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Abstract: The development of invisible patterns via programmable patterning can lead to promising
applications in optical encryption. This study reports a facile method for building responsive
photonic crystal patterns. Commercially printed patterns were used as a mask to induce invisible
patterns revealed by wetting. The masked areas exhibit different swelling kinetics, leading to strong
structural colors in the masked area and transparent features in the unmasked area. The contrast
could disappear through different wetting behavior, providing a unique and reversible wetting
feature. This programmable printing is expected to become an environmentally friendly technique
for scalable invisible optical anti-counterfeiting technology.

Keywords: anticounterfeiting; photonic crystals; structural color

1. Introduction

Photonic crystals have been extensively developed over the past few decades due to
their effective light modulation and provide promising applications in diverse domains,
such as anti-counterfeiting technologies [1,2], photocatalysis [3,4], decorations [5], and
chemical and biological sensing [6,7]. Photonic crystal patterning enables the construction
of high-performance devices over conventional photonic crystal films [8]. Patterning
includes three methods. (1) Ink writing involves 3D printing with a colloidal suspension [9],
or photonic precursors [10], as well as 2D patterning with a colloidal suspension [11], or
solvents/salts/reactive monomers [12–15]. (2) Photomasking controls the degree of the
reaction or crosslinking in ultraviolet curing systems, providing different patterns [16–19].
(3) Selective etching enables a top-down pattern modification of the formed photonic
crystal, which can elaborately design, regulate, and control the micro- or nano-structure of
the photonic crystal [20–22].

The development of invisible patterning based on photonic crystals offers potential
design flexibility for optical encryption due to multiple and complex responsive strate-
gies such as mechanochromic [23–25], magnetic [26–28], polarization-controlled [29], and
wetting-controlled encryption [30–32]. In general, invisible patterning by photonic crys-
tals depends on the shapes generated by the patterned field and increased contrast on
sites developed by printing or photomasks stimulated by external signals. It is still chal-
lenging to realize rapidly responsive invisible structural color materials via scalable and
programmable methods.

Herein, we report a programmable method to achieve wetting-responsive invisi-
ble patterns based on two-dimensional colloidal crystals. Large-scale two-dimensional
colloidal crystals obtained by gas-liquid interfacial self-assembly [33,34] were used. To
achieve invisible patterns, SiO2 (n = 1.46) [35], poly(hydroxyethyl methacrylate) (n = 1.45)
and poly(ethylene glycol diacrylate) (n = 1.47), possessing similar refractive indices, were
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chosen to build photonic crystal films. A partially translucent mask printed on a plastic
film was used to control the degree of polymerization. As the polymerization degree
controls the swelling process, invisible patterns were observed upon water immersion.
An increased difference in refractive index between the medium and photonic crystal
gave rise to stronger Bragg’s diffraction light intensity in the masked area, and patterns
were viewable in this area. The surface morphology was studied in different areas during
the solvent response to explore the impact of solvent infiltration. To verify, Debye rings
were measured to support this conclusion. Overall, this investigation offers a new solu-
tion for programmable photonic crystal anti-counterfeiting and a theoretical baseline for
wetting-responsive photonic crystal patterning.

2. Materials and Methods
2.1. Materials

Monodisperse SiO2 spheres with diameters of 550 nm and 1 µm were supported by
BaseLine Chromtech Research Centre. 2-hydroxyethyl methacrylate (HEMA), poly(ethylene
glycol) diacrylate PEGDA (Mn ~ 700), trimethylolpropane triacrylate (TMPTA), and 2-
hydroxy-2-methylpropiophenone were purchased from Macklin Biochemical Technology
Co., Ltd., Shanghai, China. Other solvents and polypropylene (PP) films were supplied by
local suppliers. All materials were used without further purification.

2.2. Preparation of Two-Dimensional Photonic Crystals

For the preparation of two-dimensional photonic crystals, the gas-liquid self-assembly
method was adopted. A layer of deionized water was spread on the PP plastic film with the
size of an A4 paper (water contact angle: 88.0◦). A glass sheet (50 mm × 16 mm × 0.18 mm)
was immersed in water and fixed at 45◦. A syringe was used to squeeze and drop an
ethanol–water solution of silica with a mass fraction of 2.5 wt % and a particle size of
550 nm (volume ratio, ethanol:water = 1:1). Silica microspheres were evenly spread on the
whole water surface and kept for 5 min, and a sponge was used to sop up water on the
edge of the water quickly. They were dried in natural air for 2 h and introduced into a
drying oven kept at 60 ◦C for 1 h to obtain extensive two-dimensional photonic crystals
(Figure S1). The details on the preparation of two-dimensional photonic crystals are shown
in Figure 1a.
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tal composite are shown in Figure 2a. 
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2.3. Preparation of HEMA-PEGDA-Photonic Crystal Composite

HEMA (300µm), PEGDA (700µm), TMPTA (10µm) and 2-hydroxy-2-methylpropiophenone
(10 µm) were pipetted sequentially and then mixed and transferred to a rectangular polyte-
trafluoroethylene mold (2 cm × 2 cm × 0.1 cm). Tweezers were then employed to place
a photonic crystal plastic film (2.5 cm × 2.5 cm) on the mold. A mask was placed on the
plastic and then introduced into an ultraviolet curing box (UV CURER KW-4AC, 365 nm).
Unless otherwise specified, the polymerization time was 4 min, and the width of the
mask was 0.3 cm. The details on the preparation of the HEMA-PEGDA-photonic crystal
composite are shown in Figure 2a.
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Figure 2. (a) Schematic shows the preparation of responsive photonic crystal film and (b) the AFM
images of the obtained film with different photocuring times (scale bars in Figure 2b are 2 µm).

2.4. Characterization

Surface topography of obtained monolayer crystalline silica spheres stacked on the PP
film were performed using Scanning Electron Microscope (S-4800, HITACHI, Ltd., Tokyo,
Japan). Surface topography, roughness, and Young’s modulus of the photonic crystal
composite surface were performed using Atomic Force Microscope (Dimension FastScan,
BRUKER, Bremen, Germany) in the air or liquid phase. Doped Si tips (MPP-21100-10,
BRUKER, Germany) (L = 225 µm; W = 35 µm; T = 3 µm), a cantilever elastic constant of
3 N/m and a resonant frequency of 75 kHz were used in all the measurements. Reflectance
spectra were measured using fiber spectrophotometer (USB2000+, Ocean Optics Asia Co.,
Ltd., Shanghai, China.) coupled with a tungsten halogen light source (DH-2000-BAL, Ocean
Optics), and the two fibers independently probed the incident and reflected light. Static
contact angles were measured using a contact angle meter (DSA 100, Krüss, Frankfurt am
Main, Germany). Droplets with 3 µL of deionized water were used in all the measurements.
Five different positions were examined on each sample, and the final contact angle was
computed by averaging the five obtained values. XPS data were obtained on Thermo
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ESCALAB 250, US, instrument with a monochromatized Al Kα line source (200 W). The
binding energies were referenced to the Si2p peak at 101.8 eV.

3. Results and Discussion
3.1. Monolayer Two-Dimensional Photonic Crystals

Monodispersed microspheres were self-assembled on the gas–liquid interfaces to
achieve two-dimensional colloidal crystals with the particle sizes of 550 nm deposited on a
polypropylene (PP) plastic film (Figure 1a and Figure S1 in Supplementary Materials). As
shown in the AFM and SEM analyses (Figure 1b,c), silica photonic crystals prepared by
the gas–liquid interface assemblies were regularly arranged, and microspheres featuring
a hexagonal, densely packed arrangement are shown on the PP plastic substrate. The
formation of silica photonic crystals was driven by surface tension and capillary forces [36].

3.2. Physicochemical Properties and Morphological Characterization of Regions with Different
Photocuring Degrees

The preparation of the photonic crystal film is shown in Figure 2a. Hydroxyethyl
methacrylate and poly(ethylene glycol) diacrylate with refractive indices approximately
equivalent to silica microspheres were used as polymer precursors simultaneously. To
better understand the changes in the responsive photonic crystal films during photocuring,
AFM tests were conducted to investigate the impact of different photocuring reaction
times on the surface morphology of the film. As demonstrated in Figure 2b, the silica
arrangement in the masked area is more regular than in the unmasked area. The spatial
order of microspheres decreased with an increase in the photocuring reaction time. When
the photocuring reaction time increased to 15 min, the polymer surface became smooth and
flat, and the microspheres were almost embedded fully. Changes in the film morphology
obtained during photocuring are schematically shown in Figure 2b.

The AFM feature map in Figure 2b was measured to obtain the roughness of different
areas of the film (Table S1 in Supplementary Materials). The roughness of both masked and
unmasked areas decreased with increasing reaction time, and when subjected to the same
photocuring reaction time, the masked area of the film was rougher than the unmasked
area. When the photocuring reaction time was increased continuously, the roughness of the
masked area was approximately equal to the unmasked area. This indicates that both the
reduction in photocuring reaction time and the use of a mask can assist in controlling the
exposed area of silica microspheres so that the unevenness on the upper surface of the film
is more obvious. On the same film, the one-step method cannot control the reaction time so
that the degree of reaction is controlled; however, it is easy and convenient to control the
degree of reaction through masking.

When liquid polymer precursor contacts two-dimensional silica microspheres, the
liquid rose along the gap with capillary action. Zhan et al. [35] used two-dimensional
photonic crystals and elastomers to obtain inverse opal structured material. Different
thermal reaction temperatures and times affected the depth of aperture, and as the degree
of reaction increased, it was easier to embed microspheres into the polymer. The chemical
composition of the surface in different areas was experimentally compared by detecting
the binding energy of silica (Figure 3), where atomic content in Si2p in the masked and
unmasked areas was 4.51% and 3.49%, respectively. The Si2p element was available on
the polymer surface, and the content in the masked area was higher than the unmasked
area. This result agrees with the conclusion reported by Zhan et al., where the degree of
reaction in the unmasked area was high and it was shown to be easier for the polymer
to embed silica microspheres. When the polymerization photocuring reaction time was
3 min, a certain color appears in the air in the masked area. The exposed area of the silica
microspheres in the masked area was larger, and Bragg’s diffraction light was enhanced.
However, to guarantee the degree of polymerization, in most experimental samples, the
photocuring reaction time was 4 min, and no luster was found in the masked area on the
resulting sample surface.
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Figure 3. XPS spectrum on the surfaces of the masked and unmasked areas.

3.3. Patterning of Responsive Photonic Crystal Films and the Reflectance Spectra

In controlling the degree of polymerization by the mask, a new responsive photonic
crystal pattern could be realized by water. As shown in Figure 4b–d, a half-masked film
does not exhibit any color in the dry state while the masked area turned colorful via water
immersion for 4 min. Interestingly, when the film was immersed in water for 1.5 h, the
whole film became colorful. The optical fiber spectroscopy (Figure 4a) recorded spectral
differences between the two areas in Figure 4b–d.
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Figure 4. (a) Spectrum of different areas in different states; optical images of a half-masked film in
three conditions: dry (b), partial swelling (c), and full swelling (d) (scale bars are 1 cm).

Meanwhile, the laser printer’s gray-scale maps printed on transparent PP films
(Figure 5a) served as masks to print patterns on the film. Different types of patterns
could hide in the dry state (Figure 5b–d) and developed after wetting, such as the letters
SYSU, the Tai Chi symbol, a flower, and an airplane (Figure 5e,f). This demonstrates that
this method allows a wide range of patterns could be obtained quickly and easily, from
simple letters to complex images.
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Figure 5. Optical images of (a) gray-scale picture on transparent PP film that serves as a mask; (b–d)
film in a dry state; (e–h) film immersed in the water (scale bars: 1 cm).

A fiber optic spectrometer was used to examine the reflectance spectra of film in
different states. Two mutually orthogonal fibers were independently probed by the incident
and reflected light. The incident angle and reflected angle were manually set to 0◦ and 32◦,
respectively, and the incident angle and reflected angle were changed simultaneously by
rotating the angle of the sample stage.

Based on the combined Bragg’s and Snell’s laws, the relationship of the parameters
and reflection wavelengths can be obtained according to light diffraction and refraction
theories [37,38] (Equation (1)).

mλ = neffd(sin θi + sin θr), (1)

n2
eff = ∑ n2

i Vi, (2)

where m is an integer connected with an anti-reflective coating, λ is the wavelength of the
reflected light, θi is the incident angle, θr is the reflected angle, neff is the average refraction
coefficient, ni is the refraction coefficient of the photonic crystal’s ingredients, and Vi is the
volume fraction of the photonic crystal’s ingredients. According to Equation (1), changing
θi or θr induces changes in λ. Figure 6a shows the reflectance spectra of films with the
rotation angle of the sample stage varied from 8◦ to 24.5◦, in which the diffraction maxima
red-shifted with the increasing rotation angle. The overall trends agree with the calculated
results based on Equation (1), denoted by the black dashed curve in Figure 6b.

Reusability is an important aspect for evaluating the actual application value of anti-
counterfeiting materials. Figure S2 (in Supplementary Materials) shows the reflection
spectra of the masked area after nine cycles of wetting and drying. It displays the wet
masked area with obvious diffraction peaks, while the dry masked area does not exhibit
any diffraction peaks (Figure S2a). In addition, the wet films over nine cycles maintained a
stable diffraction peak intensity, and the dry samples also had a certain improvement in
the reflection strength in the next four cycles (Figure S2b). This could be because a part
of the unpolymerized monomers in the film could separate from the film during multiple
infiltrations, leading to enhanced intensity of the diffraction peak and overall reflectivity.
Since the responsive color caused by water is reversible, and its reusability is high, the
cyclically utilized film devices are more convenient to use and save costs.

The simple one-step method based on a mask with partial masking is mainly used to
control the degree of reaction. It is expected to become a new anti-counterfeiting printing
technology. Therefore, the impact of mask width on the geometric accuracy of patterning
is very important. Gray-scale lines printed by a laser printer were used to make plastic
films with different widths (Figure S3a in Supplementary Materials), and they were taken
as templates to obtain films with different stripe patterns (Figure S3b in Supplementary
Materials). When the width of the plastic mask was less than 1 mm, the pattern colors
became very weak.
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in the upper right corner is the schematic diagram of the spectral testing device. (b) Angle-resolved reflectance spectra
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3.4. Impact of Water on the Micro-Morphology of Responsive Photonic Crystal Patterning

Subsequently, AFM was used to observe the impact of the medium on the micro-
morphology of responsive photonic crystal patterns, to obtain more useful conclusions.
The impact of water on the apparent morphology of the pattern was studied (Figure S4 in
Supplementary Materials), and five microspheres were taken from the masked area, and
the morphological height maps in the air and water were compared (Figure 7).
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Figure 7. AFM images of the height profile scanned across the line about five silica microspheres of
the masked area in the air, immersed in water for 10 min, and immersed in water for 120 min.

In a self-made drilled mold, deionized water was injected until it was just overflowing.
It was surrounded by a double-faced adhesive tape so that the lower surface of the film in
the masked area was closely stuck on the mold. The impact on the surface morphology
of the film after immersing the lower surface into deionized water was measured. After
immersing for 10 min, the average surface height was 65.40 nm. Immersion was continued
for 120 min, and the average surface height was 66.43 nm, while the average surface height
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of film in the masked area in the air was 106.69 nm. The immersion of the film’s lower
surface in the water decreased the average surface weight, and the immersion time exhibits
less impact on the height.

As indicated by AFM testing (Figure 8), Young’s modulus of the masked and un-
masked areas in the air was very high and exceeded 1.5 GPa. The Young’s modulus of
the masked area was higher than that of the unmasked area, suggesting a larger exposed
area of silica, which agrees with the results of XPS testing. After immersing into the water,
Young’s modulus of the masked area significantly decreased compared to the unmasked
area and was only tens of MPa.
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Figure 8. The AFM DMT modulus profile scanned across a line about five silica microspheres of
masked area in the air, masked area in water, unmasked area in the air, and unmasked area in water.

A decrease in Young’s modulus may be due to the decrease in the mechanical prop-
erties of media surrounding the microspheres caused by water infiltration. Subsequently,
the contact angle (CA) of water was measured in different areas of the film to compare
wettability between the masked and unmasked areas (Table 1). The contact angle (CA) of
the water was measured in different areas of the film to compare the wettability between
the masked and unmasked areas (Table 1). The CA of lower surfaces in two areas had a
significantly increasing tendency with an increase in photocuring time, while that of the
upper surface was slightly increased. The higher CA of the lower surface compared to the
same photocuring time of the upper surface is due to the presence of silica nanospheres.
Focusing on the upper surface in two areas, the CA of the masked area was lower than that
of the unmasked area due to the complete embedding of silica microspheres, which agrees
with the AFM results (Figure 2b).

Table 1. The contact angle vs. photocuring time for the upper and lower surface of the film in the
masked and unmasked areas.

Area
Contact Angle of Upper Surface (◦) Contact Angle of Lower Surface (◦)

3 min 4 min 6 min 3 min 4 min 6 min

Masked 50.6 54 53.6 58 60.2 88.2
Unmasked 68.1 75.5 75.1 89.6 93.5 92.3

To examine whether the difference in the difficulty of swelling leads to the appearance
of the pattern or not, Debye ring diffraction measurements of thin films were carried out
to monitor particle spacing. For this measurement, silica spheres (1 µm) were used to
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prepare the thin films [39]. Figure 9a schematically shows that in the Debye ring diffraction
measurement geometry, the first-order diffraction angle, α, depends on the particle spacing.

sinα = 2λlaser/
(√

3d
)

, (3)

where α is the interior angle of the Debye diffraction ring, λlaser is the laser wavelength,
and d is the particle spacing. The diffraction angle α can be determined from the Debye
diffraction ring diameter (Equation (4)).

α = tan−1
(

D
2h

)
, (4)
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Figure 9. (a) Schematic diagram of the Debye ring measurement; optical Debye ring images of (b) unmasked area in a dry
state and (c) unmasked area by immersing in water for 2 min; (d,e) masked area under the same state as (a,b).

We could monitor particle spacing by measuring the Debye ring diameter. Figure 9b–e
exhibit Debye rings of the masked and unmasked areas under drying and water immersion
for 4 min, respectively. By measuring D and h, the particle cycles of the two areas in the
two states were calculated and are shown in Table 2. In the dry state, both the particle
spacing of the masked and unmasked areas are about 1180 nm, but after immersing in
water for 4 min, the particle spacing of the two areas increased to a certain extent. The
above results further prove that the masked area swelled more quickly under the same
short-term immersion conditions than the unmasked area.

Table 2. Particle spacing of different areas in under different states.

Dry (nm) Partial Swelling (nm)

Unmasked area 1183.89 1288.23
Masked area 1178.79 1349.55

3.5. The Mechanism of Pattern Generation

Photonic crystals refer to periodic arrangements of different dielectric media in one-
dimensional, two-dimensional, or three-dimensional space. When light propagates in these
media, it follows the theory of light diffraction and refraction (Figure 10a) and generates
Bragg’s diffraction based on combined Bragg’s and Snell’s laws. According to Equations
(1) and (2), the changes in the position of the photonic bandgap are associated with the
lattice parameter of the photonic crystal, average refraction coefficient, and the refractive
index of the photonic crystal medium, in addition to the nature of the raw material [40].
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Figure 10. (a) Reflection path of the incident light on 2D photonic crystal; (b) swelling–deswelling
process of photonic crystal pattern.

The AFM and XPS data indicate that the higher the degree of the photocuring reaction,
the more complete the embedding of the silica microspheres, confirming a higher polymer
content between the silica microspheres in the masked area. Therefore, the surface of the
masked area is rougher, and the arrangement of the internal silica microspheres is more
compact. Additionally, the average refraction coefficient of the media is similar to that of
silica, causing unobservable Bragg’s diffraction of the dry film.

However, when the film was immersed in water for a short time, the situation is
different. The images and testing results of the masked area show intense diffracted
light once it was immersed in water, which comes from the decreased average refraction
coefficient of the media while partially swelling. However, these changes are localized
in the masked area as the degree of polymerization of the covered area is lower than
that of the uncovered area, making it easier for water molecules to penetrate [35]. The
difference in the degree of aggregation causes the masked area to swell faster than the
unmasked area, as proved by the testing results. However, long-term immersion could
eliminate the differences in swelling speed in the two areas and turn the entire film
colorful. In this situation, the whole film is completely swollen so that the refraction
coefficient of the media and silica microspheres is no longer approximate and induces
Bragg’s diffraction light intensely. Meanwhile, drying could eliminate color, achieving the
film’s reusability. A schematic diagram of the swelling–deswelling process is shown in
Figure 10b. The reported method of building quick response patterns from this study will
be a new guideline in anti-counterfeiting.

4. Conclusions

A partially translucent mask was used to control the degree of photocuring reaction
and study the physicochemical properties and morphological differences in the surfaces of
the masked and unmasked areas. The obtained results show that lowering photocuring
degree can help control the exposure extent of silica microspheres by reducing the pho-
tocuring time or using a mask. By immersing in water, the infiltration of water induces
a decrease in the medium’s refractive index, causing intense Bragg’s diffraction. Using a
mask can lower the photocuring degree and localize its effects within some areas, realizing
the responsive pattern. Since the pattern visualization originates from the swelling of
the medium, desiccating the film can hide the pattern again. This swelling–deswelling
process is reversible, endowing responsive photonic crystal films with high reusability. This
programmable method can be conveniently employed to obtain nano anti-counterfeiting
material, where hidden patterns can be visualized using only a drop of water, providing a
new wettability-sensitive anti-counterfeiting technology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13121926/s1. Figure S1: Ultra-fast fabrication of large-area 2D colloidal photonic
crystals assembly at the air-water interface, Table S1: The roughness vs. photocuring time in the
masked and unmasked areas, Figure S2: (a) Reflection spectra of the masked area of nine cycles
of wetting and drying; (b) Reflectance versus cycle times for nine cycles of wetting and drying,

https://www.mdpi.com/article/10.3390/polym13121926/s1
https://www.mdpi.com/article/10.3390/polym13121926/s1
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Figure S3: The optical precision vs. mask width in the masked area, Figure S4: AFM images of the
surface topography in the masked area.
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