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Abstract: A few kinds of thermoresponsive diblock copolymers have been synthesized and utilized
for palladium-catalyzed coupling reactions in water. Poly(N-isopropylacrylamide) (PNIPAAm)
and poly(N,N-diethylacrylamide) (PDEAAm) are employed for thermoresponsive segments and
poly(sodium 4-styrenesulfonate) (PSSNa) and poly(sodium 2-acrylamido-methylpropanesulfonate)
(PAMPSNa) are employed for hydrophilic segments. Palladium-catalyzed Mizoroki–Heck reactions
are performed in water and the efficiency of the extraction process is studied. More efficient extraction
was observed for the PDEAAm copolymers when compared with the PNIPAAm copolymers and
conventional surfactants. In the study of the Sonogashira coupling reactions in water, aggregative
precipitation of the products was observed. Washing the precipitate with water gave the product
with satisfactory purity with a good yield.

Keywords: thermoresponsive polymer micelle; Mizoroki–Heck reaction; Sonogashira coupling;
organic reactions in water

1. Introduction

The development of environmentally benign processes that enable organic syntheses
to achieve the United Nations Sustainable Development Goals (SDGs) is an urgent subject.
Transition metal-catalyzed chemical transformations are broadly utilized for producing fine
chemicals; however, most catalytic reactions require organic solvents, which consequently
results in an increase in the E-factor [1]. Conducting catalytic reactions in water is attractive
to chemists who want to develop environmentally benign processes. In fact, many examples
of palladium-catalyzed reactions conducted in water (or “on water”) have been reported
over the past few decades [2–13]. The addition of surfactants to aqueous reaction mixtures
causes the formation of oil/water (o/w) emulsions such that the organic reactions proceed
in the micelle core. It is known that some chemical reactions can be accelerated in micellular
systems [14–17]; however, organic reactions in o/w emulsions often require extraction
processes using organic solvents to separate the products. Reducing the amount of the
extraction solvent is an important subject for decreasing the E-factor of a process. Extraction
processes might be more efficient if micelle formation can be “turned off” upon completion
of the reaction. We envision that a thermoresponsive polymer micelle could be utilized for
this purpose (Figure 1).
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Figure 1. Thermoresponsive micelle formed by diblock copolymers. 

Poly(N-isopropylacrylamide) (PNIPAAm), which shows a lower critical solution 
temperature (LCST) at 32 °C in water, is known to be a thermoresponsive polymer and its 
applications in fields such as drug delivery systems and smart therapeutic materials have 
been studied extensively [18–25]. Thermoresponsive micelles that consist of PNIPAAm 
blocks have been vastly investigated, as has their utilization for therapeutic purposes [26–
30]. For organic synthetic methods, there have also been many reports in which 
PNIPAAm was applied for organic reactions, as well as transition metal-catalyzed reac-
tions. Many of these studies involve the use of a cross-linked PNIPAAm gel [31–43]; how-
ever, examples of thermoresponsive micelles applied for organic synthesis are still rare 
[44–51]. We previously reported the utilization of PNIPAAm block copolymers that form 
thermoresponsive micelles in water for organic synthesis. These micelles form at a tem-
perature above 40 °C and dissociate at room temperature. We have tethered organocata-
lysts such as L-proline on the PNIPAAm block copolymers and demonstrated asymmetric 
cross-aldol reactions in water [44,46,47]. O’Reilly and coworkers also reported the use of 
PNIPAAm-based copolymer micelles bearing L-proline for asymmetric reactions in water 
[48]. We recently reported palladium-catalyzed Mizoroki–Heck reactions in water using 
these thermoresponsive polymer micelles [45] and showed that these reactions gave the 
products in high yields and with a good extraction efficiency. In the previous study, we 
reported that more efficient extraction was observed for aqueous solutions of the diblock 
copolymer poly(N-isopropylacrylamide)-b-poly(sodium 4-styrenesulfonate) (PNIPAAm-
b-PSSNa, NS) compared to PNIPAAm-b-PEG, although the E-factor was still no less than 
20. The extraction of more products from the aqueous reaction mixture with less organic 
solvent usage is important for elucidating an improved E-factor. Furthermore, the turno-
ver number (TON) of palladium catalysts (2 mol %) was no more than 50, and reuse of the 
aqueous catalyst solutions was not achieved. Herein, we wish to report that Mizoroki–
Heck reactions proceed in water using thermoresponsive micelles with a palladium cata-
lyst 1 bearing 2,9-diphenyl-1,10-phenanthroline as a ligand. The TON reached 7800 due 
to high catalytic activity of 1. In this study, we employ a new system of three diblock 
copolymers (NA, DS and DA), and examine the reactions with these copolymers as well 
as the extraction efficiency from the aqueous solutions (Figure 2). We also report palla-
dium-catalyzed Sonogashira coupling reactions using these copolymers in water. 

Figure 1. Thermoresponsive micelle formed by diblock copolymers.

Poly(N-isopropylacrylamide) (PNIPAAm), which shows a lower critical solution
temperature (LCST) at 32 ◦C in water, is known to be a thermoresponsive polymer and
its applications in fields such as drug delivery systems and smart therapeutic materi-
als have been studied extensively [18–25]. Thermoresponsive micelles that consist of
PNIPAAm blocks have been vastly investigated, as has their utilization for therapeutic
purposes [26–30]. For organic synthetic methods, there have also been many reports in
which PNIPAAm was applied for organic reactions, as well as transition metal-catalyzed
reactions. Many of these studies involve the use of a cross-linked PNIPAAm gel [31–43];
however, examples of thermoresponsive micelles applied for organic synthesis are still
rare [44–51]. We previously reported the utilization of PNIPAAm block copolymers that
form thermoresponsive micelles in water for organic synthesis. These micelles form at a
temperature above 40 ◦C and dissociate at room temperature. We have tethered organocat-
alysts such as L-proline on the PNIPAAm block copolymers and demonstrated asymmetric
cross-aldol reactions in water [44,46,47]. O’Reilly and coworkers also reported the use
of PNIPAAm-based copolymer micelles bearing L-proline for asymmetric reactions in
water [48]. We recently reported palladium-catalyzed Mizoroki–Heck reactions in wa-
ter using these thermoresponsive polymer micelles [45] and showed that these reactions
gave the products in high yields and with a good extraction efficiency. In the previous
study, we reported that more efficient extraction was observed for aqueous solutions of
the diblock copolymer poly(N-isopropylacrylamide)-b-poly(sodium 4-styrenesulfonate)
(PNIPAAm-b-PSSNa, NS) compared to PNIPAAm-b-PEG, although the E-factor was still
no less than 20. The extraction of more products from the aqueous reaction mixture with
less organic solvent usage is important for elucidating an improved E-factor. Furthermore,
the turnover number (TON) of palladium catalysts (2 mol %) was no more than 50, and
reuse of the aqueous catalyst solutions was not achieved. Herein, we wish to report that
Mizoroki–Heck reactions proceed in water using thermoresponsive micelles with a palla-
dium catalyst 1 bearing 2,9-diphenyl-1,10-phenanthroline as a ligand. The TON reached
7800 due to high catalytic activity of 1. In this study, we employ a new system of three
diblock copolymers (NA, DS and DA), and examine the reactions with these copolymers
as well as the extraction efficiency from the aqueous solutions (Figure 2). We also report
palladium-catalyzed Sonogashira coupling reactions using these copolymers in water.
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Figure 2. Thermoresponsive diblock copolymers (with typical m and n) and palladium complex 1. 

2. Materials and Methods 
2.1. General 

The preparation of copolymers was conducted under an argon atmosphere using 
standard Schlenk techniques unless otherwise mentioned. N-Isopropyl acrylamide 
(NIPAAm) was purchased from Kanto Chemical Co., Inc. and recrystallized from hex-
ane/toluene prior to use. 2,2′-Azobis(isobutyronitrile) (AIBN), and dimethylacetamide 
(DMA) were purchased from Kanto Chemical Co., Inc. and used without further purifica-
tion. Sodium dodecyl sulfate (SDS) and 4,4′-azobis(4-cyanovaleric acid) (V-501) were pur-
chased from FUJIFILM Wako Pure Chemical Corporation and were used as received. N,N-
Diethylacrylamide was purchased from Tokyo Chemical Industry Co., Ltd. and was dis-
tilled prior to use. Styrene was purchased from Tokyo Chemical Industry Co., Ltd., dis-
tilled, and kept under argon. Sodium 4-styrenesulfonate, 2-acrylamido-2-methylpropane-
sulfonic acid, dichlorobis(triphenylphosphine)palladium, 2,9-diphenyl-1,10-phenanthro-
line, iodobenzene, n-butyl acrylate, diisopropylethylamine, and α-methylstyrene were 
purchased from Tokyo Chemical Industry Co., Ltd. and were used as received. Other aryl 
halides, alkenes, ethynylarenes, and palladium catalysts were purchased and used as re-
ceived. XPhos and Triton X-100 were purchased from Sigma-Aldrich Co. LLC. and used 
without further purification. 

Palladium complex 1 was prepared from 2,9-diphenyl-1,10-phenanthroline and di-
chlorobis(acetonitrile)palladium according to the literature [52]. RAFT agent 2a and 2b 
were prepared according to the reported method in the literature [53,54]. Triethylammo-
nium hypophosphite was prepared from triethylamine and hypophosphinic acid in tolu-
ene. The diblock copolymer NS was prepared as previously reported [45,55–61]. Dialysis 
was performed using Spectra/Por® RC tubing (MWCO: 3.5kD). Deionized water was ob-
tained on WE-200 (Yamato Scientific Co., Ltd., Tokyo, Japan). NMR spectra were recorded 
on JEOL ECA 500 and Bruker Avance III HD400 spectrometers. Gel permeation chroma-
tography (GPC) was measured on PU-4580 and RI-4030 system (JASCO Corporation, To-
kyo, Japan) equipped with Shodex GPC KD-802.5 and KD-804 columns (Showa Denko 
K.K., Tokyo, Japan) using N,N-dimethylformamide (DMF) (0.1 wt % LiBr) as an eluent. 
The molecular weight of the polymers was determined based on monodispersed poly(eth-
ylene oxide) as standard. Dynamic light scattering (DLS) measurements were made with 
the DLS-8000 and ELSZ-2000ZS (Otsuka Electronics Co., Ltd., Osaka, Japan) instruments. 
Scanning transmission electron microscopy (STEM) was recorded with a S-8000 (Hitachi 
High-Tech Corporation, Tokyo, Japan) instrument. Transmittance was recorded on a Shi-
madzu UV-2550 instrument. 
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Figure 2. Thermoresponsive diblock copolymers (with typical m and n) and palladium complex 1.

2. Materials and Methods
2.1. General

The preparation of copolymers was conducted under an argon atmosphere using stan-
dard Schlenk techniques unless otherwise mentioned. N-Isopropyl acrylamide (NIPAAm)
was purchased from Kanto Chemical Co., Inc. and recrystallized from hexane/toluene
prior to use. 2,2′-Azobis(isobutyronitrile) (AIBN), and dimethylacetamide (DMA) were
purchased from Kanto Chemical Co., Inc. and used without further purification. Sodium do-
decyl sulfate (SDS) and 4,4′-azobis(4-cyanovaleric acid) (V-501) were purchased from FUJI-
FILM Wako Pure Chemical Corporation and were used as received. N,N-Diethylacrylamide
was purchased from Tokyo Chemical Industry Co., Ltd. and was distilled prior to use.
Styrene was purchased from Tokyo Chemical Industry Co., Ltd., distilled, and kept
under argon. Sodium 4-styrenesulfonate, 2-acrylamido-2-methylpropanesulfonic acid,
dichlorobis(triphenylphosphine)palladium, 2,9-diphenyl-1,10-phenanthroline, iodoben-
zene, n-butyl acrylate, diisopropylethylamine, and α-methylstyrene were purchased from
Tokyo Chemical Industry Co., Ltd. and were used as received. Other aryl halides, alkenes,
ethynylarenes, and palladium catalysts were purchased and used as received. XPhos and
Triton X-100 were purchased from Sigma-Aldrich Co. LLC. and used without further pu-
rification.

Palladium complex 1 was prepared from 2,9-diphenyl-1,10-phenanthroline and dichloro-
bis(acetonitrile)palladium according to the literature [52]. RAFT agent 2a and 2b were
prepared according to the reported method in the literature [53,54]. Triethylammonium
hypophosphite was prepared from triethylamine and hypophosphinic acid in toluene.
The diblock copolymer NS was prepared as previously reported [45,55–61]. Dialysis was
performed using Spectra/Por® RC tubing (MWCO: 3.5kD). Deionized water was obtained
on WE-200 (Yamato Scientific Co., Ltd., Tokyo, Japan). NMR spectra were recorded on JEOL
ECA 500 and Bruker Avance III HD400 spectrometers. Gel permeation chromatography
(GPC) was measured on PU-4580 and RI-4030 system (JASCO Corporation, Tokyo, Japan)
equipped with Shodex GPC KD-802.5 and KD-804 columns (Showa Denko K.K., Tokyo,
Japan) using N,N-dimethylformamide (DMF) (0.1 wt % LiBr) as an eluent. The molecular
weight of the polymers was determined based on monodispersed poly(ethylene oxide) as
standard. Dynamic light scattering (DLS) measurements were made with the DLS-8000
and ELSZ-2000ZS (Otsuka Electronics Co., Ltd., Osaka, Japan) instruments. Scanning
transmission electron microscopy (STEM) was recorded with a S-8000 (Hitachi High-Tech
Corporation, Tokyo, Japan) instrument. Transmittance was recorded on a Shimadzu UV-
2550 instrument.
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2.2. Preparation of the Homopolymer PNIPAAm

A thoroughly dried Schlenk tube (100 mL) was filled with argon. In this tube, RAFT
agent 2b (51 mg, 0.23 mmol), NIPAAm (0.54 g, 4.68 mmol), and AIBN (12 mg, 0.08 mmol)
were dissolved in DMA (6 mL) and degassed in three freeze-pump-thaw cycles. The mix-
ture was stirred at 60 ◦C for 24 h and the reaction mixture was poured into hexane/diethyl
ether (75/75 mL) to precipitate a yellow solid. After the solvent was decanted, the yellow
solid was dissolved in chloroform, the solution was collected, and the solvent was removed
in a vacuum to leave the PNIPAAm homopolymer as a yellow solid (363 mg, 62%). The
molecular weight was determined by 1H NMR spectroscopy. The DP (degree of poly-
merization) = 30, Mn = 3600 by 1H NMR. 1H NMR (D2O, Me3Si(CH2)3SO3Na, 500 MHz):
δ 1.15 (CH3), 1.6 (CH2), 2.0–2.2 (CH), 3.89 (CH), 7.24–7.34 (br, Ph).

2.3. Preparation of the Copolymer PNIPAAm-b-PAMPSNa NA-T

The obtained PNIPAAm (227 mg, 0.063 mmol) was added to a dried Schlenk tube, and
sodium 2-acrylamido-2-methylpropanesulfonic acid (0.19 g, 0.83 mmol) and AIBN (6 mg,
0.04 mmol) were dissolved in dimethylsulfoxide (DMSO) (5 mL) in the tube. The mixture
was degassed in three freeze-pump-thaw cycles. The tube was stirred at 65 ◦C for 17 h
and the yellow mixture was purified by dialysis for 3 days. The dialyzed yellow solution
was dried in a vacuum to produce the product polymer NA-T as a white solid (380 mg,
89%). The molecular weight was determined by 1H NMR spectroscopy. The degree of
polymerization (DP) of the AMPSNa units = 9 and Mn = 5700 by 1H NMR. Our attempts
to record GPC has been unsuccessful so far due to highly ionic property of the polymer.
1H NMR (D2O, Me3Si(CH2)3SO3Na, 500 MHz): δ 1.15 (CH3), 1.56 (CH2), 2.0–2.2 (CH),
3.4–3.6 (br, SCH2), 3.89 (CH), 7.24–7.34 (br, Ph).

2.4. Removal of the Ethyl Xanthogenate Terminus in the PNIPAAm-b-PAMPSNa NA-T:
Preparation of NA

The PNIPAAm-b-PAMPSNa NA-T (308 mg, 0.067 mmol), triethylammonium hy-
pophosphite (82 mg, 0.4 mmol), and V-501 (11 mg, 0.04 mmol) were dissolved in DMSO (5
mL) and the solution was degassed by the freeze-pump-thaw method. [62] The mixture
was stirred at 80 ◦C for 3 h and additional V-501 (11 mg, 0.04 mmol) was added to the
solution. After the mixture was stirred at 60 ◦C for 17 h, the yellow solution was dialyzed.
The resultant colorless solution with white precipitate was dried in vacuo to obtain the
product NA as a white solid (281 mg, 76%). The molecular weight was determined by
1H NMR spectroscopy. DP of the PNIPAAm segment was 30, while PAMPSNa segment
was 9, Mn = 5600 by 1H NMR. 1H NMR (D2O, Me3Si(CH2)3SO3Na, 500 MHz): δ 1.15 (CH3),
1.56 (CH2), 2.0–2.2 (CH), 3.4–3.6 (br, SCH2), 3.89 (CH), 7.24–7.34 (br, Ph).

2.5. Preparation of the Homopolymer PDEAAm

In a dried Schlenk tube (25 mL), RAFT agent 2a (92 mg, 0.36 mmol), N,N-diethylacrylamide
(916 mg, 7.2 mmol), and AIBN (16 mg, 0.10 mmol) were dissolved in DMA (7 mL). The
mixture was degassed in three freeze-pump-thaw cycles and was stirred at 60 ◦C for
24 h. The solution was poured into hexane (400 mL) and the yellow precipitate was dis-
solved in chloroform. The volatiles were removed in vacuo to produce PDEAAm as a
yellow solid (529 mg, 53%). The average molecular weight of the polymer was determined
as Mn = 2300, Mw/Mn = 1.20 by gel permeation chromatography (GPC) analysis using
poly(ethylene oxide) as a standard and Mn = 3200 (DP = 23) as per 1H NMR. 1H NMR
(D2O, Me3Si(CH2)3SO3Na, 500 MHz): δ 1.10–1.25 (CH-CH3), 1.5–1.8 (CH2), 2.5–2.8 (CH),
3.2–3.5 (NCH2), 7.24–7.34 (br, Ph).

2.6. Preparation of the Copolymer PDEAAm-b-PSSNa DS-T

In a thoroughly dried Schlenk tube, the obtained PDEAAm (255 mg, 0.08 mmol) was
dissolved in DMSO (5 mL) and sodium 4-styrene sulfonate (167 mg, 0.8 mmol) and AIBN
(5.2 mg, 0.032 mmol) were added. The mixture was degassed in 3 freeze-pump-thaw cycles
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and stirred at 65 ◦C for 24 h. The yellow mixture was dialyzed for 2 days. The volatiles
were removed from the dialyzed mixture in vacuo to afford the title compound as a yellow
solid (415 mg, 97%). 1H NMR (D2O, Me3Si(CH2)3SO3Na, 500 MHz): δ 1.10–1.25 (CH-CH3),
1.5–1.8 (CH2), 2.5–2.8 (CH), 3.2–3.5 (NCH2), 7.24–7.34 (br, Ph), 7.6–7.8 (C6H4).

2.7. Removal of Trithiocarbonate Terminus from DS-T; Synthesis of DS

In a thoroughly dried Schlenk tube (100 mL), the prepared DS-T (769 mg, 0.138 mmol),
triethylammonium hypophosphite (172 mg, 0.833 mmol), and V-501 (28 mg, 0.1 mmol)
were dissolved in DMSO (8 mL). The mixture was degassed by 3 freeze-pump-thaw cycles
and heated at 80 ◦C for 24 h. The yellow solution was dialyzed for 25 h. The volatiles
were removed in vacuo to give the title compound as a white solid (662 mg, 89%). DP was
determined by 1H NMR (m = 23, n = 9, Mn = 4900). 1H NMR (D2O, Me3Si(CH2)3SO3Na,
500 MHz): δ 1.10–1.25 (CH-CH3), 1.5–1.8 (CH2), 2.5–2.8 (CH), 3.2–3.5 (NCH2), 7.24–7.34 (br,
Ph), 7.6–7.8 (C6H4).

2.8. Preparation of the Diblock Copolymer Poly(DEAAm-b-AMPSNa) DA-T

The diethylacrylamide homopolymer was prepared as described above (DP = 34).
The obtained PDEAAm homopolymer (428 mg, 0.12 mmol), sodium 2-acrylamide-2-
methylpropane sulfonate (444 mg, 0.6 mmol), and AIBN (9 mg, 0.055 mmol) were dissolved
in DMSO (7 mL) and degassed in three freeze-pump-thaw cycles. The mixture was stirred
at 65 ◦C for 17 h. The yellow mixture was dialyzed, and the volatiles were removed
in vacuo. The title compound was obtained as a white solid (380 mg, 78%). 1H NMR
(D2O, Me3Si(CH2)3SO3Na, 500 MHz): δ 1.10–1.25 (CH-CH3), 1.5 (CH3), 1.6–1.8 (CH2),
2.5–2.8 (CH), 3.2–3.5 (NCH2 + SCH2), 7.24–7.34 (br, Ph).

2.9. Removal of Trithiocarbonate Terminus from DA-T; Synthesis of DA

The obtained polymer DA-T (444 mg, 0.12 mmol) was dissolved in DMSO (6 mL), and
triethylammonium hypophosphite (112 mg, 0.54 mmol) and V-501 (15 mg, 0.054 mmol)
were added to this solution. The mixture was degassed by the freeze-pump-thaw method
and stirred at 80 ◦C for 3 h. Additional V-501 (15 mg, 0.054 mmol) was added to the
solution. After the mixture was stirred at 60 ◦C for 17 h, the yellow solution was dialyzed.
The resultant colorless solution with a white precipitate was dried in vacuo to afford
the product as a white solid (281 mg, 76%). DP was determined by 1H NMR (m = 34,
n = 3, Mn = 5100). 1H NMR (D2O, Me3Si(CH2)3SO3Na, 500 MHz): δ 1.10–1.25 (CH-CH3),
1.5 (CH3), 1.6–1.8 (CH2), 2.5–2.8 (CH), 3.2–3.5 (NCH2 + SCH2), 7.24–7.34 (br, Ph).

2.10. Mizoroki–Heck Reactions in Water Using the Copolymers, Initial Study

The typical procedure for Mizoroki–Heck reactions in water using the thermore-
sponsive micelles is as follows. In a test tube with a screw cap, the copolymer (40 mg)
was dissolved in deionized water (4 mL) and the solution was stirred. With this solu-
tion, iodobenzene (102 mg, 0.5 mmol), n-butyl acrylate (128 mg, 1.0 mmol), PdCl2(PPh3)2
(7.0 mg, 0.01 mmol), and diisopropylethylamine (129 mg, 1.0 mmol) were added and the
mixture was stirred at 70 ◦C for 48 h. The grayish turbid suspension was cooled in an ice
bath and then diethyl ether (3 mL) was added and stirred for 1 h. The organic layer was
taken up and extracted again with diethyl ether (3 mL) until the product was not detected
by thin layer chromatography. The extract was analyzed by gas chromatography using
tetradecane as an internal standard to determine the GC yield.

2.11. Mizoroki–Heck Reactions in Water Using the Copolymers Catalyzed by 1

Typically, in a test tube with a screw cap, the copolymer (20 mg) was dissolved in
deionized water (1 mL) and the solution was stirred. With this solution, iodobenzene
(102 mg, 0.5 mmol), n-butyl acrylate (128 mg, 1.0 mmol), and tri-n-butylamine (185 mg,
1.0 mmol) were added and the mixture was stirred. Meanwhile, palladium complex 1
(2.4 mg, 0.005 mmol) was dissolved in N-methyl-2-pyrrolidone (400 µL) in a vial. With this
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yellow solution, hydrazine monohydrate was added (1.6 mg, 0.032 mmol) and stirred for
10 s. This solution (40 µL) was added to the test tube and the mixture was stirred at 70 ◦C
for 48 h. The turbid suspension was cooled in an ice bath and then ethyl acetate (0.4 mL)
was added and vigorously stirred, then centrifuged at 1000 rpm for 10 min (180× g).
The organic layer was taken up and extracted again with ethyl acetate (0.4 mL) until the
product was not detected by thin layer chromatography. The extract was analyzed by gas
chromatography using tetradecane as an internal standard to determine the GC yield (97%).

2.12. Evaluation of Extraction Efficiencies of Mizoroki–Heck Product 5aa

Typically, in a test tube with screw cap, the block copolymer DS (40 mg) was dissolved
in deionized water (4 mL) and the solution was stirred for 0.5 h at room temperature. With
this solution, n-butyl cinnamate (5aa, 102 mg, 0.5 mmol) was added and the mixture was
stirred at 70 ◦C for 1 h. Ethyl acetate (1 mL) was added to this mixture, and this mixture
was shaken at 120 rpm in a shaking apparatus at 0 ◦C for 0.5 h. The mixture was allowed
to stand still for 0.5 h at room temperature, and then the organic layer was taken up and
analyzed by gas chromatograph using tetradecane as an internal standard.

2.13. Sonogashira Coupling Reactions in Water Using the Copolymers

The typical procedure for Sonogashira coupling in water is as follows. In a dried test
tube with a screw cap, copolymer NS (20 mg) was dissolved in deionized water (2 mL).
Then, 4-iodoanisole (117 mg, 0.5 mmol), ethynylbenzene (77 mg, 0.75 mmol), PdCl2(PPh3)2
(7.0 mg, 0.01 mmol), and triethylamine (110 mg, 1.0 mmol) were added, and the mixture
was then stirred at 70 ◦C for 24 h. The brown turbid solution was cooled in an ice bath while
stirring until the supernatant became clear. The precipitated brown solid was collected
by filtration when possible. Otherwise, the mixture was extracted with ethyl acetate and
purified by column chromatograph on silica gel (hexane/ethyl acetate = 4/1). The solid
was characterized by 1H NMR in CDCl3.

3. Results and Discussion
3.1. Preparation and Temperature-Dependent Properties of the Diblock Copolymers

We previously reported the use of the thermoresponsive diblock copolymer poly(N-
isopropylacrylamide-b-sodium 4-styrenesulfonate) (PNIPAAm-b-PSSNa, NS) in palladium-
catalyzed reactions in water. [45] In this study, we also employed poly(N,N-diethylacrylamide)
(PDEAAm) as a thermoresponsive block that shows LCST at 35–40 ◦C in water [63]. We
envisioned that the enhanced hydrophobic properties of the N,N-diethylamide moieties
compared with PNIPAAm may facilitate intake of organic substrates into the micelle core.
In addition, poly(sodium 2-acrylamide-2-methylpropane sulfonate) (PAMPSNa) was used
as a hydrophilic segment as the amide moiety can be expected to be more hydrophilic than
PSSNa that bears aromatic rings.

Thus, in addition to the previously reported NS, three diblock copolymers were pre-
pared, i.e., PNIPAAm-b-PAMPSNa NA [64–66], PDEAAm-b-PSSNa DS [67], and PDEAAm-
b-PAMPSNa DA. All polymers were synthesized by a reversible addition-fragmentation
chain-transfer (RAFT) polymerization technique. For example, DEAAm was polymerized
in the presence of RAFT agent 2a to give a PDEAAm homopolymer, followed by poly-
merization of AMPSNa on PDEAAm to give a PDEAAm-b-PAMPSNa diblock copolymer
DA-T which has a trithiocarbonate terminus. Removal of the sulfur-containing moieties
at the termini afforded DA (Scheme 1). Typical examples of the polymerization degree
as determined by 1H NMR are shown in Scheme 1. To the best of our knowledge, di-
block copolymer DA has not been reported to date, although the random copolymer was
reported [68].
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Scheme 1. Synthesis of thermoresponsive diblock copolymers.

The temperature-dependent transmittance of the aqueous solution of the copoly-
mers indicated their thermoresponsive behavior (Figure 3). Copolymer NA, which has
a PNIPAAm block as the thermoresponsive segment, showed LCST at 30–35 ◦C, while
copolymers DS and DA, which have a thermoresponsive PDEAAm block, showed LCST
at 35–40 ◦C.
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Dynamic light scattering (DLS) analysis of aqueous solutions of the copolymers
indicated that the particle sizes at 50 ◦C were significantly larger than those at 30 ◦C,
showing the thermoresponsive formation of copolymer micelles in water (Figure 4). It is
noteworthy that the copolymers NA and DA showed smaller particle sizes as ca. 10 nm at
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30 ◦C, compared with NS and DS (40 nm and 150 nm, respectively). It is possibly because
NA and DA are well dispersed at 30 ◦C, owing to more hydrophilic PAMPSNa segments.
On the other hand, DS and DA formed larger particles at 50 ◦C (270–380 nm) than those
formed by NA. These results might suggest that more hydrophobic PDEAAm segments
tend to form more aggregated micelles above LCST.
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3.2. Palladium-Catalyzed Mizoroki–Heck Reaction Using the Copolymers

We studied the Mizoroki–Heck reaction in water using the thermoresponsive polymer
micelles. We previously reported that copolymer NS promoted the Mizoroki–Heck reaction
in water with PdCl2(PPh3)2 as a catalyst precursor [45]. In this study, the three other copoly-
mers were also investigated. Initially, we compared these polymers under our previous
reaction conditions (Table 1). The copolymer was dissolved in water at room temperature
and to this aqueous solution was added the substrates, base, and the palladium catalyst.
As the mixture was heated at 70 ◦C and stirred, the mixture became opaque. After stirring,
the reaction mixture was cooled to room temperature whereupon the solution became
clear. The product was extracted and the yield was determined by gas chromatography
or 1H NMR.

The reaction using copolymer NA delivered a moderate yield (entry 3), whereas those
with DS and DA resulted in satisfactory results (entries 4 and 6). These results were
superior to those obtained by using conventional surfactants such as sodium dodecyl
sulfate (SDS) and Triton X-100 (entries 7 and 8), as well as those obtained without any
surfactants (only water, entry 9) under the same reaction conditions. The aqueous solution
of NA was much more viscous than other polymer solutions, and the lower yield obtained
with NA might be due to slow diffusion of the substrates. In these reactions, 2 mol % of
palladium complex PdCl2(PPh3)2 was required to complete the reactions. A decrease of
the Pd load to 0.5 mol % resulted in lower yields (entries 2 and 5).
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Table 1. Mizoroki–Heck reaction in water using the copolymers a.
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1 2 NS 99
2 0.5 NS 52
3 2 NA 73
4 2 DS 99
5 0.5 DS 49
6 2 DA 99
7 2 SDS 47
8 2 Triton X-100 61

9 c 2 none 43
(a) Conditions: iodobenzene (0.5 mmol), n-butyl acrylate (1.0 mmol), NEt(i-Pr)2 (1.0 mmol), PdCl2(PPh3)2
(0.01 mmol = 2 mol%), polymer (1 wt % in water), H2O (4 mL), 70 ◦C, 48 h. (b) Determined by gas chromatography.
(c) [45].

In our previous report, we examined a range of Pd complexes and concluded that
PdCl2(PPh3)2 was optimal. In this study, we employed the Pd complex of NNC-pincer
ligand 1 as a catalyst precursor [69–72]. Uozumi and coworkers reported excellent catalytic
activity of ligand 1 for various reactions [52,73–75]. We adopted 1 for the Mizoroki–Heck
reactions using NS (Table 2). When only 1 was added to the system, the reaction resulted
in a moderate yield (entry 1). We considered that the Pd(II) species was not effectively
reduced in the reaction system. Hydrazine hydrate was then mixed with 1 prior to use in
a small amount of N-methyl-2-pyrrolidone (NMP) and the NMP solution was added to
the reaction mixture. Addition of hydrazine improved the catalytic activity remarkably,
and the reactions gave the product in quantitative yields with less Pd load (0.1 mol%), in
shorter reaction time (entry 3). Even the use of 0.01 mol % Pd was sufficient to achieve a
good yield, and the TON reached more than 6000, although the reaction was somewhat
irreproducible. Thus, we decided to conduct further studies with 0.1 mol % of the Pd
catalyst.

Table 2. Mizoroki–Heck reaction in water with 1 a.
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(a) Conditions: iodobenzene (0.5 mmol), n-butyl acrylate (1.0 mmol), tri-n-butylamine (1.0 mmol), NS (2.0 wt % in
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These results led us to investigate the reaction with various substrates with other
copolymers using 1 in water (Table 3). Copolymers DS and DA delivered similar results
to NS, whereas the use of NA resulted in lower yield (entries 1–4). Again, it is presumed
that the low yield resulted from the high viscosity of the NA solution. Most iodoarenes
reacted with n-butyl acrylate to give the products in good to excellent yields in the presence
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of 0.1 mol % ligand 1 and hydrazine regardless of the presence of electron-donating or
electron-withdrawing groups on the aromatic ring (entries 6–10), whereas bromobenzene
resulted in a low yield (entry 5). Other acrylic ester and amide gave the corresponding
coupling products in good yield (entries 11–12). On the other hand, the use of styrene
derivatives as a coupling partner gave lower yields (entries 13–15). In the attempts on
heteroarenes such as iodopyridines and 2-iodothiophene, most of the starting materials
remained intact (entries 16–18). Hex-1-ene gave a trace amount of the products as isomeric
mixtures (entry 19).

Table 3. Mizoroki–Heck reactions with various aryl halides and alkenes in water.

Polymers 2021, 13, 2717 10 of 20 
 

 

Table 2. Mizoroki–Heck reaction in water with 1 a. 

 

Entry 1/mol%b H2NNH2/mol%b Yield/% TON 
1 0.5 0 46 92 
2 0.5 6.5 97 194 

3 c 0.1 0.65 99 990 
4 0.01 0.065 64 6400 

5 d 0.01 0.065 78 7800 
(a) Conditions: iodobenzene (0.5 mmol), n-butyl acrylate (1.0 mmol), tri-n-butylamine (1.0 mmol), 
NS (2.0 wt % in water), H2O (1 mL), 100 °C. (b) mod% to 3a; 0.1 mol% = 0.005 mmol  
(c) 24 h. (d) Tri-n-butylamine (0.6 mmol). 

These results led us to investigate the reaction with various substrates with other 
copolymers using 1 in water (Table 3). Copolymers DS and DA delivered similar results 
to NS, whereas the use of NA resulted in lower yield (entries 1–4). Again, it is presumed 
that the low yield resulted from the high viscosity of the NA solution. Most iodoarenes 
reacted with n-butyl acrylate to give the products in good to excellent yields in the pres-
ence of 0.1 mol % ligand 1 and hydrazine regardless of the presence of electron-donating 
or electron-withdrawing groups on the aromatic ring (entries 6–10), whereas bromoben-
zene resulted in a low yield (entry 5). Other acrylic ester and amide gave the correspond-
ing coupling products in good yield (entries 11–12). On the other hand, the use of styrene 
derivatives as a coupling partner gave lower yields (entries 13–15). In the attempts on 
heteroarenes such as iodopyridines and 2-iodothiophene, most of the starting materials 
remained intact (entries 16–18). Hex-1-ene gave a trace amount of the products as isomeric 
mixtures (entry 19). 

Table 3. Mizoroki–Heck reactions with various aryl halides and alkenes in water. 

 

Entry Aryl halide Alkene 
Copoly-

mer Product Yield/% a 

1 
3a 4a 

NS 
5aa 

>99 b 

2 
3a 4a 

NA 
5aa 

15 b 

3 
3a 4a 

DS 
5aa 

93 b 

Entry Aryl halide Alkene Copolymer Product Yield/% a

1

Polymers 2021, 13, 2717 10 of 20 
 

 

Table 2. Mizoroki–Heck reaction in water with 1 a. 

 

Entry 1/mol%b H2NNH2/mol%b Yield/% TON 
1 0.5 0 46 92 
2 0.5 6.5 97 194 

3 c 0.1 0.65 99 990 
4 0.01 0.065 64 6400 

5 d 0.01 0.065 78 7800 
(a) Conditions: iodobenzene (0.5 mmol), n-butyl acrylate (1.0 mmol), tri-n-butylamine (1.0 mmol), 
NS (2.0 wt % in water), H2O (1 mL), 100 °C. (b) mod% to 3a; 0.1 mol% = 0.005 mmol  
(c) 24 h. (d) Tri-n-butylamine (0.6 mmol). 

These results led us to investigate the reaction with various substrates with other 
copolymers using 1 in water (Table 3). Copolymers DS and DA delivered similar results 
to NS, whereas the use of NA resulted in lower yield (entries 1–4). Again, it is presumed 
that the low yield resulted from the high viscosity of the NA solution. Most iodoarenes 
reacted with n-butyl acrylate to give the products in good to excellent yields in the pres-
ence of 0.1 mol % ligand 1 and hydrazine regardless of the presence of electron-donating 
or electron-withdrawing groups on the aromatic ring (entries 6–10), whereas bromoben-
zene resulted in a low yield (entry 5). Other acrylic ester and amide gave the correspond-
ing coupling products in good yield (entries 11–12). On the other hand, the use of styrene 
derivatives as a coupling partner gave lower yields (entries 13–15). In the attempts on 
heteroarenes such as iodopyridines and 2-iodothiophene, most of the starting materials 
remained intact (entries 16–18). Hex-1-ene gave a trace amount of the products as isomeric 
mixtures (entry 19). 

Table 3. Mizoroki–Heck reactions with various aryl halides and alkenes in water. 

 

Entry Aryl halide Alkene 
Copoly-

mer Product Yield/% a 

1 
3a 4a 

NS 
5aa 

>99 b 

2 
3a 4a 

NA 
5aa 

15 b 

3 
3a 4a 

DS 
5aa 

93 b 

Polymers 2021, 13, 2717 10 of 20 
 

 

Table 2. Mizoroki–Heck reaction in water with 1 a. 

 

Entry 1/mol%b H2NNH2/mol%b Yield/% TON 
1 0.5 0 46 92 
2 0.5 6.5 97 194 

3 c 0.1 0.65 99 990 
4 0.01 0.065 64 6400 

5 d 0.01 0.065 78 7800 
(a) Conditions: iodobenzene (0.5 mmol), n-butyl acrylate (1.0 mmol), tri-n-butylamine (1.0 mmol), 
NS (2.0 wt % in water), H2O (1 mL), 100 °C. (b) mod% to 3a; 0.1 mol% = 0.005 mmol  
(c) 24 h. (d) Tri-n-butylamine (0.6 mmol). 

These results led us to investigate the reaction with various substrates with other 
copolymers using 1 in water (Table 3). Copolymers DS and DA delivered similar results 
to NS, whereas the use of NA resulted in lower yield (entries 1–4). Again, it is presumed 
that the low yield resulted from the high viscosity of the NA solution. Most iodoarenes 
reacted with n-butyl acrylate to give the products in good to excellent yields in the pres-
ence of 0.1 mol % ligand 1 and hydrazine regardless of the presence of electron-donating 
or electron-withdrawing groups on the aromatic ring (entries 6–10), whereas bromoben-
zene resulted in a low yield (entry 5). Other acrylic ester and amide gave the correspond-
ing coupling products in good yield (entries 11–12). On the other hand, the use of styrene 
derivatives as a coupling partner gave lower yields (entries 13–15). In the attempts on 
heteroarenes such as iodopyridines and 2-iodothiophene, most of the starting materials 
remained intact (entries 16–18). Hex-1-ene gave a trace amount of the products as isomeric 
mixtures (entry 19). 

Table 3. Mizoroki–Heck reactions with various aryl halides and alkenes in water. 

 

Entry Aryl halide Alkene 
Copoly-

mer Product Yield/% a 

1 
3a 4a 

NS 
5aa 

>99 b 

2 
3a 4a 

NA 
5aa 

15 b 

3 
3a 4a 

DS 
5aa 

93 b 

NS

Polymers 2021, 13, 2717 10 of 20 
 

 

Table 2. Mizoroki–Heck reaction in water with 1 a. 

 

Entry 1/mol%b H2NNH2/mol%b Yield/% TON 
1 0.5 0 46 92 
2 0.5 6.5 97 194 

3 c 0.1 0.65 99 990 
4 0.01 0.065 64 6400 

5 d 0.01 0.065 78 7800 
(a) Conditions: iodobenzene (0.5 mmol), n-butyl acrylate (1.0 mmol), tri-n-butylamine (1.0 mmol), 
NS (2.0 wt % in water), H2O (1 mL), 100 °C. (b) mod% to 3a; 0.1 mol% = 0.005 mmol  
(c) 24 h. (d) Tri-n-butylamine (0.6 mmol). 

These results led us to investigate the reaction with various substrates with other 
copolymers using 1 in water (Table 3). Copolymers DS and DA delivered similar results 
to NS, whereas the use of NA resulted in lower yield (entries 1–4). Again, it is presumed 
that the low yield resulted from the high viscosity of the NA solution. Most iodoarenes 
reacted with n-butyl acrylate to give the products in good to excellent yields in the pres-
ence of 0.1 mol % ligand 1 and hydrazine regardless of the presence of electron-donating 
or electron-withdrawing groups on the aromatic ring (entries 6–10), whereas bromoben-
zene resulted in a low yield (entry 5). Other acrylic ester and amide gave the correspond-
ing coupling products in good yield (entries 11–12). On the other hand, the use of styrene 
derivatives as a coupling partner gave lower yields (entries 13–15). In the attempts on 
heteroarenes such as iodopyridines and 2-iodothiophene, most of the starting materials 
remained intact (entries 16–18). Hex-1-ene gave a trace amount of the products as isomeric 
mixtures (entry 19). 

Table 3. Mizoroki–Heck reactions with various aryl halides and alkenes in water. 

 

Entry Aryl halide Alkene 
Copoly-

mer Product Yield/% a 

1 
3a 4a 

NS 
5aa 

>99 b 

2 
3a 4a 

NA 
5aa 

15 b 

3 
3a 4a 

DS 
5aa 

93 b 

>99 b

2

Polymers 2021, 13, 2717 10 of 20 
 

 

Table 2. Mizoroki–Heck reaction in water with 1 a. 

 

Entry 1/mol%b H2NNH2/mol%b Yield/% TON 
1 0.5 0 46 92 
2 0.5 6.5 97 194 

3 c 0.1 0.65 99 990 
4 0.01 0.065 64 6400 

5 d 0.01 0.065 78 7800 
(a) Conditions: iodobenzene (0.5 mmol), n-butyl acrylate (1.0 mmol), tri-n-butylamine (1.0 mmol), 
NS (2.0 wt % in water), H2O (1 mL), 100 °C. (b) mod% to 3a; 0.1 mol% = 0.005 mmol  
(c) 24 h. (d) Tri-n-butylamine (0.6 mmol). 

These results led us to investigate the reaction with various substrates with other 
copolymers using 1 in water (Table 3). Copolymers DS and DA delivered similar results 
to NS, whereas the use of NA resulted in lower yield (entries 1–4). Again, it is presumed 
that the low yield resulted from the high viscosity of the NA solution. Most iodoarenes 
reacted with n-butyl acrylate to give the products in good to excellent yields in the pres-
ence of 0.1 mol % ligand 1 and hydrazine regardless of the presence of electron-donating 
or electron-withdrawing groups on the aromatic ring (entries 6–10), whereas bromoben-
zene resulted in a low yield (entry 5). Other acrylic ester and amide gave the correspond-
ing coupling products in good yield (entries 11–12). On the other hand, the use of styrene 
derivatives as a coupling partner gave lower yields (entries 13–15). In the attempts on 
heteroarenes such as iodopyridines and 2-iodothiophene, most of the starting materials 
remained intact (entries 16–18). Hex-1-ene gave a trace amount of the products as isomeric 
mixtures (entry 19). 

Table 3. Mizoroki–Heck reactions with various aryl halides and alkenes in water. 

 

Entry Aryl halide Alkene 
Copoly-

mer Product Yield/% a 

1 
3a 4a 

NS 
5aa 

>99 b 

2 
3a 4a 

NA 
5aa 

15 b 

3 
3a 4a 

DS 
5aa 

93 b 

Polymers 2021, 13, 2717 10 of 20 
 

 

Table 2. Mizoroki–Heck reaction in water with 1 a. 

 

Entry 1/mol%b H2NNH2/mol%b Yield/% TON 
1 0.5 0 46 92 
2 0.5 6.5 97 194 

3 c 0.1 0.65 99 990 
4 0.01 0.065 64 6400 

5 d 0.01 0.065 78 7800 
(a) Conditions: iodobenzene (0.5 mmol), n-butyl acrylate (1.0 mmol), tri-n-butylamine (1.0 mmol), 
NS (2.0 wt % in water), H2O (1 mL), 100 °C. (b) mod% to 3a; 0.1 mol% = 0.005 mmol  
(c) 24 h. (d) Tri-n-butylamine (0.6 mmol). 

These results led us to investigate the reaction with various substrates with other 
copolymers using 1 in water (Table 3). Copolymers DS and DA delivered similar results 
to NS, whereas the use of NA resulted in lower yield (entries 1–4). Again, it is presumed 
that the low yield resulted from the high viscosity of the NA solution. Most iodoarenes 
reacted with n-butyl acrylate to give the products in good to excellent yields in the pres-
ence of 0.1 mol % ligand 1 and hydrazine regardless of the presence of electron-donating 
or electron-withdrawing groups on the aromatic ring (entries 6–10), whereas bromoben-
zene resulted in a low yield (entry 5). Other acrylic ester and amide gave the correspond-
ing coupling products in good yield (entries 11–12). On the other hand, the use of styrene 
derivatives as a coupling partner gave lower yields (entries 13–15). In the attempts on 
heteroarenes such as iodopyridines and 2-iodothiophene, most of the starting materials 
remained intact (entries 16–18). Hex-1-ene gave a trace amount of the products as isomeric 
mixtures (entry 19). 

Table 3. Mizoroki–Heck reactions with various aryl halides and alkenes in water. 

 

Entry Aryl halide Alkene 
Copoly-

mer Product Yield/% a 

1 
3a 4a 

NS 
5aa 

>99 b 

2 
3a 4a 

NA 
5aa 

15 b 

3 
3a 4a 

DS 
5aa 

93 b 

NA

Polymers 2021, 13, 2717 10 of 20 
 

 

Table 2. Mizoroki–Heck reaction in water with 1 a. 

 

Entry 1/mol%b H2NNH2/mol%b Yield/% TON 
1 0.5 0 46 92 
2 0.5 6.5 97 194 

3 c 0.1 0.65 99 990 
4 0.01 0.065 64 6400 

5 d 0.01 0.065 78 7800 
(a) Conditions: iodobenzene (0.5 mmol), n-butyl acrylate (1.0 mmol), tri-n-butylamine (1.0 mmol), 
NS (2.0 wt % in water), H2O (1 mL), 100 °C. (b) mod% to 3a; 0.1 mol% = 0.005 mmol  
(c) 24 h. (d) Tri-n-butylamine (0.6 mmol). 

These results led us to investigate the reaction with various substrates with other 
copolymers using 1 in water (Table 3). Copolymers DS and DA delivered similar results 
to NS, whereas the use of NA resulted in lower yield (entries 1–4). Again, it is presumed 
that the low yield resulted from the high viscosity of the NA solution. Most iodoarenes 
reacted with n-butyl acrylate to give the products in good to excellent yields in the pres-
ence of 0.1 mol % ligand 1 and hydrazine regardless of the presence of electron-donating 
or electron-withdrawing groups on the aromatic ring (entries 6–10), whereas bromoben-
zene resulted in a low yield (entry 5). Other acrylic ester and amide gave the correspond-
ing coupling products in good yield (entries 11–12). On the other hand, the use of styrene 
derivatives as a coupling partner gave lower yields (entries 13–15). In the attempts on 
heteroarenes such as iodopyridines and 2-iodothiophene, most of the starting materials 
remained intact (entries 16–18). Hex-1-ene gave a trace amount of the products as isomeric 
mixtures (entry 19). 

Table 3. Mizoroki–Heck reactions with various aryl halides and alkenes in water. 

 

Entry Aryl halide Alkene 
Copoly-

mer Product Yield/% a 

1 
3a 4a 

NS 
5aa 

>99 b 

2 
3a 4a 

NA 
5aa 

15 b 

3 
3a 4a 

DS 
5aa 

93 b 

15 b

3

Polymers 2021, 13, 2717 10 of 20 
 

 

Table 2. Mizoroki–Heck reaction in water with 1 a. 

 

Entry 1/mol%b H2NNH2/mol%b Yield/% TON 
1 0.5 0 46 92 
2 0.5 6.5 97 194 

3 c 0.1 0.65 99 990 
4 0.01 0.065 64 6400 

5 d 0.01 0.065 78 7800 
(a) Conditions: iodobenzene (0.5 mmol), n-butyl acrylate (1.0 mmol), tri-n-butylamine (1.0 mmol), 
NS (2.0 wt % in water), H2O (1 mL), 100 °C. (b) mod% to 3a; 0.1 mol% = 0.005 mmol  
(c) 24 h. (d) Tri-n-butylamine (0.6 mmol). 

These results led us to investigate the reaction with various substrates with other 
copolymers using 1 in water (Table 3). Copolymers DS and DA delivered similar results 
to NS, whereas the use of NA resulted in lower yield (entries 1–4). Again, it is presumed 
that the low yield resulted from the high viscosity of the NA solution. Most iodoarenes 
reacted with n-butyl acrylate to give the products in good to excellent yields in the pres-
ence of 0.1 mol % ligand 1 and hydrazine regardless of the presence of electron-donating 
or electron-withdrawing groups on the aromatic ring (entries 6–10), whereas bromoben-
zene resulted in a low yield (entry 5). Other acrylic ester and amide gave the correspond-
ing coupling products in good yield (entries 11–12). On the other hand, the use of styrene 
derivatives as a coupling partner gave lower yields (entries 13–15). In the attempts on 
heteroarenes such as iodopyridines and 2-iodothiophene, most of the starting materials 
remained intact (entries 16–18). Hex-1-ene gave a trace amount of the products as isomeric 
mixtures (entry 19). 

Table 3. Mizoroki–Heck reactions with various aryl halides and alkenes in water. 

 

Entry Aryl halide Alkene 
Copoly-

mer Product Yield/% a 

1 
3a 4a 

NS 
5aa 

>99 b 

2 
3a 4a 

NA 
5aa 

15 b 

3 
3a 4a 

DS 
5aa 

93 b 

Polymers 2021, 13, 2717 10 of 20 
 

 

Table 2. Mizoroki–Heck reaction in water with 1 a. 

 

Entry 1/mol%b H2NNH2/mol%b Yield/% TON 
1 0.5 0 46 92 
2 0.5 6.5 97 194 

3 c 0.1 0.65 99 990 
4 0.01 0.065 64 6400 

5 d 0.01 0.065 78 7800 
(a) Conditions: iodobenzene (0.5 mmol), n-butyl acrylate (1.0 mmol), tri-n-butylamine (1.0 mmol), 
NS (2.0 wt % in water), H2O (1 mL), 100 °C. (b) mod% to 3a; 0.1 mol% = 0.005 mmol  
(c) 24 h. (d) Tri-n-butylamine (0.6 mmol). 

These results led us to investigate the reaction with various substrates with other 
copolymers using 1 in water (Table 3). Copolymers DS and DA delivered similar results 
to NS, whereas the use of NA resulted in lower yield (entries 1–4). Again, it is presumed 
that the low yield resulted from the high viscosity of the NA solution. Most iodoarenes 
reacted with n-butyl acrylate to give the products in good to excellent yields in the pres-
ence of 0.1 mol % ligand 1 and hydrazine regardless of the presence of electron-donating 
or electron-withdrawing groups on the aromatic ring (entries 6–10), whereas bromoben-
zene resulted in a low yield (entry 5). Other acrylic ester and amide gave the correspond-
ing coupling products in good yield (entries 11–12). On the other hand, the use of styrene 
derivatives as a coupling partner gave lower yields (entries 13–15). In the attempts on 
heteroarenes such as iodopyridines and 2-iodothiophene, most of the starting materials 
remained intact (entries 16–18). Hex-1-ene gave a trace amount of the products as isomeric 
mixtures (entry 19). 

Table 3. Mizoroki–Heck reactions with various aryl halides and alkenes in water. 

 

Entry Aryl halide Alkene 
Copoly-

mer Product Yield/% a 

1 
3a 4a 

NS 
5aa 

>99 b 

2 
3a 4a 

NA 
5aa 

15 b 

3 
3a 4a 

DS 
5aa 

93 b DS

Polymers 2021, 13, 2717 10 of 20 
 

 

Table 2. Mizoroki–Heck reaction in water with 1 a. 

 

Entry 1/mol%b H2NNH2/mol%b Yield/% TON 
1 0.5 0 46 92 
2 0.5 6.5 97 194 

3 c 0.1 0.65 99 990 
4 0.01 0.065 64 6400 

5 d 0.01 0.065 78 7800 
(a) Conditions: iodobenzene (0.5 mmol), n-butyl acrylate (1.0 mmol), tri-n-butylamine (1.0 mmol), 
NS (2.0 wt % in water), H2O (1 mL), 100 °C. (b) mod% to 3a; 0.1 mol% = 0.005 mmol  
(c) 24 h. (d) Tri-n-butylamine (0.6 mmol). 

These results led us to investigate the reaction with various substrates with other 
copolymers using 1 in water (Table 3). Copolymers DS and DA delivered similar results 
to NS, whereas the use of NA resulted in lower yield (entries 1–4). Again, it is presumed 
that the low yield resulted from the high viscosity of the NA solution. Most iodoarenes 
reacted with n-butyl acrylate to give the products in good to excellent yields in the pres-
ence of 0.1 mol % ligand 1 and hydrazine regardless of the presence of electron-donating 
or electron-withdrawing groups on the aromatic ring (entries 6–10), whereas bromoben-
zene resulted in a low yield (entry 5). Other acrylic ester and amide gave the correspond-
ing coupling products in good yield (entries 11–12). On the other hand, the use of styrene 
derivatives as a coupling partner gave lower yields (entries 13–15). In the attempts on 
heteroarenes such as iodopyridines and 2-iodothiophene, most of the starting materials 
remained intact (entries 16–18). Hex-1-ene gave a trace amount of the products as isomeric 
mixtures (entry 19). 

Table 3. Mizoroki–Heck reactions with various aryl halides and alkenes in water. 

 

Entry Aryl halide Alkene 
Copoly-

mer Product Yield/% a 

1 
3a 4a 

NS 
5aa 

>99 b 

2 
3a 4a 

NA 
5aa 

15 b 

3 
3a 4a 

DS 
5aa 

93 b 

93 b

4

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

DA

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

98 b

5

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

NS

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

8 b

6

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

NS

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

97 (91)

7

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

NS

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

99

8

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

NS

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

98 (85)

9

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

NS

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

98



Polymers 2021, 13, 2717 11 of 19

Table 3. Cont.

Entry Aryl halide Alkene Copolymer Product Yield/% a

10

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

NS

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

99 (87)

11

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

NS

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

89 (83)

12

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

NS

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

99 (90)

13

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

NS

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

20 (19)

14

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

NS

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

13

15

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

NS

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

4

16

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. 

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. NS

Polymers 2021, 13, 2717 11 of 20 
 

 

4 
3a 4a 

DA 
5aa 

98 b 

5 
3b 4a 

NS 
5aa 

8 b 

6 
3c 

4a 
NS 

5ca 
97 (91) 

7 
3d 4a 

NS 
5da 

99 

8 
3e 4a 

NS 

5ea 

98 (85) 

9 
3f 4a 

NS 

5fa 

98 

10 
3g 4a 

NS 

5ga 

99 (87) 

11 
3a 4b 

NS 

5ab 

89 (83) 

12 
3a 4c 

NS 
5ac 

99 (90) 

13 
3a 4d 

NS 
5ad 

20 (19) 

14 
3a 4e 

NS 

5ae 

13 

15 
3a 4f 

NS 

5af 

4 

16 
3h 4a 

NS 
5ha 

N.R. N.R.

17

Polymers 2021, 13, 2717 12 of 20 
 

 

17 
3i 4a 

NS 
5ia 

N.R. 

18 
3j 4a 

NS 
5ja 

6 

19 
3a 

4f NS 
5af 

trace 

(a) NMR yields with isolated yields in parentheses. (b) Determined by gas chromatography. 

3.3. Reuse of the Aqueous Solution and Formation of Palladium Nanoparticles (PdNPs) 
The aqueous solution after the reaction between iodobenzene and n-butyl acrylate 

was reused for further reactions. The substrates and bases were added and the mixture 
was stirred at 100 °C for 24 h. To our delight, the second reaction gave the product in 95% 
yield, and the third run delivered a 62% yield. Observation of the aqueous solution after 
the reactions by scanning transmission electron microscopy (STEM) indicated the for-
mation of nanoparticles of palladium with diameters of 30–80 nm (Figure S1). Uozumi 
and coworkers proposed that the palladium atoms in 1 form nanoparticles (NPs) in the 
reaction solution and that single atoms liberated from the particles catalyze the reactions 
[52,73]. In this reaction, it is likely that PdNPs generated by the reduction with hydrazine 
are encapsuled and protected by the polymers in water, at room temperature. Gradual 
growth of the particle might cause the decrease of the yield. 

3.4. Extraction Efficiency 
One of the problems in organic reactions in aqueous media when using micelles is 

the separation of the products from the reaction mixture. The products are commonly ex-
tracted with considerable amounts of organic solvents. Thus, reducing the amount of ex-
traction solvents is important to achieve an environmentally benign system. In our previ-
ous study, we examined the efficiency in extracting the Mizoroki–Heck product 5aa from 
the aqueous solution of NS [45]. We herein also studied the other polymers. 

Model aqueous mixtures were prepared that consisted of surfactants (1 wt %) and 
5aa in water and these were stirred at 70 °C for 1 h. The mixtures were then cooled and 
extracted once at 0 °C with 1 mL of an extraction solvent such as diethyl ether or ethyl 
acetate. The results are summarized in Table 4. The extraction efficiency was estimated on 
the basis of the amount of recovered 5aa within a given period of extraction time. Overall, 
the extraction with ethyl acetate recovered more 5aa than with diethyl ether. 

In the absence of any surfactants, 50–60% of 5aa was recovered within 30 min (entry 
1). To our delight, more 5aa was recovered from most of the copolymer solutions (NA, 
DS and DA). This is probably due to salting out effect by sulfonate ions. Note that the 
DEAAm copolymer solutions of DS and DA showed better results compared with those 
of the NIPAAm copolymer NS. This is presumably because of the more hydrophobic na-
ture of N,N-diethylamide moieties. The extraction efficiency from the suspension of SDS 
was comparable to that from water (entry 6), although the palladium-catalyzed reaction 
gave the product in lower yield in SDS suspension under the present reaction conditions, 
as we previously reported [45]. We conducted the same study using the reaction mixture 
with DA (entries 7–8). Single extraction with 1 mL of ethyl acetate gave 83% recovered 
product 5aa (entry 7), and 0.5 mL of ethyl acetate gave 68% recovered product (entry 8). 
The calculated E-factors in these entries were 12.6 and 8.9, respectively. 
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3.3. Reuse of the Aqueous Solution and Formation of Palladium Nanoparticles (PdNPs)

The aqueous solution after the reaction between iodobenzene and n-butyl acrylate
was reused for further reactions. The substrates and bases were added and the mixture was
stirred at 100 ◦C for 24 h. To our delight, the second reaction gave the product in 95% yield,
and the third run delivered a 62% yield. Observation of the aqueous solution after the
reactions by scanning transmission electron microscopy (STEM) indicated the formation of
nanoparticles of palladium with diameters of 30–80 nm (Figure S1). Uozumi and coworkers
proposed that the palladium atoms in 1 form nanoparticles (NPs) in the reaction solution
and that single atoms liberated from the particles catalyze the reactions [52,73]. In this
reaction, it is likely that PdNPs generated by the reduction with hydrazine are encapsuled
and protected by the polymers in water, at room temperature. Gradual growth of the
particle might cause the decrease of the yield.
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3.4. Extraction Efficiency

One of the problems in organic reactions in aqueous media when using micelles is the
separation of the products from the reaction mixture. The products are commonly extracted
with considerable amounts of organic solvents. Thus, reducing the amount of extraction
solvents is important to achieve an environmentally benign system. In our previous study,
we examined the efficiency in extracting the Mizoroki–Heck product 5aa from the aqueous
solution of NS [45]. We herein also studied the other polymers.

Model aqueous mixtures were prepared that consisted of surfactants (1 wt %) and
5aa in water and these were stirred at 70 ◦C for 1 h. The mixtures were then cooled and
extracted once at 0 ◦C with 1 mL of an extraction solvent such as diethyl ether or ethyl
acetate. The results are summarized in Table 4. The extraction efficiency was estimated on
the basis of the amount of recovered 5aa within a given period of extraction time. Overall,
the extraction with ethyl acetate recovered more 5aa than with diethyl ether.

Table 4. Extraction study from model aqueous solution a.

Entry Surfactant Description Recovery of 5aa/% b

With Diethyl Ether With Ethyl Acetate

1 c None Only water 53(±4) 61(±8)
2 NS PNIPAAm-b-PSSNa 25 40(±23)
3 NA PNIPAAm-b-PAMPSNa – 69
4 DS PDEAAm-b-PSSNa 61 72
5 DA PDEAAm-b-PAMPSNa 69 76
6 SDS anionic surfactant 33 75

7 d DA PDEAAm-b-PAMPSNa – 83
8 e DA PDEAAm-b-PAMPSNa – 68

(a) Conditions: 5aa (102 mg, 0.5 mmol), surfactant (40 mg), water (4 mL), extracted with 1 mL of the extraction
solvent at 0 ◦C for 30 min. (b) Determined by gas chromatography. (c) [45]. (d) Extracted once with 1 mL of ethyl
acetate from the reaction solution. (e) Extracted once with 0.5 mL of ethyl acetate from the reaction solution.

In the absence of any surfactants, 50–60% of 5aa was recovered within 30 min (entry 1).
To our delight, more 5aa was recovered from most of the copolymer solutions (NA, DS and
DA). This is probably due to salting out effect by sulfonate ions. Note that the DEAAm
copolymer solutions of DS and DA showed better results compared with those of the
NIPAAm copolymer NS. This is presumably because of the more hydrophobic nature of
N,N-diethylamide moieties. The extraction efficiency from the suspension of SDS was
comparable to that from water (entry 6), although the palladium-catalyzed reaction gave
the product in lower yield in SDS suspension under the present reaction conditions, as
we previously reported [45]. We conducted the same study using the reaction mixture
with DA (entries 7–8). Single extraction with 1 mL of ethyl acetate gave 83% recovered
product 5aa (entry 7), and 0.5 mL of ethyl acetate gave 68% recovered product (entry 8).
The calculated E-factors in these entries were 12.6 and 8.9, respectively.

3.5. Sonogashira Coupling Reaction

Sonogashira coupling reaction is a powerful tool for the construction of alkynylarene
scaffolds. The reaction was originally promoted by palladium catalysts and copper salts
as co-catalysts. Recently, it was found that the reactions can proceed under copper-free
conditions [76,77], especially in aqueous media [78,79]. We herein examined copper-free
Sonogashira coupling reactions in the thermoresponsive micelle system.

First, palladium catalysts were examined in the absence of copper salts for the reaction
between 4-iodoanisole (3d) and phenylacetylene (6a) using NS as a copolymer surfactant
(Table 5). Among a selection of palladium(II) catalyst precursors (entries 1–5), PdCl2(PPh3)2
gave the product 7da in 86% yield, even in the absence of Cu salt (entry 2), whereas the
yield reached 99% when CuI was added (entry 11). Combination of Pd(II) species and
phosphine ligands were also studied (entries 6–9). Although triphenylphosphine and
tricyclohexylphosphine gave low to moderate yields (entries 6 and 7), the addition of XPhos,
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which is known to be effective for copper-free Sonogashira coupling [80–82], increased the
yield (entries 8 and 9). Palladium complex 1, which was highly active for Mizoroki–Heck
reactions, was not so active in this reaction (entry 10). Nickel complexes showed low
activity (entries 12 and 13). Thus, we selected the conditions described in entry 2 for further
studies on the effects of surfactant copolymers. The results are summarized in Table 6.

Table 5. Copper-free Sonogashira coupling in water with Pd catalysts a.
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13 NiCl2(PPh3)2 2 - - n.r.

(a) Conditions: 4-iodoanisole (0.5 mmol), phenylacetylene (0.75 mmol), Pd catalysts (x mol% to 4-iodoanisole),
additives (y mol% to 4-iodoanisole), triethylamine (1.0 mmol), surfactant (20 mg), water 2 mL, 70 ◦C, 24 h.
(b) Determined by gas chromatography.
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The reaction between 4-iodoanisole and phenylacetylene in water using various
polymers gave the Sonogashira product 7da with moderate to good yields. Reactions with
the copolymers NS, NA, DS, and DA gave slightly higher yields than with conventional
surfactants. Interestingly, when polymer NS was applied (Table 6, entry 2), the product 7da
precipitated at the bottom of the reaction vessel as aggregated chunks (Figure 5). Before the
reaction, added substrates were biphasic and separated. The mixture was finely suspended
with the formation of micelles during the reaction at 70 ◦C. The mixture was cooled after
the reaction with stirring, then the aggregated precipitates could be easily taken up by
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filtration and washed with water. Analysis of the washed solid by 1H NMR spectroscopy
indicated that it was an almost pure product (84% yield, see the supporting information for
the NMR spectrum). The polymer NS gave better precipitates, whereas other copolymers
and surfactants afforded sticky solids that made separation more difficult. Although the
procedure was somewhat irreproducible with respect to the formation of the aggregated
chunks, the calculated E-factor in this method was 1.8 and the process might provide an
advantageous method for product separation from the reaction mixture.

We then investigated the scope and limitations of the substrates in Sonogashira cou-
pling reactions using NS as thermoresponsive micelles (Table 7). Aryl iodides bearing
either electron-donating or electron-withdrawing groups gave the coupled products with
good yields (entries 1 and 3), although aryl bromide gave the product in a low yield with
PdCl2(PPh3)2 (entry 2). Pd(OAc)2 with XPhos, on the other hand, successfully promoted
the reaction of aryl bromides (entries 6, 8–10, 12), except for the reaction between 2-bromo-
6-methylpyridine and (tert-butyldimethylsilyl)acetylene (entry 11). The reaction of aryl
chloride was disappointing (entry 7). It was demonstrated that Pd(OAc)2/XPhos was effec-
tive as a catalyst in water for various aryl bromides, including alkenyl bromide (entry 13),
and terminal alkynes. [82] On the contrary to the Mizoroki–Heck reactions, heteroarenes
such as 2-iodothiophene and 2-bromopyridine gave the coupling products in moderate to
good yields (entries 5, 9 and 11).
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