 and
365 nm because of AmB monomers and an absorption band at 345 nm assigned to the
aggregates [48]. Although the most intense absorption of Fungizone® corresponded to the
aggregates, the spectrum of the micellar formulations was dominated by the absorption of
monomers. This trend agreed with a previous study, which indicated the toxicity of AmB
in the presence of aggregates [49]. Thus, an alternative to obtain safer formulations of AmB
could be suppressing its self-assembly and controlling its release [50].
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Figure 7. Erythrocyte toxicity of AmB-loaded PMs in comparison with commercial AmB formulation (a). (b) Aggregation
state of AmB in Fungizone ® and a micellar formulation obtained using PP3-DSPE as a polymeric precursor.

3.6. MIC

The antifungal action of AmB formulations was defined as the MIC and evaluated
against clinical isolates (Table 4). According to the provided values, the isolates were
mostly sensitive to Fungizone except C. auris reference 537-PUJ-HUSI, which had a MIC
of 3.35 µg/mL. AmB encapsulated in PMs had lower MICs, indicating that it had an
improved efficacy compared with that of Fungizone®. The action spectrum of the former
also broadened, as shown by a reduction in the MIC of the resistant strain to show values
comparable with the sensitive isolates. The micellar formulations obtained from the
copolymers with the lowest molecular weight presented the highest efficiency. In the PP3
series, DSPE-conjugated nanoparticles did not show an improvement. They contrasted
with the PP6 series where in the presence of the phospholipid the MICs decreased.

Table 4. MIC (µg/mL) of AmB-loaded copolymers and commercial formulation.

Strain Reference Fungizone® PP6 PP3 PP6-DSPE PP3-DSPE

C. albicans SC5314 0.46 0.23 0.11 0.23 0.11

C. glabrata ATCC 2001 0.93 0.46 0.11 0.23 0.11

C. auris 435-PUJ-HUSI 0.93 0.93 0.23 0.23 0.23

C. auris 537-PUJ-HUSI 3.75 0.93 0.23 0.93 0.23

The improved performance of micellar formulations compared with that of Fungizone®

could be attributed to the continuous feeding of AmB provided by the polymeric particles
to the medium; consequently, premature drug inactivation caused by its interaction with
proteins is avoided [51]. Fungizone® is present in AmB dispersed with sodium deoxy-
cholate; as such, when it is dissolved in the medium, a significant fraction of the drug
is wasted.

4. Conclusions

Copolymers composed of polyethyleneglycol and poly(ε-caprolactone) are promising
precursors of micellar nanocarriers for AmB; however, the absence of functional groups
leads to a low encapsulation capacity, reducing its potential in clinical applications. When
PEG-b-PCL is terminally modified with DSPE through DCC-activated amidation, the stabil-
ity of the resulting materials against dilution was higher, as indicated by a decrease in CMC
with respect to the initial copolymers. This modification also increased their AmB loading



Polymers 2021, 13, 1747 14 of 16

capacity to approximately 16%, thereby generating colloidal particles with hydrodynamic
diameters of approximately 200 nm. The haemolysis of erythrocytes decreased, indicating
that the encapsulation of AmB in PMs produced formulations that were less toxic than
Fungizone®. The MIC decreased compared with that of Fungizone®. Therefore, micellar
formulations exhibited a controlled release of AmB and enhanced the performance of AmB
against the tested strains.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13111747/s1. Table S1: fitting parameters of the second release stage. Table S2: similarity
analysis. Figure S1: 1H-NMR spectra of (a) PP3 and (b) PP3-succinic acid copolymers. Figure S2.
solubility profiles of AmB in the presence of copolymers. Figure S3. AFM images of representative
samples AmB/PP3 (a) and AmB/PP3-DSPE (b).
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