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Abstract: This work studies the dynamic response of Bernoulli–Euler multilayered polymer func-
tionally graded carbon nanotubes-reinforced composite nano-beams subjected to hygro-thermal
environments. The governing equations were derived by employing Hamilton’s principle on the
basis of the local/nonlocal stress gradient theory of elasticity (L/NStressG). A Wolfram language
code in Mathematica was written to carry out a parametric investigation on the influence of dif-
ferent parameters on their dynamic response, such as the nonlocal parameter, the gradient length
parameter, the mixture parameter and the hygro-thermal loadings and the total volume fraction of
CNTs for different functionally graded distribution schemes. It is shown how the proposed approach
is able to capture the dynamic behavior of multilayered polymer FG-CNTRC nano-beams under
hygro-thermal environments.

Keywords: polymer multilayered functionally graded materials; nanocomposite; nanobeams;
dynamics; local/nonlocal stress gradient elasticity; hygro-thermal loadings

1. Introduction

Polymer nanocomposites are widely used in several fields, ranging from the field
of engineering at a macroscale to the nanoscience and nanotechnology fields in order to
develop high performance nanodevices (nanosensors, nanoactuators and nanogears) and
nanosystems (MEMS/NEMS), especially designed for harsh environments, while also
managing extreme temperatures, humidity and vibration [1,2].

It is well-known how polymer nanocomposites are commonly reinforced by vari-
ous types of nanofillers to improve their mechanical and physical properties due to the
large interfacial area between polymers and nanofillers [3,4]. Based on their dimensions,
nanofillers can be classified into the following three different types: two-dimensional (2-D),
such as graphene [5–7]; one dimensional (1-D), such as carbon nanotubes [8]; zero dimen-
sional (0-D), which include silica nanoparticles and ZnO quantum dots [9,10]. Several
investigations have shown that the addition of small amounts of nanofillers can consider-
ably improve the properties of polymeric composites [11]. However, many of these studies
are only useful in establishing some basic aspects including processing, characterization
and the stress–strain behavior of the nanocomposites [12,13].

In current applications, reinforcements based on graphene nanoplatelets (GNPs) and
carbon nanotubes (CNTs) have been widely adopted in place of conventional fiber bulk due
to their exceptional properties, to enhance the mechanical, electrical and thermal properties
of composite structures. To develop their use in current applications, it is necessary to
observe the overall response of the nanocomposite structural element.

Notwithstanding a number of studies have been carried out on the mechanical be-
havior of macroscopical structures like beams [14–20], plates and shells [21–25], made of
functionally graded carbon nanotubes (FG-CNTRC) or graphene nanoplatelets reinforced
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composites (FG-GNPRC), there is relatively little scientific knowledge about their size-
dependent mechanical response at small scale. The FG-CNTRC nano-beam has become a
potential candidate for a wide variety of nanosystems and the size effects on their statical
and dynamic response should be further developed. To the best of our knowledge, some
reference works have been developed by Borjalilou et al. [26] and Daikh et al. [27] on
the bending, buckling and free vibration of FG-CNTRC composite nano-beams, and by
Daikh et al. [28] on the buckling analysis of CNTRC curved sandwich nano-beams in a
thermal environment. So far, no analysis has been carried out on the dynamic response of
multilayered FG-CNTRC nano-beams in a hygro-thermal environment.

Consequently, the main aim of this study is to examine the size-dependent linear
vibration response of multilayered polymer nano-beams reinforced with carbon nanotubes
(CNTs) whose properties are temperature-dependent. As it has been widely demonstrated
by the experiments at a small scale [29], nanostructures exhibit size effects in their me-
chanical behavior that can be accurately predicted by resorting several size-dependent
continuum theories of elasticity including both nonlocal theories of elasticity and nonlocal
gradient ones and local–nonlocal mixture constitutive models or coupled theories based
on the combination of pure nonlocal theory with the surface theory of elasticity.

These theories are able to capture different types of size effects: nonlocal theories are
able to predict only the softening or hardening material response as opposed to nonlocal
gradient ones that can predict both the softening and hardening behaviors of the material
at a nanoscale. In the framework of nonlocal elasticity, two of the most notable purely
nonlocal constitutive laws are the softening or Eringen’s strain-driven nonlocal integral
model (StrainDM) [30,31], in which the total stress of a given point is a function of the
strain at all the other adjacent points of the continuum, and the more recently hardening or
stress-driven nonlocal integral model (StressDM) developed by Romano and Barretta [32],
in which the strain at any point results from the stress of all the points. As widely discussed
in [33,34], the differential formulation of StrainDM is ill-posed and leads to the unexpected
paradoxical results for some boundary and loading conditions, unlike the well-posed
StressDM that provides a consistent approach for the analysis of nanostructures [35–44].

In addition, Lim et al. [45] introduced the nonlocal strain gradient theory (Lim’s
NStrainGT) to generalize the Eringen’s nonlocal model by combining it with the strain
gradient model in which the total stress is a function of the strain and its gradient not only
at the reference point, but also at all the other points within the domain.

Although this model has been extensively applied for many years by several re-
searchers in a large number of investigations, recently Zaera et al. [46] declared that the
nonlocal strain gradient theory leads to ill-posed structural problems since the consti-
tutive boundary conditions are in conflict with both non-standard kinematic and static
higher-order boundary conditions. The ill-posed problem related to the Lim’s NStrainGT
model may be bypassed by resorting to the Eringen local-nonlocal mixture constitutive
model [47–49] or by using coupled theories based on the combination of pure nonlocal the-
ory with the surface theory of elasticity [50,51]. The ill-posedness of Lim’s NStrainGT can
be advantageously circumvented using the variationally consistent nonlocal gradient for-
mulations, such as local/nonlocal strain-driven gradient (L/NStrainG) and local/nonlocal
stress-driven gradient (L/NStressG) theories, conceived by Barretta et al. in [52,53] for
both the static and dynamics problems. These novel constitutive formulations lead to
well-posed static [54] and dynamic problems [55] of nanomechanics.

The main aim of this work is to study the dynamic response of multilayered poly-
mer functionally graded carbon nanotubes-reinforced composite nano-beams subjected
to hygro-thermal environments by using the aforementioned novel consistent nonlocal
gradient formulations [54,55].

The main assumptions and simplifications used for studying the nonlocal vibration
characteristics of FG-CNTRC composite nano-beams within hygro-thermal environments
are the following:
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- A slender and perfectly straight nano-beam of a Euler–Bernoulli type, with a rect-
angular cross-section, is considered; hence, the influence of thickness stretching and
shear deformation are neglected;

- The multilayered nano-beam is composed by laminae with the same thickness and made
of an isotropic polymer matrix reinforced by single walled carbon nanotubes (SWCNTs);

- Three CNTs distribution schemes are considered: a uniform distribution and two
different non-uniform functionally graded distributions;

- The effective material mechanical properties are obtained by a combination of Mori-
Tanaka scheme with the rule of mixtures and molecular dynamics and are assumed to
be temperature dependent;

- A uniform distribution for both temperature and moisture fields through the thickness
is assumed to occur in the thickness direction only.

The present paper is structured as follows. The problem formulation of multilayered
FG-CNTRC nano-beams with temperature-dependent properties and the equations of
motion of the multilayered Bernoulli–Euler nano-beams are derived in Section 2 by using
the Hamilton’s principle. In Section 3, the local/nonlocal stress-driven gradient model
of elasticity is introduced. In Section 4, the equation of linear transverse free vibration is
obtained, whose solution procedure is reported in Appendix A. Finally in Section 5, the
main results of a linear free vibration analysis are presented and discussed. Some closing
remarks are provided in Section 6.

2. Problem Formulation
2.1. Multilayered FG-CNTRC Nano-Beam with Temperature-Dependent Properties

Consider a Bernoulli–Euler multilayered FG-CNTRC nano-beam of length “L”, with
a rectangular cross-section (Σ) with thickness “h” and width “b”, as illustrated in Figure 1
where the principal axes of geometric inertia, denoted by y and z, originating at the
geometric center O of Σ are also shown.
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Figure 1. Coordinate system and configuration of a multilayered FG-CNTRC nano-beam subjected to a hygro-
thermal environment.

It is assumed that the nano-beam is composed of ten laminae with the same thickness
(h/10) and that each lamina (k) is made of an isotropic polymer matrix reinforced by
SWCNTs, whose elastic properties, P0, are summarized in Table 1 as functions of the
temperature and moisture distributions through the thickness, T (z) and H (z), respectively.
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It is worth noting that in this work, we assumed a uniform distribution for both the
temperature and moisture fields through the thickness

T = T(z) = T0 + ∆T = const (1)

H = H(z) = H0 + ∆H = const (2)

being ∆T and ∆H the temperature and moisture rises starting from initial values of the
bottom surface temperature, T0 = 300 [K] and moisture H0 = 0 [%wt.H2O].

Table 1. Thermoelastic properties of SWCNTs and the polymeric matrix.

Material Properties Unit P0

SWCNTs

ECNTs
11 (GPa) 640(1− 0.0005∆T)
ρcn (kg/m3) 1350

αCNTs
11 (K−1) 3.4584× 10−6

βcn (wt. % H2O)−1 0
υCNTs

11 - 0.33

Polymeric Matrix

Em (GPa) 3.51− 0.003T + 0.142H
ρm (kg/m3) 1200
αm (K−1) 45(1 + 0.001∆T)× 10−6

βm (wt. % H2O)−1 0.00268
νm - 0.34

In particular, three different CNTs distribution schemes have been considered: a
uniform distribution, indicated as UD-CNTRC, and two non-uniform functionally graded
distributions, identified as FG-O-CNTRC and FG-X-CNTRC, respectively (Figure 2).
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Figure 2. Schematic representation of a multilayered FG-CNTRC nano-beam with different patterns of
CNTs dispersions: uniform distribution (UD-CNTRC); non-uniform functionally graded distributions
type “O” (FG-O-CNTRC); non-uniform functionally graded distributions type “X” (FG-X-CNTRC).

By denoting with V(k)
CNTs the CNTs volume fraction of the k-th layer (Σ(k)), the three

selected distribution configurations can be mathematically expressed by the following
relations [27]
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- UD-CNTRC multilayered nano-beam

V(k)
CNTs = V∗CNTs (3)

- FG-O-CNTRC multilayered nano-beam

V(k)
CNTs = 2

(
1− |2|z|−|zk−1 + zk||

zk − zk−1

)
V∗CNTs (4)

- FG-X-CNTRC multilayered nano-beam

V(k)
CNTs = 2

|2|z|−|zk−1 + zk||
zk − zk−1

V∗CNTs (5)

where zk−1 and zk refer to the vertical positions of the bottom surface and top surface of
the k-th lamina of the multilayer nano-beam. Moreover, the symbol V∗CNTs denotes the total
volume fraction of CNTs, expressed as

V∗CNTs =
WCNTs

WCNTs +
(

ρCNTs
ρm

)
(1−WCNTs)

(6)

where WCNTs is the CNTs mass fraction, while ρCNTs and ρm denote the CNTs mass density
and the polymer matrix one, respectively.

In order to determine the effective material mechanical properties across the plane
directions (x,z), a combination of the Mori-Tanaka scheme with the rule of mixtures and
molecular dynamics is here developed, as suggested in [28]. In detail, the effective me-
chanical properties of the nanocomposite material, in terms of Young’s moduli E(k)

11 (along

x-direction) and E(k)
22 (along z-direction) and the shear modulus, G(k)

12 , for the k-th layer are
given as

E(k)
11 = η1V(k)

CNTsECNTs
11 + V(k)

m Em (7)

η2

E(k)
22

=
V(k)

CNTs

ECNTs
22

+
V(k)

m
Em

(8)

η3

G(k)
12

=
V(k)

CNTs

GCNTs
12

+
V(k)

m
Gm

(9)

in which ECNTs
11 , ECNTs

22 and GCNTs
12 are the Young’s moduli and the shear modulus of

SWCNTs, respectively, and Em and Gm are the elastic properties of the polymer matrix. In
the previous equations, V(k)

m = 1− V(k)
CNTs, is the polymer matrix volume fraction of k-th

layer and η1, η2 and η3 are the values of the SWCNTs efficiency parameters listed in Table 2
as given in [19].

Table 2. SWCNTs efficiency parameters.

V∗CNTs η1 η2 η3

12 (%) 1.2833 1.0556 1.0556
17 (%) 1.3414 1.7101 1.7101

In addition, based on the rule of mixture, the Poisson’s ratio, ν
(k)
12 , mass density, ρ(k),

and thermal expansion coefficient, α
(k)
11 , of the k-th layer are given as

ν
(k)
12 = V(k)

m νm + V(k)
CNTsνCNTs

12 (10)
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ρ(k) = V(k)
m ρm + V(k)

CNTsρCNTs (11)

α
(k)
11 = V(k)

m αm + V(k)
CNTsαCNTs

11 (12)

where νm and νCNTs
12 and αm and αCNTs

11 are the Poisson’s ratios and the thermal expansion
coefficients of the polymer matrix and CNTs, respectively.

Moreover, the moisture coefficient, β(k), of the nanocomposite is assumed equal to the
moisture coefficient of the matrix, βm, since the matrix absorbs all the water content

β(k) = βm (13)

2.2. Governing Equation

Based on Bernoulli–Euler theory, the Cartesian components of the displacement field
of the multilayered FG-CNTRC nano-beam, in the elastic coordinate reference system {O, x,
y, z} can be expressed by

ux(x, z, t) = u(x, t) + zϕy(x, t) (14)

uy(x, z, t) = 0 (15)

uz(x, z, t) = w(x, t) (16)

where ux(x, z, t), uy(x, z, t) and uz(x, z, t) are the displacement components along x, y and
z directions; u(x, t) and w(x, t) are the axial and transverse displacements of the geometric
center O, at time t, respectively; ϕy(x, t) = − ∂w

∂x (x, t) is the rotation of the nano-beam cross
section about y-axis.

According to von Kármán geometrical nonlinearity, which includes small strains
but moderately large rotation, the only nonzero elastic strain is given by the following
relation [44]

εxx(x, t) =
∂u(x, t)

∂x
− z

∂2w(x, t)
∂x2 +

1
2

(
∂w
∂x

(x, t)
)2

(17)

It is well-known how the nonlinear equations of motion can be obtained using Hamil-
ton’s principle ∫ t2

t1

(δU − δK + δW)dt = 0 (18)

where the expression of δK (variation of kinetic energy), δU (variation of strain energy)
and δW (variation work done by external forces) are given in the following.

The variation of kinetic energy is

δK = 1
2 b

L∫
0

NL
∑

k=1

zk∫
zk−1

ρ(k)
.
uiδ

.
udzdx =

1
2 b

L∫
0

NL
∑

k=1

zk∫
zk−1

ρ(k)
NL
∑

k=1

[( .
u + z

.
ϕy

)(
δ

.
u + zδ

.
ϕy

)
+

.
wδ

.
w
]
dzdx =

L∫
0
(Aρ

.
uδ

.
u + Iρ

.
ϕyδ

.
ϕy + Aρ

.
wδ

.
w)dx

(19)

where k = 1, 2, . . . , NL is the total number of layers of the FG nano-beam; Aρ and Iρ are the
effective cross-sectional mass of the FG nano-beam and the rotary inertia of its cross-section
Σ, respectively, expressed as

{
Aρ, Iρ

}
= b

NL

∑
k=1

(ρ(k)
∫ zk

zk−1

{
1, z2

}
dz) (20)
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Considering the hygro-thermal effects, the variation of strain energy of the FG
nanobeams can be written as

δU = 1
2

∫ L
0

∫
Σ σxxδεxxdΣdx =

1
2

∫ L
0

(
N
(

∂δu(x,t)
∂x + 1

2

(
∂δw
∂x (x, t)

)2
)
−M ∂2δw(x,t)

∂x2

)
dx

(21)

where N and M are the axial and moment stress resultants, respectively

N = N(x, t) = AE

(
∂u(x, t)

∂x
+

1
2

(
∂w
∂x

(x, t)
)2
)

(22)

M = M(x, t) = −IE
∂2w(x, t)

∂x2 (23)

The stiffness components AE and IE are defined as

{AE, IE} =

h
2∫

− h
2

Q11

{
1, z2

}
dz (24)

being Q11 the equivalent stiffness

Q11 =
NL

∑
k=1

(∫ zk

zk−1

Q(k)
11 dz

)
(25)

which can be expressed as a function of the reduced stiffness, Q(k)
11 , of the k-th layer as

follows

Q(k)
11 =

E(k)
11

1−
(

υ
(k)
12

)2 (26)

By manipulating Equations (24)–(26), the stiffness components AE and IE can be
rewritten as

{AE, IE} =
NL

∑
k=1

zk∫
zk−1

Q(k)
11

{
1, z2

}
dz (27)

Finally, the expression of the variation virtual work of the external force can be
expressed by

δW = −1
2

∫ L

0
(NT + NH)

∂w(x, t)
∂x

∂δw(x, t)
∂x

(28)

where NT and NH denote the hygro-thermal axial force resultants, respectively, defined
as follows

NT = NT(z) =
NL

∑
k=1

zk∫
zk−1

Q(k)
11 α(k)∆Tdz (29)

NH = NH(z) =
NL

∑
k=1

zk∫
zk−1

Q(k)
11 β(k)∆Hdz (30)

By substituting Equations (19), (21) and (28) into the Hamilton’s principle, performing
integration-by-parts with respect to t and x to relieve the generalized displacements δu, δw
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and δϕy of any differentiations, and using the fundamental Lemma of differential calculus,
we obtain the following equations of motion

∂N(x, t)
∂x

= Aρ
∂2u(x, t)

∂t2 (31)

∂2M(x, t)
∂x2 +

∂

∂x

(
N(x, t)

∂w(x, t)
∂x

)
−
(

NT + NH
)∂2w(x, t)

∂x2 = Aρ
∂2w(x, t)

∂t2 − Iρ
∂4w(x, t)

∂x2∂t2 (32)

with the corresponding boundary conditions at x = [0, L]

u(x, t) or N(x, t) (33)

− ∂w(x, t)
∂x

or M(x, t) (34)

w(x, t) or V(x, t) =
∂M(x, t)

∂x
+ N

∂w(x, t)
∂x

−
(

NT + NH
)∂w(x, t)

∂x
(35)

where V(x, t) denotes the equivalent shear force.
Substituting Equations (22) and (23) into Equations (31) and (32), the governing

equations can be rewritten in terms of displacements

AE
∂2u(x, t)

∂x2 + AE
∂2w(x, t)

∂x2 = Aρ
∂2u(x, t)

∂t2 (36)

−IE
∂4w(x,t)

∂x4 + ∂
∂x

((
AE

∂u(x,t)
∂x + 1

2 AE

(
∂w
∂x (x, t)

)2
)

∂w(x,t)
∂x

)
−
(

NT + NH) ∂2w(x,t)
∂x2

= Aρ
∂2w(x,t)

∂t2 − Iρ
∂4w(x,t)
∂x2 ∂t2

(37)

3. Local/Nonlocal Stress Gradient Formulation

By denoting with x and ξ the position vectors of the points of the domain at time
t, with σxx and ∂σxx

∂x
the axial stress component and its gradient and with ξ1 and Ll the

mixture and the gradient length parameters, respectively, the elastic axial strain component,
εxx, can be expressed by the well-known constitutive mixture equation (local/nonlocal

stress gradient integral formulation [52])

εxx = ξ1
σxx(x, t)

Q11
+

1− ξ1

Q11

∫ L

0
ΦLc(x− ξ)σxx(ξ, t)dξ − 1

Q11
L2

l
∂

∂x

∫ L

0
ΦLc(x− ξ)

∂σxx(ξ, t)
∂x

dξ (38)

where ΦLc is the biexponential function of the scalar averaging kernel depending on the
length-scale parameter, Lc, which describe the nonlocal effects.

By assuming the following smoothing function

ΦLc(x, Lc) =
1

2Lc
exp (−|x|

Lc
) (39)

Equation (38) can be rewritten as

εxx − L2
c

∂2εxx

∂x2 =
σxx

Q11
− L2

c
Q11

(
ξ1 +

L2
l

L2
c

)
∂2σxx

∂x2 (40)

with the constitutive boundary conditions (CBCs) at the ends of the multilayered FG
nano-beam (x = 0, L)

∂εxx(0, t)
∂x

− 1
Lc

εxx(0, t) = − 1
Q11

ξ1

Lc
σxx(0, t) +

1
Q11

(
ξ1 +

L2
l

L2
c

)
∂σxx(0, t)

∂x
(41)
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∂εxx (L, t)
∂x

+
1
Lc

εxx(L, t) =
1

Q11

ξ1

Lc
σxx(L, t) +

1
Q11

(
ξ1 +

L2
l

L2
c

)
∂σxx(L, t)

∂x
(42)

Next, by substituting Equation (17) into Equations (40)–(42), then multiplying by (1,
z), the integration over the cross section of the multilayered FG nano-beam provides the
following NStressG equations

AE
∂u(x,t)

∂x + 1
2 AE

(
∂w(x,t)

∂x

)2
− AEL2

c
∂3u(x,t)

∂x3 − AEL2
c

∂2

∂x2

(
1
2

∂w(x,t)
∂x

)2

= NNStressG(x, t)− L2
c

(
ξ1 +

L2
l

L2
c

)
∂2 NNStressG(x,t)

∂x2

(43)

− IE
∂2w(x, t)

∂x2 + IEL2
c

∂4w(x, t)
∂x4 = MNStressG(x, t)− L2

c

(
ξ1 +

L2
l

L2
c

)
∂2MNStressG(x, t)

∂x2 (44)

with two pairs of CBCs

∂2u(0, t)
∂x2 − 1

Lc

∂u(0, t)
∂x

= − 1
AE

ξ1

Lc
NNStressG(0, t) +

1
AE

(
ξ1 +

L2
l

L2
c

)
∂NNStressG(0, t)

∂x
(45)

∂2u(L, t)
∂x2 +

1
Lc

∂u(L, t)
∂x

=
1

AE

ξ1

Lc
NNStressG(L, t) +

1
AE

(
ξ1 +

L2
l

L2
c

)
∂NNStressG(L, t)

∂x
(46)

− ∂3w
∂x3 (0, t) +

1
Lc

∂2w
∂x2 (0, t) = − 1

IE

ξ1

Lc
MNStressG(0, t) +

1
IE

(
ξ1 +

L2
l

L2
c

)
∂MNStressG(0, t)

∂x
(47)

− ∂3w
∂x3 (L, t)− 1

Lc

∂2w
∂x2 (L, t) =

1
IE

ξ1

Lc
MNStressG(L, t) +

1
IE

(
ξ1 +

L2
l

L2
c

)
∂MNStressG(L, t)

∂x
(48)

where NNStressG and MNStressG are the local/nonlocal stress gradient axial force and mo-
ment resultants, respectively. Moreover, by substituting Equations (31) and (32) into Equa-
tions (43) and (44), the local/nonlocal stress gradient axial force and moment resultants
can be described explicitly in terms of displacement components as follows

NNStressG(x, t) = AE

(
∂u(x,t)

∂x − L2
c

∂3u(x,t)
∂x3

)
+ AE

(
1
2

(
∂w(x,t)

∂x

)2
− L2

c
∂2

∂x2

(
1
2

∂w(x,t)
∂x

)2
)

+L2
c

(
ξ1 +

L2
l

L2
c

)
∂

∂x

(
Aρ

∂2u(x,t)
∂t2

) (49)

MNStressG(x, t) = −IE
∂2w(x,t)

∂x2 + IEL2
c

∂4w(x,t)
∂x4

+L2
c

(
ξ1 +

L2
l

L2
c

)(
Aρ

∂2w(x,t)
∂t2 − Iρ

∂4w(x,t)
∂x2∂t2 +

(
NT + NH) ∂2w(x,t)

∂x2 − ∂
∂x

(
N ∂w(x,t)

∂x

)) (50)

Finally, by manipulating Equations (49) and (50) and Equations (31) and (32), the
following local/nonlocal stress gradient equations of motion are derived

AE

(
∂2u(x, t)

∂x2 − L2
c

∂4u(x, t)
∂x4

)
+ AE

(
∂2w(x, t)

∂x2 − L2
c

∂4w(x, t)
∂x4

)
+ L2

c

(
ξ1 +

L2
l

L2
c

)
Aρ

∂4u(x, t)
∂x2∂t2 = Aρ

∂2u(x, t)
∂t2 (51)

−IE
∂4w(x,t)

∂x4 + IEL2
c

∂6w(x,t)
∂x6

+L2
c

(
ξ1 +

L2
l

L2
c

)(
Aρ

∂4w(x,t)
∂x2∂t2 − Iρ

∂6w(x,t)
∂x4∂t2 +

(
NT + NH) ∂4w(x,t)

∂x4

− ∂3

∂x3

(
N ∂w(x,t)

∂x

))
=
(

Aρ
∂2w(x,t)

∂t2 − Iρ
∂4w(x,t)
∂x2 ∂t2 +

(
NT + NH) ∂2w(x,t)

∂x2

− ∂
∂x

(
N ∂w(x,t)

∂x

))
(52)
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equipped with the following natural boundary conditions at the ends (x = 0, L)

NNStressG(x, t) = N (53)

∂MNStressG(x, t)
∂x

+ NNStressG(x, t)
∂w(x, t)

∂x
−
(

NT + NH
)∂w(x, t)

∂x
= V (54)

MNStressG(x, t) = M (55)

being N, M and V the assigned generalized forces acting at the nano-beam ends together
and with the aforementioned CBCs at the nano-beam ends given by Equations (45)–(48).

4. Nonlinear Transverse Free Vibration Analysis

By neglecting the term Aρ, from the first equation of motion, we obtain

NNStressG(x, t) = AE

(
∂u(x,t)

∂x − L2
c

∂3u(x,t)
∂x3

)
+AE

(
1
2

(
∂w(x,t)

∂x

)2
− L2

c
∂2

∂x2

(
1
2

∂w(x,t)
∂x

)2
)
= N̂

(56)

being N̂ constant.
For a multilayered FG nano-beam with immovable ends, by integrating both sides of

Equation (56) over the domain [0, L] yields to the following expression

N̂ =
AE
L

L∫
0

(
1
2

(
∂w(x, t)

∂x

)2
− L2

c
∂3w(x, t)

∂x3

)
dz (57)

which corresponds to the “mid-plane stretching effect”.
By substituting Equation (57) into Equation (52), it follows

−IE
∂4w(x,t)

∂x4 +IEL2
c

∂6w(x,t)
∂x6

+L2
c

(
ξ1 +

L2
l

L2
c

)(
Aρ

∂4w(x,t)
∂x2∂t2 − Iρ

∂6w(x,t)
∂x4∂t2

+
(

NT + NH − N̂
) ∂4w(x,t)

∂x4

)
=
(

Aρ
∂2w(x,t)

∂t2 − Iρ
∂4w(x,t)
∂x2 ∂t2 +

(
NT + NH − N̂

) ∂2w(x,t)
∂x2

)
(58)

Finally, manipulating Equations (57) and (58) we obtain the following equation, which
describes the nonlinear transverse free oscillations

−IE
∂4w(x,t)

∂x4 + IEL2
c

∂6w(x,t)
∂x6

+L2
c

(
ξ1 +

L2
l

L2
c

)(
Aρ

∂4w(x,t)
∂x2∂t2 − Iρ

∂6w(x,t)
∂x4∂t2

+

(
NT + NH −

(
AE
L

L∫
0

(
1
2

(
∂w(x,t)

∂x

)2
− L2

c
∂3w(x,t)

∂x3

)
dz

))
∂4w(x,t)

∂x4

)
=
(

Aρ
∂2w(x,t)

∂t2 − Iρ
∂4w(x,t)
∂x2 ∂t2

+

(
NT + NH −

(
AE
L

L∫
0

(
1
2

(
∂w(x,t)

∂x

)2
− L2

c
∂3w(x,t)

∂x3

)
dz

))
∂2w(x,t)

∂x2

)
(59)

The solution procedure of the previous equations is reported in Appendix A.

5. Results and Discussion

A hygro-thermal linear free vibration analysis of a simply-supported Bernoulli–Euler
multilayered polymer FG-CNTRC nano-beam, based on local/nonlocal stress gradient
theory of elasticity, is considered as a case study in this section.
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The nano-beam has a length “L = 10 nm” and a rectangular cross-section (Σ) with
thickness “h = 0.1 L” and width “b = 0.1 L”, whose material properties are listed in Table 1.

Firstly, we present the combined effects of the uniform temperature rise, ∆T, and
the total volume fraction of CNTs, V∗CNTs, on the dimensionless bending stiffness, IE,
considering both a uniform distribution (UD CNTRC) and two non-uniform functionally
graded distributions (FG-O CNTRC and FG-X CNTRC) along the thickness of the nano-
beam (Figure 2). Then, we show the main results of the linear free vibration analysis
in terms of the normalized fundamental flexural frequency ratio between the nonlocal
fundamental frequency, ω̃, and the dimensionless local natural frequency, ω̃loc, of a nano-
beam made of a pure polymeric matrix.

5.1. Influence of Hygro-Thermal Loadings and Total Volume Fraction of CNTs on the
Dimensionless Bending Stiffness

In this subsection, the effects of ∆T and V∗CNTs on the dimensionless bending stiffness,
IE = IE

IEm
, defined as the ratio between the bending stiffnesses of the FG-CNTRC nano-beam,

IE, and of a pure polymeric matrix nano-beam, IEm , respectively, are presented.
In particular, Figure 3 plots the curves of the above mentioned dimensionless bending

stiffness, IE, versus the uniform temperature rise, ∆T, varying the temperature increase in
the range [0, 50 (K)], the total volume fraction of CNTs in the set {12%, 17%} and considering
the two non-uniform functionally graded distributions, FG-O CNTRC, FG-X CNTRC and
the uniform distribution UD CNTRC, defined above (Figure 2).
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Firstly, from Figure 3, it can be observed that, within the range of temperature in-
crements here considered, the dimensionless bending stiffness decreases as ∆T increases.
Moreover, a significant increment of the mechanical properties of the nano-beam, in terms
of IE, is obtained as the percentage of the volume fraction of CNTs increases. Finally, it
is found that the curves corresponding to the non-uniform functionally graded distribu-
tion type “X” (FG-X CNTRC) always present higher values of the dimensionless bending
stiffness than those related to the case of the non-uniform functionally graded distribution
type “O” (FG-O CNTRC), while the uniform distribution has an intermediate behavior
(UD CNTRC).
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5.2. Normalized Fundamental Frequency

In this subsection, the influence of hygro-thermal environment on the normalized funda-
mental flexural frequency of nano-beams are presented by varying both the nonlocal parameter,
λc, in the range [0.0+, 0.10] and the gradient length parameter, λl, in the set {0.0, 0.05, 0.10}
and assuming three different values of the mixture parameter: ξ1 = {0.0, 0.5, 1.0}.

In particular, the effects of the above mentioned parameters on the behavior of a
nano-beam made of pure polymeric matrix are presented in Table 3 in the case of hygro-
thermal loads equal to zero, and in Table 4 in the case of uniform temperature rise and
moisture concentration. Moreover, the coupled effects of the parameters λc, λl and ξ1, on
the normalized fundamental flexural frequency of simply supported CNTRC nano-beam
are summarized in the following tables:

• Tables 5–7, assuming ∆T = 0 (K), ∆H = 0 wt % H2O, V∗CNTs = 12%, varying ξ1 in the
set (0.0, 0.5, 1.0), respectively;

• Tables 8–10, assuming ∆T = 50 (K), ∆H = 1 wt % H2O, V∗CNTs = 12%, varying ξ1 in
the set (0.0, 0.5, 1.0), respectively;

• Tables 11–13, assuming ∆T = 0 (K), ∆H = 0 wt % H2O, V∗CNTs = 17%, varying ξ1 in
the set (0.0, 0.5, 1.0), respectively;

• Tables 14–16, assuming ∆T = 50 (K), ∆H = 1 wt % H2O, V∗CNTs = 17%, varying ξ1 in
the set (0.0, 0.5, 1.0), respectively.

Table 3. Normalized fundamental flexural frequency of simply supported nano-beam of pure polymeric matrix for
T = C = 0.

Pure Polymeric Matrix—∆T = 0 (K), ∆H = 0 wt % H2O

λc
ξ1 = 0.0 ξ1 = 0.5 ξ1 = 1.0

λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1

0.0+ 1.00000 0.98789 0.95403 1.00000 0.98789 0.95403 1.00000 0.98789 0.95403
0.01 1.00048 0.98860 0.95535 1.00024 0.98837 0.95514 1.00000 0.98814 0.95493
0.02 1.00189 0.99023 0.95756 1.00095 0.98932 0.95673 1.00000 0.98841 0.95590
0.03 1.00417 0.99272 0.96059 1.00208 0.99070 0.95876 1.00000 0.98869 0.95694
0.04 1.00724 0.99600 0.96440 1.00360 0.99248 0.96120 1.00000 0.98900 0.95804
0.05 1.01104 1.00000 0.96891 1.00548 0.99461 0.96401 1.00000 0.98931 0.95918
0.06 1.01552 1.00467 0.97408 1.00767 0.99706 0.96714 1.00000 0.98963 0.96035
0.07 1.02060 1.00993 0.97983 1.01014 0.99980 0.97056 1.00000 0.98996 0.96155
0.08 1.02623 1.01574 0.98610 1.01286 1.00277 0.97422 1.00000 0.99029 0.96275
0.09 1.03234 1.02203 0.99284 1.01579 1.00595 0.97808 1.00000 0.99061 0.96396
0.10 1.03889 1.02874 1.00000 1.01889 1.00931 0.98212 1.00000 0.99094 0.96516

Table 4. Normalized fundamental flexural frequency of simply supported nano-beam of pure polymeric matrix for
∆T = 50 (K) and ∆H = 1 wt % H2O.

Pure Polymeric Matrix—∆T = 50 (K), ∆H = 1 wt % H2O

λc
ξ1 = 0.0 ξ1 = 0.5 ξ1 = 1.0

λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1

0.0+ 0.81799 0.80399 0.76445 0.81799 0.80399 0.76445 0.81799 0.80399 0.76445
0.01 0.81855 0.80482 0.76600 0.81827 0.80455 0.76575 0.81799 0.80428 0.76550
0.02 0.82017 0.80671 0.76859 0.81908 0.80565 0.76762 0.81799 0.80459 0.76665
0.03 0.82279 0.80958 0.77215 0.82038 0.80725 0.77000 0.81799 0.80492 0.76787
0.04 0.82632 0.81337 0.77662 0.82214 0.80930 0.77287 0.81799 0.80527 0.76915
0.05 0.83069 0.81799 0.78190 0.82430 0.81177 0.77616 0.81799 0.80563 0.77049
0.06 0.83582 0.82336 0.78793 0.82682 0.81460 0.77982 0.81799 0.80601 0.77186
0.07 0.84164 0.82942 0.79462 0.82966 0.81775 0.78382 0.81799 0.80638 0.77326
0.08 0.84806 0.83608 0.80191 0.83278 0.82118 0.78809 0.81799 0.80676 0.77468
0.09 0.85503 0.84327 0.80972 0.83613 0.82485 0.79260 0.81799 0.80715 0.77610
0.10 0.86246 0.85093 0.81799 0.83968 0.82870 0.79729 0.81799 0.80752 0.77751
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Table 5. Normalized fundamental flexural frequency of simply supported CNTRC nano-beam for ξ1 = 0.0 and V∗CNTs = 12%.

V∗CNTs= 12%, ∆T = 0 (K), ∆H = 0 wt % H2O, ξ1 = 0.0

λc
UD CNTRC FG-O CNTRC FG-X CNTRC

λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1

0.0+ 5.69737 5.62835 5.43545 5.64118 5.57284 5.38184 5.75297 5.68329 5.48850
0.01 5.70012 5.63243 5.44297 5.64390 5.57688 5.38928 5.75576 5.68740 5.49609
0.02 5.70815 5.64173 5.45554 5.65186 5.58608 5.40174 5.76387 5.69679 5.50879
0.03 5.72111 5.65589 5.47285 5.66468 5.60010 5.41887 5.77694 5.71109 5.52626
0.04 5.73861 5.67456 5.49454 5.68201 5.61859 5.44034 5.79462 5.72994 5.54816
0.05 5.76030 5.69737 5.52026 5.70348 5.64118 5.46582 5.81652 5.75297 5.57414
0.06 5.78580 5.72396 5.54968 5.72873 5.66750 5.49494 5.84227 5.77982 5.60384
0.07 5.81475 5.75397 5.58243 5.75740 5.69722 5.52737 5.87150 5.81013 5.63691
0.08 5.84681 5.78705 5.61817 5.78914 5.72997 5.56276 5.90388 5.84353 5.67301
0.09 5.88164 5.82288 5.65659 5.82363 5.76545 5.60080 5.93905 5.87971 5.71180
0.10 5.91893 5.86113 5.69737 5.86055 5.80333 5.64118 5.97670 5.91834 5.75297

Table 6. Normalized fundamental flexural frequency of simply supported CNTRC nano-beam for ξ1 = 0.5 and V∗CNTs = 12%.

V∗CNTs = 12%, ∆T = 0 (K), ∆H = 0 wt % H2O, ξ1 = 0.5

λc
UD CNTRC FG-O CNTRC FG-X CNTRC

λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1

0.0+ 5.69737 5.62835 5.43545 5.64118 5.57284 5.38184 5.75297 5.68329 5.48850
0.01 5.69875 5.63110 5.44177 5.64254 5.57556 5.38810 5.75437 5.68606 5.49488
0.02 5.70275 5.63651 5.45083 5.64651 5.58092 5.39707 5.75841 5.69152 5.50403
0.03 5.70920 5.64438 5.46242 5.65289 5.58871 5.40855 5.76492 5.69947 5.51574
0.04 5.71788 5.65451 5.47633 5.66148 5.59874 5.42232 5.77368 5.70970 5.52978
0.05 5.72857 5.66667 5.49232 5.67207 5.61078 5.43815 5.78448 5.72197 5.54593
0.06 5.74107 5.68064 5.51016 5.68445 5.62461 5.45582 5.79711 5.73608 5.56394
0.07 5.75516 5.69621 5.52962 5.69840 5.64003 5.47508 5.81134 5.75180 5.58359
0.08 5.77064 5.71316 5.55047 5.71373 5.65681 5.49573 5.82696 5.76892 5.60465
0.09 5.78731 5.73130 5.57250 5.73023 5.67477 5.51754 5.84380 5.78723 5.62689
0.10 5.80499 5.75043 5.59550 5.74774 5.69371 5.54031 5.86165 5.80655 5.65011

Table 7. Normalized fundamental flexural frequency of simply supported CNTRC nano-beam for ξ1 = 1.0 and V∗CNTs = 12%.

V∗CNTs = 12%, ∆T = 0 (K), ∆H = 0 wt % H2O, ξ1 = 1.0

λc
UD CNTRC FG-O CNTRC FG-X CNTRC

λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1

0.0+ 5.69737 5.62835 5.43545 5.64118 5.57284 5.38184 5.75297 5.68329 5.48850
0.01 5.69737 5.62977 5.44057 5.64118 5.57425 5.38691 5.75297 5.68472 5.49367
0.02 5.69737 5.63131 5.44612 5.64118 5.57577 5.39241 5.75297 5.68627 5.49928
0.03 5.69737 5.63295 5.45206 5.64118 5.57739 5.39828 5.75297 5.68793 5.50527
0.04 5.69737 5.63467 5.45830 5.64118 5.57910 5.40447 5.75297 5.68967 5.51157
0.05 5.69737 5.63646 5.46480 5.64118 5.58086 5.41090 5.75297 5.69147 5.51813
0.06 5.69737 5.63829 5.47148 5.64118 5.58268 5.41751 5.75297 5.69332 5.52488
0.07 5.69737 5.64015 5.47829 5.64118 5.58452 5.42425 5.75297 5.69520 5.53175
0.08 5.69737 5.64202 5.48516 5.64118 5.58637 5.43106 5.75297 5.69709 5.53869
0.09 5.69737 5.64389 5.49205 5.64118 5.58823 5.43788 5.75297 5.69898 5.54565
0.10 5.69737 5.64575 5.49890 5.64118 5.59006 5.44466 5.75297 5.70085 5.55257
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Table 8. Normalized fundamental flexural frequency of simply supported CNTRC nano-beam for ξ1 = 0.0 and V∗CNTs = 17%.

V∗CNTs = 17%, ∆T = 0 (K), ∆H = 0 wt % H2O, ξ1 = 0.0

λc
UD CNTRC FG-O CNTRC FG-X CNTRC

λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1

0.0+ 6.87691 6.79360 6.56076 6.78835 6.70612 6.47628 6.96509 6.88072 6.64489
0.01 6.88023 6.79853 6.56984 6.79163 6.71098 6.48524 6.96846 6.88571 6.65409
0.02 6.88993 6.80975 6.58502 6.80120 6.72206 6.50022 6.97828 6.89707 6.66946
0.03 6.90556 6.82684 6.60590 6.81663 6.73893 6.52084 6.99411 6.91438 6.69061
0.04 6.92668 6.84937 6.63208 6.83749 6.76117 6.54668 7.01551 6.93721 6.71713
0.05 6.95286 6.87691 6.66314 6.86333 6.78835 6.57733 7.04202 6.96509 6.74858
0.06 6.98364 6.90900 6.69864 6.89371 6.82003 6.61238 7.07320 6.99760 6.78454
0.07 7.01859 6.94522 6.73817 6.92821 6.85579 6.65140 7.10860 7.03429 6.82457
0.08 7.05729 6.98516 6.78131 6.96641 6.89521 6.69399 7.14779 7.07473 6.86827
0.09 7.09933 7.02840 6.82768 7.00791 6.93789 6.73976 7.19037 7.11853 6.91524
0.10 7.14434 7.07458 6.87691 7.05234 6.98348 6.78835 7.23596 7.16530 6.96509

Table 9. Normalized fundamental flexural frequency of simply supported CNTRC nano-beam for ξ1 = 0.5 and V∗CNTs = 17%.

V∗CNTs = 17%, ∆T = 0 (K), ∆H = 0 wt % H2O, ξ1 = 0.5

λc
UD CNTRC FG-O CNTRC FG-X CNTRC

λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1

0.0+ 6.87691 6.79360 6.56076 6.78835 6.70612 6.47628 6.96509 6.88072 6.64489
0.01 6.87857 6.79692 6.56839 6.78999 6.70940 6.48381 6.96678 6.88408 6.65262
0.02 6.88341 6.80345 6.57932 6.79477 6.71584 6.49460 6.97168 6.89070 6.66369
0.03 6.89119 6.81295 6.59332 6.80245 6.72522 6.50842 6.97956 6.90032 6.67787
0.04 6.90166 6.82517 6.61010 6.81279 6.73729 6.52499 6.99016 6.91270 6.69487
0.05 6.91457 6.83985 6.62941 6.82553 6.75177 6.54404 7.00324 6.92756 6.71442
0.06 6.92966 6.85671 6.65094 6.84043 6.76842 6.56530 7.01852 6.94464 6.73623
0.07 6.94667 6.87550 6.67443 6.85722 6.78697 6.58848 7.03575 6.96367 6.76002
0.08 6.96535 6.89597 6.69960 6.87566 6.80717 6.61333 7.05467 6.98440 6.78551
0.09 6.98547 6.91786 6.72619 6.89552 6.82877 6.63957 7.07505 7.00657 6.81244
0.10 7.00681 6.94095 6.75395 6.91658 6.85157 6.66698 7.09666 7.02996 6.84056

Table 10. Normalized fundamental flexural frequency of simply supported CNTRC nano-beam for ξ1 = 1.0 and V∗CNTs = 17%.

V∗CNTs = 17%, ∆T = 0 (K), ∆H = 0 wt % H2O, ξ1 = 1.0

λc
UD CNTRC FG-O CNTRC FG-X CNTRC

λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1

0.0+ 6.87691 6.79360 6.56076 6.78835 6.70612 6.47628 6.96509 6.88072 6.64489
0.01 6.87691 6.79532 6.56694 6.78835 6.70781 6.48238 6.96509 6.88246 6.65115
0.02 6.87691 6.79717 6.57365 6.78835 6.70965 6.48900 6.96509 6.88434 6.65794
0.03 6.87691 6.79915 6.58081 6.78835 6.71160 6.49606 6.96509 6.88634 6.66519
0.04 6.87691 6.80123 6.58834 6.78835 6.71365 6.50351 6.96509 6.88844 6.67283
0.05 6.87691 6.80338 6.59618 6.78835 6.71578 6.51124 6.96509 6.89063 6.68077
0.06 6.87691 6.80559 6.60425 6.78835 6.71796 6.51921 6.96509 6.89287 6.68894
0.07 6.87691 6.80784 6.61247 6.78835 6.72017 6.52732 6.96509 6.89514 6.69726
0.08 6.87691 6.81010 6.62076 6.78835 6.72241 6.53551 6.96509 6.89743 6.70566
0.09 6.87691 6.81236 6.62908 6.78835 6.72463 6.54371 6.96509 6.89972 6.71408
0.10 6.87691 6.81460 6.63735 6.78835 6.72685 6.55188 6.96509 6.90199 6.72246
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Table 11. Normalized fundamental flexural frequency of simply supported CNTRC nano-beam for ξ1 = 0.0. V∗CNTs = 12%.

V∗CNTs = 12%, ∆T = 50 (K), ∆H = 1 wt % H2O, ξ1 = 0.0

λc
UD CNTRC FG-O CNTRC FG-X CNTRC

λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1

0.0+ 4.83132 4.75222 4.52921 4.81299 4.73515 4.51579 4.91626 4.83701 4.61369
0.01 4.83447 4.75690 4.53792 4.81623 4.73990 4.52450 4.91942 4.84170 4.62242
0.02 4.84366 4.76757 4.55252 4.82527 4.75040 4.53886 4.92862 4.85239 4.63703
0.03 4.85845 4.78382 4.57261 4.83983 4.76639 4.55861 4.94344 4.86867 4.65714
0.04 4.87843 4.80522 4.59776 4.85949 4.78744 4.58335 4.96346 4.89010 4.68233
0.05 4.90315 4.83132 4.62756 4.88383 4.81313 4.61266 4.98824 4.91626 4.71216
0.06 4.93218 4.86171 4.66157 4.91240 4.84304 4.64611 5.01733 4.94671 4.74622
0.07 4.96508 4.89594 4.69936 4.94479 4.87673 4.68328 5.05031 4.98101 4.78406
0.08 5.00144 4.93360 4.74051 4.98058 4.91380 4.72377 5.08676 5.01876 4.82528
0.09 5.04086 4.97430 4.78462 5.01940 4.95386 4.76717 5.12629 5.05955 4.86947
0.10 5.08298 5.01765 4.83132 5.06087 4.99655 4.81313 5.16852 5.10302 4.91626

Table 12. Normalized fundamental flexural frequency of simply supported CNTRC nano-beam for ξ1 = 0.5. V∗CNTs = 12%.

V∗CNTs = 12%, ∆T = 50 (K), ∆H = 1 wt % H2O, ξ1 = 0.5

λc
UD CNTRC FG-O CNTRC FG-X CNTRC

λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1

0.0+ 4.83132 4.75222 4.52921 4.81299 4.73515 4.51579 4.91626 4.83701 4.61369
0.01 4.83290 4.75538 4.53653 4.81468 4.73840 4.52313 4.91784 4.84017 4.62102
0.02 4.83748 4.76159 4.54704 4.81919 4.74451 4.53346 4.92243 4.84639 4.63154
0.03 4.84485 4.77062 4.56049 4.82645 4.75340 4.54670 4.92981 4.85544 4.64501
0.04 4.85477 4.78224 4.57663 4.83620 4.76483 4.56257 4.93975 4.86708 4.66117
0.05 4.86698 4.79618 4.59518 4.84822 4.77854 4.58081 4.95199 4.88104 4.67974
0.06 4.88124 4.81218 4.61586 4.86226 4.79429 4.60115 4.96628 4.89708 4.70044
0.07 4.89730 4.83000 4.63838 4.87807 4.81183 4.62330 4.98238 4.91493 4.72299
0.08 4.91493 4.84938 4.66248 4.89542 4.83090 4.64701 5.00005 4.93435 4.74713
0.09 4.93390 4.87008 4.68791 4.91409 4.85128 4.67202 5.01906 4.95510 4.77260
0.10 4.95399 4.89190 4.71442 4.93387 4.87276 4.69810 5.03920 4.97697 4.79915

Table 13. Normalized fundamental flexural frequency of simply supported CNTRC nano-beam for ξ1 = 1.0. V∗CNTs = 12%.

V∗CNTs = 12%, ∆T = 50 (K), ∆H = 1 wt % H2O, ξ1 = 1.0

λc
UD CNTRC FG-O CNTRC FG-X CNTRC

λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1

0.0+ 4.83132 4.75222 4.52921 4.81299 4.73515 4.51579 4.91626 4.83701 4.61369
0.01 4.83132 4.75385 4.53513 4.81313 4.73690 4.52176 4.91626 4.83864 4.61962
0.02 4.83132 4.75562 4.54156 4.81313 4.73863 4.52808 4.91626 4.84041 4.62606
0.03 4.83132 4.75750 4.54844 4.81313 4.74048 4.53485 4.91626 4.84229 4.63295
0.04 4.83132 4.75947 4.55568 4.81313 4.74243 4.54197 4.91626 4.84427 4.64020
0.05 4.83132 4.76152 4.56322 4.81313 4.74444 4.54938 4.91626 4.84632 4.64774
0.06 4.83132 4.76362 4.57097 4.81313 4.74651 4.55701 4.91626 4.84843 4.65551
0.07 4.83132 4.76576 4.57887 4.81313 4.74861 4.56477 4.91626 4.85057 4.66342
0.08 4.83132 4.76791 4.58685 4.81313 4.75073 4.57262 4.91626 4.85272 4.67140
0.09 4.83132 4.77005 4.59484 4.81313 4.75284 4.58048 4.91626 4.85487 4.67940
0.10 4.83132 4.77218 4.60279 4.81313 4.75494 4.58829 4.91626 4.85701 4.68736
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Table 14. Normalized fundamental flexural frequency of simply supported CNTRC nano-beam for ξ1 = 0.0. V∗CNTs = 17%.

V∗CNTs = 17%, ∆T = 50 (K), ∆H = 1 wt % H2O, ξ1 = 0.0

λc
UD CNTRC FG-O CNTRC FG-X CNTRC

λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1

0.0+ 5.88447 5.78984 5.52320 5.86092 5.76836 5.50769 6.02236 5.92752 5.66049
0.01 5.88824 5.79544 5.53362 5.86461 5.77383 5.51787 6.02614 5.93313 5.67092
0.02 5.89923 5.80820 5.55107 5.87536 5.78632 5.53492 6.03715 5.94592 5.68839
0.03 5.91693 5.82764 5.57507 5.89268 5.80533 5.55839 6.05489 5.96540 5.71242
0.04 5.94084 5.85323 5.60515 5.91607 5.83036 5.58778 6.07886 5.99105 5.74253
0.05 5.97042 5.88447 5.64077 5.94502 5.86092 5.62260 6.10852 6.02236 5.77820
0.06 6.00516 5.92083 5.68143 5.97902 5.89649 5.66235 6.14336 6.05880 5.81892
0.07 6.04455 5.96179 5.72661 6.01757 5.93658 5.70653 6.18285 6.09987 5.86418
0.08 6.08808 6.00687 5.77583 6.06018 5.98069 5.75465 6.22651 6.14507 5.91348
0.09 6.13528 6.05558 5.82860 6.10639 6.02837 5.80626 6.27386 6.19392 5.96636
0.10 6.18571 6.10749 5.88447 6.15577 6.07919 5.86092 6.32446 6.24599 6.02236

Table 15. Normalized fundamental flexural frequency of simply supported CNTRC nano-beam for ξ1 = 0.5. V∗CNTs = 17%.

V∗CNTs = 17%, ∆T = 50 (K), ∆H = 1 wt % H2O, ξ1 = 0.5

λc
UD CNTRC FG-O CNTRC FG-X CNTRC

λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1

0.0+ 5.88447 5.78984 5.52320 5.86092 5.76836 5.50769 6.02236 5.92752 5.66049
0.01 5.88636 5.79361 5.53195 5.86277 5.77205 5.51624 6.02425 5.93130 5.66925
0.02 5.89184 5.80104 5.54451 5.86813 5.77931 5.52852 6.02974 5.93875 5.68183
0.03 5.90066 5.81185 5.56060 5.87676 5.78988 5.54424 6.03858 5.94958 5.69793
0.04 5.91252 5.82575 5.57989 5.88836 5.80347 5.56309 6.05047 5.96350 5.71724
0.05 5.92713 5.84242 5.60206 5.90266 5.81979 5.58476 6.06512 5.98021 5.73944
0.06 5.94420 5.86157 5.62677 5.91936 5.83852 5.60892 6.08223 5.99940 5.76419
0.07 5.96343 5.88288 5.65370 5.93818 5.85937 5.63524 6.10151 6.02076 5.79115
0.08 5.98452 5.90607 5.68252 5.95882 5.88205 5.66342 6.12266 6.04401 5.82002
0.09 6.00722 5.93085 5.71293 5.98104 5.90630 5.69314 6.14542 6.06885 5.85047
0.10 6.03127 5.95696 5.74463 6.00458 5.93185 5.72414 6.16954 6.09503 5.88223

Table 16. Normalized fundamental flexural frequency of simply supported CNTRC nano-beam for ξ1 = 1.0. V∗CNTs = 17%.

V∗CNTs = 17%, ∆T = 50 (K), ∆H = 1 wt % H2O, ξ1 = 1.0

λc
UD CNTRC FG-O CNTRC FG-X CNTRC

λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1 λl = 0.0 λl = 0.05 λl = 0.1

0.0+ 5.88447 5.78984 5.52320 5.86092 5.76836 5.50769 6.02236 5.92752 5.66049
0.01 5.88447 5.79179 5.53028 5.86092 5.77026 5.51461 6.02236 5.92947 5.66758
0.02 5.88447 5.79390 5.53797 5.86092 5.77233 5.52213 6.02236 5.93159 5.67528
0.03 5.88447 5.79615 5.54619 5.86092 5.77453 5.53016 6.02236 5.93384 5.68351
0.04 5.88447 5.79851 5.55485 5.86092 5.77684 5.53862 6.02236 5.93621 5.69218
0.05 5.88447 5.80096 5.56386 5.86092 5.77923 5.54742 6.02236 5.93867 5.70120
0.06 5.88447 5.80348 5.57313 5.86092 5.78169 5.55648 6.02236 5.94119 5.71047
0.07 5.88447 5.80603 5.58257 5.86092 5.78419 5.56571 6.02236 5.94374 5.71993
0.08 5.88447 5.80860 5.59210 5.86092 5.78671 5.57503 6.02236 5.94632 5.72947
0.09 5.88447 5.81117 5.60165 5.86092 5.78922 5.58436 6.02236 5.94890 5.73903
0.10 5.88447 5.81372 5.61115 5.86092 5.79171 5.59365 6.02236 5.95145 5.74855

From the numerical evidence of Tables 3–16, it is interesting to note how the values of
the normalized fundamental flexural frequency increased as λc increased and decreased
as the λl and ξ1 increased. Furthermore, as the temperature and the moisture concen-
tration increased, the normalized fundamental flexural frequency decreased. Moreover, a
hardening response was also observed when increasing the volume fraction of CNTs.
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Finally, the numerical results demonstrated that the normalized fundamental flex-
ural frequency of the FG-X CNTRC nano-beams always had greater values than those
corresponding to the other distribution schemes here considered.

6. Conclusions

This paper considered the linear dynamic response of multilayered polymer FG carbon
nanotube-reinforced Bernoulli–Euler nano-beams subjected to hygro-thermal loadings.
The governing equations were derived by employing Hamilton’s principle on the basis of
the local/nonlocal stress gradient theory of elasticity (L/NStressG). A Wolfram language
code in Mathematica was written to carry out a parametric investigation, to check for
the influence of some significant parameters on the dynamic response of a multilayered
polymer FG-CNTRC simply-supported nano-beam, namely the nonlocal parameter, the
gradient length parameter, the mixture parameter, the hygro-thermal loadings and the total
volume fraction of CNTs for different functionally graded distribution schemes.

In view of the numerical results obtained in this paper, the main outcomes may be
summarized as follows:

- A stiffening response was obtained by NStressG model when increasing the nonlocal
parameter and a softening behavior was exhibited when increasing the gradient length
parameter and the mixture parameter;

- Upon increasing the hygro-thermal loads it led to a decrease of the flexural frequency
of the nano-beams related to a decrease in the bending stiffness due to an abatement
of the thermoelastic properties of multilayered polymer FG-CNTRC nano-beams;

- By increasing the total volume fraction of CNTs, the flexural frequency of the nano-
beams increased, caused by an increase in the bending stiffness; moreover, the dy-
namic response also depends on the functionally graded distribution schemes of CNTs.

Finally, the proposed approach was able to capture the linear dynamic response
of a multilayered polymer FG-CNTRC Bernoulli–Euler nano-beam subjected to severe
environmental conditions.
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Appendix A. Solution Procedure

By introducing the following dimensionless quantities

x
L
= x̃

w(x, t)
L

= w̃(x̃, t)

Lc

L
= λc

Ll
L

= λl

NT

IE
L2 = ÑT

NH

IE
L2 = ÑH
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AρL4

IE
= Ãρ

1
L2

Iρ

Ãρ

= g̃2

L2 AE
IE

= r̃2

ω2 Ãρ = ω̃2 (A1)

the dimensionless governing equations of the nonlinear transverse free vibrations associ-
ated with NStressG constitutive formulation Equation (59) can be obtained as follows
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equipped with the following dimensionless standard boundary conditions and constitutive
boundary conditions

w̃(x̃, t) = w̃∗ or ∂M̃NStressG(x̃,t)
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In addition, the bending moment in dimensionless form can be rewritten as
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ÑT + ÑH −
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The linear transverse free vibrations associated with NStressG constitutive formulation
are obtained by assuming r̃2 = 0 in Equation (A2)

- Dimensionless linear free vibration equation
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- Dimensionless standard boundary conditions

w̃(x̃, t) = w̃∗ or
∂M̃NStressG(x̃, t)

∂x̃
−
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= Ṽ (A9)
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- Dimensionless constitutive boundary conditions
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∂2w̃(0, t)
∂x̃2 = − ξ1

λc
M̃NStressG(0, t) +

(
ξ1 +

λ2
l

λ2
c

)
∂M̃NStressG(0, t)

∂x̃
(A11)

−∂3w̃(1, t)
∂x̃3 − 1

λc

∂2w̃(1, t)
∂x̃2 =

ξ1

λc
M̃NStressG(1, t)+

(
ξ1 +

λ2
l

λ2
c

)
∂M̃NStressG(1, t)

∂x̃
(A12)

In addition, the bending moment in dimensionless form can be rewritten as

M̃NStressG(x̃, t) = − ∂2w̃(x̃,t)
∂x̃2 + λ2

c
∂4w̃(x̃,t)

∂x̃4 + Ãρ

(
λ2

c ξ1 + λ2
l
)( ∂2w̃(x̃,t)

∂t2 − g̃2 ∂4w̃(x̃,t)
∂x̃2∂t2

)
+
(
λ2

c ξ1 + λ2
l
)((

ÑT + ÑH
)

∂2w̃(x̃,t)
∂x̃2

)
(A13)

The natural frequencies and mode shapes of flexural vibrations are here evaluated by
employing the classical separation of spatial and time variables

w̃(x̃, t) = W̃(x̃)eiωt (A14)

where ω denotes the natural frequency of flexural vibrations.
By substituting Equation (A14) into Equations (A8)–(A13), the following dimension-

less governing equations of the linear transverse free vibrations based on NStressG can be
rewritten in terms of the non-dimensional spatial shape W̃(x̃) as

- Dimensionless free vibration equation in terms of spatial shape

λ2
c

∂6W̃(x̃)
∂x̃6 + ∂4W̃(x̃)

∂x̃4

(
ω̃2 (λ2

c ξ1 + λ2
l
)

g̃2 +
(
λ2

c ξ1 + λ2
l
)(

ÑT + ÑH
)
− 1
)

− ∂2W̃(x̃)
x̃2

(
ω̃2(λ2

c ξ1 + λ2
l
)
+ g̃2ω̃2 +

(
ÑT + ÑH

))
+ ω̃2W̃(x̃) = 0

(A15)

- Dimensionless standard boundary conditions in terms of spatial shape

W̃(x̃) = W̃∗ or
∂M̃NStressG(x̃)

∂x̃
−
(

ÑT + ÑH
)∂W̃(x̃)

∂x̃
= Ṽ (A16)

−∂W̃(x̃)
∂x̃

=
∂W̃∗

∂x̃
or M̃NStressG(x̃) = M̃ (A17)

- Dimensionless constitutive boundary conditions in terms of spatial shape

− ∂3W̃(0)
∂x̃3 +

1
λc

∂2W̃(0)
∂x̃2 = − ξ1

λc
M̃NStressG(0) +

(
ξ1 +

λ2
l

λ2
c

)
∂M̃NStressG(0)

∂x̃
(A18)

− ∂3W̃(1)
∂x̃3 − 1

λc

∂2W̃(1)
∂x̃2 =

ξ1

λc
M̃NStressG(1) +

(
ξ1 +

λ2
l

λ2
c

)
∂M̃NStressG(1)

∂x̃
(A19)

- Dimensionless bending moment in terms of spatial shape
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M̃NStressG(x̃) = λ2
c

∂4W̃(x̃)
∂x̃4

+ ∂2W̃(x̃)
∂x̃2

(
ω̃2(λ2

c ξ1 + λ2
l
)

g̃2 +
(
λ2

c ξ1 + λ2
l
)(

ÑT + ÑH
)
− 1
)

−ω̃2(λ2
c ξ1 + λ2

l
)
W̃(x̃)

(A20)

The analytical solution of Equation (A15) can be expressed in the following form

W̃(x̃) =
6

∑
k=1

qkex̃βk (A21)

wherein βk are the roots of the characteristic equation and qk are six unknown constants
to be determined by imposing suitable boundary conditions.

Note that, the six unknown constants can be obtained by satisfying boundary con-
ditions Equations (A16)–(A19). Lastly, the linear fundamental natural frequencies of an
FG nano-beam consists of solving the eigenvalue problem expressed in terms of a six
dimensional array, q = {q1, . . . , q6}. It can be noted that the corresponding characteristic
equation is strongly nonlinear and is numerically solved by using a Wolfram language
code written by the authors in Mathematica.
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