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Abstract: Integrative simulation techniques for predicting component properties, based on the con-
ditions during processing, are becoming increasingly important. The calculation of orientations in
injection molding, which, in addition to mechanical and optical properties, also affect the thermal
shrinkage behavior, are modeled on the basis of measurements that cannot take into account the
pressure driven flow processes, which cause the orientations during the holding pressure phase.
Previous investigations with a high-pressure capillary rheometer (HPC) and closed counter pressure
chamber (CPC) showed the significant effect of a dynamically applied pressure on the flow behavior,
depending on the temperature and the underlying compression rate. At a constant compression rate,
an effective pressure difference between the measuring chamber and the CPC was observed, which
resulted in a stop of flow through the capillary referred to as dynamic compression induced solidifi-
cation. In order to extend the material understanding to the moment after dynamic solidification, an
equilibrium time, which is needed until the pressure signals equalize, was evaluated and investigated
in terms of a pressure, temperature and a possible compression rate dependency in this study. The
findings show an exponential increase of the determined equilibrium time as a function of the holding
pressure level and a decrease of the equilibrium time with increasing temperature. In case of super-
critical compression in the area of a dynamic solidification, a compression rate dependency of the
determined equilibrium times is also found. The measurement results show a temperature-invariant
behavior, which allows the derivation of a master curve, according to the superposition principle, to
calculate the pressure equilibrium time as a function of the holding pressure and the temperature.

Keywords: compression induced solidification; cyclic-olefin copolymers; equilibrium time;
high-pressure capillary rheometer; counter pressure chamber

1. Introduction

Continuously shortening product life cycles and constantly increasing demands on
product quality inevitably led to the use of injection molding simulations in the conception
phase of the product development of polymer components. By calculating the filling
processes of the complex geometries of an injection mold before the mold is manufactured,
possible errors can be identified early on and time-consuming and cost-intensive iteration
loops can be avoided [1]. The calculation processes are divided into a filling, holding
pressure, and cooling phase. The filling process of a cavity can be resolved and predicted
with sufficient accuracy using innovative mold designs [2–4] as well as increasingly detailed
and modified material models [5,6].

Integrative simulation techniques will be used to locally determine the influence of
the component geometry and the manufacturing process on the material properties [7].
For semi-crystalline materials, attempts are being made to model the factors influencing
crystallization, such as shear-induced nucleation with superimposed cooling [8]. The aim
of integrative simulations for amorphous polymers is, among other things, to predict the
resulting optical, mechanical, and thermal component behavior on the basis of molecular
orientations introduced during production [9].
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In the injection molding process, the polymer chains are aligned in the direction of flow
by applying an external shearing force, provided they are sufficiently mobile [10]. However,
the macromolecules of a polymer melt strive for the energetically most favorable state of
highest entropy in the form of a tangled cluster. The decrease in entropy and free volume
associated with the orientation of the molecules results in an entropy-elastic restoring
force, which transforms the polymer chains back into a thermodynamically more favorable
state [11,12]. This process is known as relaxation and significantly determines the degree of
orientation generated in the component during the manufacturing process and, thus, local
anisotropies with respect to mechanical [13,14], optical [10,14], and shrinkage-related [15]
properties. The speed of the intramolecular conformational ordering process depends on
the mobility of the molecular chains and is thus determined by the free volume between
the polymer chains of the amorphous melt [16]. As the free volume between the polymer
chains increases with increasing temperature [17] and decreases with the orientation of the
molecular chains [11], this affects the relaxation times.

The free volume also shows a clear pressure dependence. This relationship is defined
by the pvT-behavior of the polymer above the glass transition range [18]. A further
indicator for the restriction of molecular mobility due to melt compression is the pressure
dependence of viscosity. Here, the reduction of the space between the chains leads to an
increased interaction of the polymer chains on the intramolecular level [19,20]. This is
shown by an exponential increase in logarithmic viscosity with increasing pressure at low
shear rates and temperatures near the glass transition [21].

Thus, the relaxation of the polymer chains, due to flow and high-pressure levels
during the holding pressure phase, is prevented. The orientations introduced in the
manufacturing process are primarily determined by the pressure, temperature, and shear
conditions during the holding pressure and cooling phase [22]. During the filling phase,
the orientations introduced can relax to a large extent, due to the shear-induced heating
and low-pressure gradients at the melt front. In contrast, the orientations introduced in the
holding pressure phase show a significantly lower relaxation rate, as a result of reduced
mobility, due to the holding pressure level and the superimposed shearing as well as
temperature decrease during cooling [23]. Pantani et al. was able to determine a significant
increase in the molecular orientations with increasing holding pressure in injection-molded
plates made of isotactic polypropylene and attributed this to an increase in relaxation times
due to the high-pressure level [24].

In the literature, there are already several approaches to model and predict the molec-
ular orientations of the resulting stress birefringence by viscoelastic material models. For
example, Isayev et al. calculated the distribution of stress birefringence for injection-molded
plates made of Polystyrene from flow-induced internal stresses using the Leonov model
via the main equation of stress optics [25]. Flaman et al. extended this model to take into
account the compressibility of the melt [23,26]. Lee et al. used the Leonov model to simulate
the injection compression molding process, to predict flow-induced residual stresses and
stress birefringence for radial polymer flow [27]. Pantani et al. used a nonlinear formulation
of the elastic dumbbell model to describe the evolution of molecular orientations across the
flow cross-section during the injection molding process [28]. Here, the relaxation time, as a
function of pressure, temperature, and shear rate, is considered. The characterization of the
relaxation times was performed with a rotational rheometer [29]. Furthermore, simulations
have shown that the pressure dependence of the relaxation has a significant influence on
the calculated orientations [24].

However, rotational viscometers are mainly used to supply a data basis for the cal-
culation of the relaxation and orientation processes in injection molding simulation [29].
Deformation of an inactive melt under isothermal conditions, in a plate-and-plate config-
uration, and measurement of the applied torque to maintain this deformation over time
generates absolute values for the relaxation behavior [30]. In this way the temperature
dependence of the relaxation times could already be shown several times, whereby higher
temperatures led to shorter relaxation times due to the increased free volume [31–33].



Polymers 2021, 13, 2309 3 of 15

However, modeling the relaxation behavior on this basis does not seem to be practical
for the injection molding process, where high-pressures gradients, and resulting flow
dynamics, may also be acting during the holding pressure and cooling phase. Nevertheless,
such investigations form the data basis for the calculation of the relaxation processes in
simulations. In order to model the formation of orientations during the holding pressure
phase, a better understanding of the pressure driven flow processes during the holding
pressure phase is, therefore, indispensable.

The first investigations could already reveal a pressure dependence of the relaxation
of orientations by means of simulations [34,35]. In addition, investigations using dielectric
measurements to determine the dynamics of the chain segments show that the influence
of pressure on the relaxation of orientations cannot be ignored [36]. Recent investigations
by Reynolds et al. show a first approach to determine the pressure dependence of the
relaxation of the molecular orientations, in the pressure range of 1–100 bar, as a function
of the shear rate of a stationary flowing melt with a two-piston rheometer [37]. For this
purpose, the capillary between the pistons was equipped with a quartz glass window,
whereby the stress birefringence caused by the orientations could be visualized and its
temporal development could be recorded and evaluated by a camera. The relaxation
times measured from the decay of the fringes have been compared with relaxation times,
determined from the decay of the pressure signals after the stop of both pistons. Within
these investigations a pressure dependence of the relaxation time was found, but no shear
rate dependence [37].

Previous investigations of the authors could determine a compression-rate-dependent,
dynamic pressure-induced solidification in a high-pressure capillary rheometer (HPC) with
a closed counterpressure chamber (CPC) at the capillary inlet and the pressure sensor dur-
ing unsteady flow. The dynamic solidification has been characterized with polycarbonate
(PC) by a shift of the solidification pressure to lower pressures with increasing compres-
sion rate under isothermal conditions. In addition, the measurement results showed the
possibility of a temperature-invariant description of this solidification behavior [38].

With regard to the characterization of the formation and relaxation of orientations by
polymer flow under process-relevant conditions and the question of whether a reflow of
polymer through the capillary occurs after dynamic solidification, according to Roth et al.,
further investigations have now been carried out with the HPC and a closed CPC [38]. For
this purpose, the dynamic pressure solidification behavior of a cyclic-olefin copolymer is
first determined and a calculated master curve is used to derive an experimental design
for investigating the temperature, pressure, and compression rate dependency of the flow
processes after a dynamic solidification of the material. In order to quantify the velocity of
the flow effects after dynamic solidification, the time courses of the pressure signals were
observed and the completion of the flow processes was evaluated over a period of time,
until a state of equilibrium was reached between all pressure signals.

2. Materials and Methods

A cyclic-olefin copolymer (COC) of the type 6013M (Topas Advanced Polymers GmbH,
Frankfurt am Main, Germany) was used for the investigation. These are amorphous
thermoplastics, which are frequently used in optical thin-wall components such as flat
screens, light guided plates, and sensors due to their high-transparency and low-stress
birefringence [39]. Due to its biocompatibility, the material is also becoming increasingly
important in medical technology applications, such as micro fluidic chips. Since such thin-
walled and micro components often show high-pressure gradients due to the increased
surface-to-volume ratio during the filling and holding pressure phases, a characterization
of the dynamic solidification behavior is of particular interest for this class of materials.
According to the materials data sheet the glass transition temperature of the material
is 142 ◦C.

The experiments were carried out on a HPC with a closed CPC (Rheograph 75,
Goettfert Werkstoff Prüfmaschinen GmbH, Buchen, Germany) with a piston diameter
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of 15 mm. The measuring device used was specified with an accuracy of 0.4% for pressures
of 20–2500 bar, whereby the maximum pressure corresponds to a piston force of 40 kN.
To increase the accuracy, the elasticity and deformation of the frame, the drive train, and
the force transducer are calculated and automatically corrected as a function of the piston
force. Figure 1 shows the measuring setup schematically based on Roth et al. [38]. The
permission has been obtained from the copyright holder.
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Figure 1. Measuring setup of the high-pressure capillary rheometer (HPC) with closed counter pressure chamber (CPC)
according to [38]. Reprinted with permission from ref. [38]. Copyright 2020 Copyright Polymers.

First, the dynamic solidification behavior of the material has been characterized. For
this purpose, the measuring chamber was heated to the set temperatures, then filled with
polymer granulate in several steps, manually compressed, and degassed until the chamber
was completely filled without air inclusions. To ensure the melting of the polymer, the
piston was lowered onto the melt at a pressure of 2 MPa and kept at the corresponding
temperature for 5 min. The molten polymer batch was then pressed through a built-in
capillary into the CPC. After the whole system was filled with degassed polymer melt, the
CPC was closed by screwing in the pressure cone, as shown in Figure 1. The temperature
was maintained for another 10 min, followed by the corresponding compression. During
compression at the different compression rates, the following data was recorded: piston
position and speed, piston force and pressure at the pressure sensors (HDA 2174, Goettfert
Werkstoff Prüfmaschinen GmbH, Buchen, Germany) in the measuring chamber p1 and
in the CPC p2. The piston force was converted into the piston pressure pp, with the
chamber cross section of 176.71 mm2. The capillary has a circular cross-section and the
ratio of length to diameter of the capillary was 20/1. The methodology for determining
the dynamic solidification pressures, as a function of temperature and compression rate, is
described elsewhere [38]. A master curve was calculated for the material by measurements
at the temperatures 210, 220, 230, 240, and 250 ◦C and the compression rates 1.8 × 10−5,
1.8 × 10−4 and 3.5 × 10−4 1/s for the design of the experiments of the pressure equilibrium
investigations. The compression rate ψ is calculated according to Equation (1):

ψ =
1
V

dV
dt

(1)

where V is the total chamber volume and dV/dt is calculated from the product of piston ve-
locity and piston area. The master curve was calculated according to the time-temperature
superposition principle with a temperature shift factor α at a reference temperature T0 of
250 ◦C [40]. Table 1 gives an overview of the performed HPC/CPC experiments for the
design of the experimental plan for the pressure equilibrium investigations.
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Table 1. Experiments to determine the dynamic pressure-induced solidification of the COC.

Compression Rate [1/s] Temperature [◦C]

1.8 × 10−5

210
220
230
240
250

1.8 × 10−4

210
220
230
240
250

3.5 × 10−4

210
220
230
240
250

The measurement of the pressure-dependent equilibrium times was performed on the
same measuring device under the same applied methodology of a closed CPC completely
filled with melt. After compression at a defined isothermal temperature and underlying
constant compression rate, the piston was locked and the pressure signals of the measuring
chamber, CPC, and the piston force were recorded and evaluated at a frequency of 3 Hz.
Figure 2a shows the behavior of the pressure signals after the piston has stopped, using the
measurement at 240 ◦C, 1200 bar, holding pressure and a compression rate of 5.0 × 10−3 1/s,
as an example. The fast adjustment of the pressure signals of the piston force pp and the
measuring chamber p1 to a pressure difference, which was recorded within the measuring
accuracy of the pressure sensors, was interpreted as an elastic stress relaxation of the melt.
The delayed approximation of the pressure signals of the measuring chamber p1 and the
CPC p2 via the capillary was interpreted as pressure-induced equalization by viscous flow
of the polymer. The calculation of the difference from the pressure signals p1-p2 allows
the observation of a corresponding pressure equilibrium time, Figure 2b. The equalization
process is completely finished as soon as this difference reaches the value 0. The time
required to reach this state was measured as viscous equilibrium time in this study.
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From the master curve of the preliminary tests, the dynamic solidification pressures
for the respective temperatures were calculated under process related compression rates.
In order to determine the influence of the compression rate, equal pressures with different
compression rates were investigated for each temperature. By shifting the solidification
pressure to lower pressures with increasing compression rate [38], an over-compressed
state is obtained at the same pressure and a higher compression rate. The pressures were
selected in such a way that according to the derived master curve at the lowest compression
rate of 1.0 × 10−3 1/s, the highest selected holding pressure corresponds to the calculated
dynamic solidification pressure. At a mean compression rate of 5.0 × 10−3 1/s, the mean
selected pressure corresponds to the calculated dynamic solidification pressure, so that
at the highest holding pressure an over-compression of 200 bar results (Figure 3). At the
highest compression rate 1.0 × 10−2 1/s, only the lowest holding pressure is below the
dynamic solidification pressure, resulting in over-compression of 100 and 300 bar at the
medium and the high holding pressure level. Thus, the influence of the compression rate
on the equilibrium time can be resolved for still-fluid or dynamically solidified material
during unsteady flow. To investigate the temperature influence, overlapping holding
pressures were selected for each temperature.
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The validation of the calculated dynamic solidification pressures at each temperature
and compression rate was performed by experiments, up to the maximum load of the
measuring device at 2500 bar. Figure 3 shows the pressure levels designed according to the
master curve, exemplified by the experiment on the dynamic solidification behavior of the
COC at a compression rate of 5.0 × 10−3 1/s and an isothermal temperature of 240 ◦C.

Table 2 shows an overview of the examined temperatures, compression rates, and
pressures. The pressures were varied for each temperature and compression rate given.
In order to take into account the degradation of material during the measurements, the
first measurement of the experimental plan (240 ◦C, 5.0 × 10−3 1/s, 800 bar) was repeated
at the end of the test day. In addition, the processed material was collected when the
counter pressure chamber was emptied after the measurements and its viscosity number
was compared with that of the virgin material. The viscosity number was determined
according to DIN EN ISO 1628, with an Ubbelohde viscosimeter (0c, SI Analytics, Mainz,
Germany), by dissolving the samples in a Decalin-Irganox solution with a concentration of
0.001 g/L for 45 min at 150 ◦C.
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Table 2. Experiments to determine the pressure-dependent equilibrium time of the COC; all pressures
were varied at each temperature and compression rate.

Temperature [◦C] Compression Rate [1/s] Holding Pressure [bar]

220
1.0 × 10−3 400
5.0 × 10−3 600
1.0 × 10−2 800

240
1.0 × 10−3 800
5.0 × 10−3 1000
1.0 × 10−2 1200

260
1.0 × 10−3 1200
5.0 × 10−3 1400
1.0 × 10−2 1600

The influence of the heating of the melt as a result of compression has already been
ruled out by extensive studies on this subject. For example, compression heating of a
maximum of 2–3 K, at a slow compression speed of 16 bar/s, has been demonstrated
for various amorphous thermoplastics at low compression speeds on the basis of several
investigations [41–43]. The investigated cyclic-olefin-polymer was at the same level of about
3 K temperature increase when the melt tempered at 200 ◦C was compressed to 1000 bar at
a compression speed of 16 bar/s, compared to a PC, which was also investigated [41]. In a
further investigation by Rudolph et al., the influence of the compression speed and pressure
level on the adiabatic temperature increase could also be determined for the investigated
PC. Thus, at 260 ◦C melt temperature and compression with approx. 1600 bar/s, to a
pressure level of 1600 bar, and a maximum heating of 10 K was measured [42]. Higher
pressures and higher compression rates led to stronger compression heating of the melt.
Since the compression rates in this study are a maximum of 200 bar/s and the maximum
pressure level is 1600 bar, a possible error, due to excessive compression heating, has
therefore been excluded.

3. Results and Discussion
3.1. Characterization of Dynamic Compression Induced Solidification

The results of the solidification pressures as a function of the compression rate deter-
mined, according to the methodology of [38] and the constructed master curve with the
corresponding displacement factors for the COC, are shown in Figure 4.

An approximate linear decrease of the dynamic solidification pressure, with exponen-
tially increasing compression rate is shown. In addition, higher pressures are required for
the same compression rate and a higher temperature to dynamically solidify the material,
Figure 4a. The free volume between the polymer chains is constantly reduced, due to
the constant pressure increase in the initially compressible melt. Since the polymer flows
simultaneously through the capillary due to the pressure differences, this requires a rear-
rangement of the polymer chains. Relaxation time is required for this, which increases with
decreasing free volume, whereby the polymer cannot relax fast enough into a state of lower
free volume when a certain pressure is reached and, therefore, behaves like a solid. The
chains are then compressed only elastically, without any rearrangement processes taking
place. The shifting of the curves according to the superposition principle over the compres-
sion rate with a temperature shift factor α allows the derivation of a temperature-invariant
master curve of the behavior of dynamic solidification, Figure 4b,c. From the exponential fit
of the master curve, an equation for the calculation of the dynamic solidification pressure
as a function of compression rate and temperature can be derived:

Pg =
ln(ψ)− 4.177 − α × ∆T

−0.08
(2)
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Using Equation (2), the solidification pressures for the compression rates and tem-
peratures used in Table 2 could be calculated and the holding pressures for determining
the equilibrium time could be designed accordingly. This is shown in Figure 5, where the
experimental points on the original straight line correspond to dynamic solidification and
all points above and below this line correspond to compressible or incompressible elastic
compression of the melt.

The methodology according to Roth et al. does not allow a clear characterization of
the dynamic solidification behavior at the selected application-oriented, high compression
rates [38]. Nevertheless, the dynamic solidification pressures of the limit experiments could
be determined for the low compression rates and, thus, a validation of the calculations
from the master curve could be made. At the temperatures 240 ◦C and 260 ◦C and at the
highest compression rate, the solidification pressures measured for validation of the master
curve could not be determined exactly in the limit experiments, because the compression
was too fast. However, all other measured solidification pressures show good agreement
with the values calculated from the master curve, Figure 6.
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3.2. Pressure-, Temperature- and Compression Rate- Dependent Equilibrium Time

The results of the evaluation of the further above defined viscous equilibrium time are
shown in Figure 7. The measured equilibrium times increase exponentially, with increasing
holding pressure and decrease with increasing melt temperature.
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compression rate.

The results are consistent with the presented model that increasing pressure and
decreasing temperature cause an extension of the relaxation time due to the restriction of
the intramolecular ordering process, caused by the lower free volume during unsteady
flow. The compression-rate-dependence of dynamic solidification is thus also reflected
in the equilibrium behavior. When applying the same holding pressure with a higher
compression rate, the dynamic solidification pressure shifts to lower pressures. As long as
the holding pressure is below the dynamic solidification pressure, there is no compression-
rate-dependence of the equilibrium times. However, if the holding pressure exceeds the
dynamic solidification pressure due to the compression rate-dependent shift of the dynamic
solidification pressure, this results in an almost elastic compression of the melt in the mea-
suring chamber. This leads to a higher-pressure difference between the measuring chamber
and the CPC after the piston has stopped and, thus, to faster viscous equalization. The
tests at 240 ◦C show the highest compression-rate-dependence. This non-linear behavior
compared to the temperatures 220 ◦C and 260 ◦C is the subject of current investigations,
in which the range between the measuring points at the highest holding pressure is to
be resolved more finely by further compression rates. The repeated measurements at
240 ◦C, 5.0 × 10−3 1/s, and 800 bar holding pressure ensured the reproducibility of the
measurements and excluded the influence of aging.

In addition, Figure 8 shows the measured viscosity numbers of the processed material
compared to the virgin material. When taking into account the overlapping, standard devi-
ations of the measurements, no significant change in viscosity number could be detected,
which ruled out aging of the material during the 10 h test period. A low thermooxidative
aging of the material could be attributed to the closed counterpressure chamber and the
resulting partially prevented contact of the melt with the atmospheric oxygen, taking into
account that the device is sealed against the melt but not necessarily against the atmo-
spheric oxygen. In addition, in any case, thermal degradation of the material would also
have occurred over the long test period of about 10 h, which should also be reflected in a
lower viscosity number.
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Therefore, it is assumed that the almost permanent pressurization of the melt restricts
the chain mobility to such an extent that no thermally vibrational induced degradation of
the molecular bonds can take place. A pressure-induced restriction of the chain mobility
would inevitably also lead to a reduced oxygen diffusion rate and, thus, also hinder
thermo-oxidative damage. This is the subject of the current investigations on the pressure-
dependent degradation of thermoplastic melts at the Institute of Polymer Technology.

The proof of the elastic melt compression in the measuring chamber after dynamic
solidification can be provided by the comparison between the holding pressure and the
equilibrium pressure in Figure 9.
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The equilibrium pressure is the pressure after completion of the pressure equalization
processes, thus, the pressure at which the signals intersect. At low holding pressure levels,
the holding pressure and equilibrium pressure hardly differ from each other, indicating
that no elastic compression of the melt has taken place. At higher compression rates, there
is already a deviation between holding pressure and equilibrium pressure, with the highest
holding pressure and the highest compression rate showing the greatest difference to the
equilibrium pressure.
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With the measuring method shown, the determination of the viscous equilibrium
time, which is needed to complete all flow processes during the holding pressure phase,
as a function of pressure and temperature under process-relevant conditions, seems to be
possible. The knowledge of the relationship between pressure, temperature, compression
rate, and the resulting flow processes during the holding pressure phase is essential for
the exact calculation of the formation of molecular orientations in the injection molding
process, since here, high-pressures can act in addition to high temperature gradients. In
the holding pressure phase of the injection molding process, the melt is compressed within
a completely filled mold over a narrow flow cross-section, at a constant compression rate
to a specific pressure level. In the selected measuring setup, the mold corresponds to
the filled CPC, the solidifying narrow gate corresponds to the capillary and the screw
antechamber corresponds to the measuring chamber. Thus, the described measuring setup
allows the simulation of the holding pressure phase of the injection molding process, under
laboratory conditions. If the measured equilibrium times are plotted logarithmically, as
a function of the holding pressure, a temperature-invariant behavior is shown, which
allows the measurement results of the test setup shown here to be generalized, Figure 10a.
The shift of the individual equilibrium curves by a temperature shift factor allows the
derivation of a generalized relationship for the calculation of the so defined viscous pressure
equilibrium time, as a function of temperature and holding pressure, Figure 10b,c. Due to
the compression-rate-dependence of the equilibrium times, this is only allowed for one
defined compression rate.

Figure 10 shows the displacement of the individual measuring points to a master
curve using the compression rate 1.0 × 10−3 and the reference temperature 220 ◦C as
an example. The temperature invariant plotting allows the exponential fit of the curve
to derive an equation for the calculation of the temperature and pressure-dependent
equilibrium time. Table 3 summarizes the derived master curves as a function of the
examined compression rates:

Table 3. Derived master curves to calculate the pressure and temperature dependent equilibrium time of the COC for all
investigated compression rates.

Compression Rate [1/s] Master Curve Equation Shift Factor α [-]

1.0 × 10−3 teq = exp
(

0.0056 × PHolding + α × ∆T + 2.80
)

−0.115.0 × 10−3 teq = exp
(

0.0054 × PHolding + α × ∆T + 2.82
)

1.0 × 10−2 teq = exp
(

0.0054 × PHolding + α × ∆T + 2.85
)
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4. Conclusions

The use of integrative simulation techniques to predict internal component properties,
such as residual stresses and orientations, which can influence the optical, mechanical, and
shrinkage properties of injection molded components, is becoming increasingly impor-
tant. For a reliable prediction of process-induced orientations during injection molding,
a characterization of the pressure, temperature, and compression-rate-dependent flow
behavior during the holding pressure phase is necessary. This study shows the attempt
to simulate the flow behavior in the holding pressure phase of the injection molding pro-
cess, under laboratory conditions with a high-pressure capillary rheometer and a closed
counterpressure chamber. Previous investigations with this measuring setup could reveal
a compression rate-dependent melt solidification under unsteady flow conditions. In order
to characterize the equalization behavior of dynamically solidified and still flowable mate-
rial under transient flow conditions, the dynamic solidification behavior of a cyclic-olefin
copolymer relevant for optical applications was characterized and a corresponding experi-
mental design for the equilibrium investigations was derived. These investigations show
an exponential increase of the pressure equilibrium time, with increasing holding pressure
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level and a decrease of the equilibrium time with increasing temperature. In addition, a
compression-rate-dependence of the equilibrium times is shown at high compression rates
in the area of dynamic melt solidification. The measurements also show a temperature
invariant behavior, which allows the derivation of a master curve for the calculation of the
equilibrium times as a function of temperature and holding pressure for an underlying
compression rate. With the help of the empirically determined equations, the temperature-,
pressure-, and compression-rate-dependent stop of the flow, as well as time-dependent
reflow effects, can be modelled for consideration in integrative simulations to improve the
prediction of molecular orientations.
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