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Abstract: The cavity pressure in the injection molding process is closely related to the quality of
the molded products, and is used for process monitoring and control, to upgrade the quality of the
molded products. The experimental platform was built to carry out the cavity pressure experiment
with a micro spline injection mold in the paper. The process parameters were changed, such as V/P
switchover, mold temperature, melt temperature, packing pressure, and injection rate, in order to
analyze the influence of the process parameters on the product weight. The peak cavity pressure
and area under the pressure curve were the two attributes utilized in investigating the correlation
between cavity pressure and part weight. The experimental results show that the later switchover
allowed the injection to proceed longer and produce a heavier tensile specimen. By comparing
different cavity pressure curves, the general shapes of the curves were able to indicate different types
of shortage produced. When the V/P switchover position is 10 mm, the coefficient of determination
(R2 value) of part weight, for the peak cavity pressure and area under the curve, were 0.7706 and
0.8565, respectively. This showed that the area under the curve appeared to be a better process and
quality indicator than the peak cavity pressure.

Keywords: micro-injection molding; cavity pressure; switchover; weight; peak cavity pressure; area
under curve of cavity pressure

1. Introduction

Injection molding is an important method in plastic molding [1–3]. With the develop-
ment of the economy and the improvement of living standards, people have higher and
higher requirements for the quality of products, and the technology of injection molding
machines is gradually developing towards the direction of intelligence and precision [4–6].

Injection molding is a cyclic process, consisting of the following four phases: filling,
melt compressing (or packing), holding, and cooling, as shown by the typical cavity
pressure profile in Figure 1. The filling process starts at point A. The cavity pressure
signals begin at point B—where the melt plastics touch the pressure sensor for the first
time—and then the pressure increases steadily as the filling proceeds. The filling phase
is complete at point C, where the cavity is only volumetrically filled by the melt, without
being compressed. The packing process then embarks and the pressure rises rapidly to the
peak value (Pmax) at point D. Thereafter, the melt within the cavity is maintained at an
assigned pressure during the holding phase, when additional plastic melt can be packed
into the cavity, to compensate for the plastic shrinkage caused by cooling, so as to have the
mold completely filled. This process continues until the gate is frozen, as marked at point
E. The final cooling phase comes afterwards and continues to the end of the cycle, at point
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F. It is during this phase that the melt solidifies gradually, as the coolant that circulates
within the cooling channels in the mold removes the heat. The cooling and solidification
rates determine the decreasing speed of the cavity pressure.
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Table 1. Cyclic process of injection molding.

Point Explain

A The filling process starts
B The cavity pressure signals begin
C The filling phase is complete
D Peak cavity pressure value
E Gate frozen
F Molding end

The increased demand for micro-scale parts and devices is being met, in many cases,
by the micro-injection molding of polymer parts [7–9]. However, part inspection is difficult,
due to the micro-scale dimension in the micro-injection molding process. In addition,
process control also becomes challenging, since the process is susceptible to slight changes
in the process parameters, such as the mold temperature, injection velocity, and packing
pressure [10–13].

At present, a suitable process monitoring method, such as cavity pressure monitoring,
can be employed to detect any process deviation that may cause defects in the part quality.
In the process of injection molding, the constant process parameters cannot guarantee the
consistency of product quality, but the process parameters changed by cavity pressure can
greatly improve the quality of the products. The cavity pressure in the injection molding
process is the result of the combined action of various process parameters. From the cavity
pressure curve, we can directly see the injection process, the switching point of injection
to packing pressure, the packing pressure process, and the cooling process, and it finally
becomes a comprehensive index to measure the quality of the products [14,15]. Through
the change in the pressure curve, the quality of the parts can be monitored, which can be
used to analyze the quality, size, flash, shrinkage, shot, and warpage of the parts, providing
the most stable process parameters for the cavity. The main advantages of using cavity
pressure technology are as follows: it can reduce the times of mold testing and improve
the efficiency of mold testing. It can realize rapid process reproduction under different
machines and working environments. It can ensure the production of high-quality and
high-qualified rate products.
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Cavity pressure has been found to be a reliable process indicator in injection molding,
for both part quality and process monitoring [16–27]. Specifically, it has been found to
provide real-time detection of part and process deviation. As such, the cavity pressure
measurement holds potential for monitoring the part quality in micro-injection molding,
where direct part inspection is difficult and often costly, due to part handling issues
and microscopic feature sizes. Huang [14] presented a simple grey model to predict,
instantaneously, the volumetric-filling point when monitoring the cavity pressure profile in
each molding. It was found to be a good indicator of product quality; the cavity pressure
profile is applied here, to obtain a more precise switchover control. Kurt. et al. [15] studied
the relationship between cavity pressure and shrinkage, by using the cavity pressure curve.
The results indicate that cavity pressure and mold temperature are the dominant factors
determining the quality of the final product. Kim. et al. [16] showed the influences of
injection flow rate, peak cavity pressure, melt temperature, and mold temperature on the
filling length. The cavity pressure and the temperature transition of the melt in the micro
channels had a critical influence on the filling process. Hassan [17] investigated the effect
of injection molding parameters on the polymer pressure inside the mold cavity. The
results indicate that the cavity pressure and product weight increase with an increase in the
packing pressure, packing time, and injection pressure, for all the analyzed polymers. Chen
et al. [18] proposes a quality index for online quality monitoring and prediction purposes,
based on the pressure, viscosity, and energy features extracted from the pressure profiles
obtained at the load cell, nozzle, and molding cavity, respectively. It is shown that all of
the quality indexes are correlated with the injection-molded quality, and hence provide
a feasible basis for the realization of an on-line quality monitoring and control system.
Injection molding part quality is modeled using a multivariate sensor by Gordon et al. [19].
The analysis indicates that the most important process data are gathered from in-mold
sensors, where the acquired information is closest to the states of the polymer molding
the final product. Wang et al. [20] investigated the influence of mold temperature, melt
temperature, packing pressure, packing time and peak cavity pressure, on the weight of
micro-injection molding products, by the Taguchi orthogonal experiment. The experimental
results show that the packing pressure increased from 85 MPa to 100 MPa, the weight
of the tensile specimen increased from 0.544 g to 0.559 g, increased by 2.7%, and the
weight of the impact specimen increased from 0.418 g to 0.425 g, increased by 1.7%. Zhao
et al. [21] proposes a non-destructive method for measuring cavity pressure, by evaluating
the stress on the tie bars of the injection molding machine, using ultrasonic technology. The
direct monitoring of process signals during micro-injection was addressed via pressure
and temperature sensors that were placed in the following two different mold locations:
the runner system and the mold micro-featured cavity by Mendibil et al. [22]. It has
been observed that both the runner system and micro-featured cavity pressure signals
are linked to the replication quality level of the micro-injected part, and show similar
performance, in terms of part quality differentiation. The process parameter that causes
the greatest variations is the temperature set-point of the machine nozzle. Gao et al. [23]
demonstrates an in-process sensing technique for online product quality assessment. The
system measures four parameters within the injection mold cavity, which are directly
correlated with the part quality, and they are as follows: melt pressure, temperature,
velocity, and viscosity. Gim et al. [24] tried to detect the filling imbalance by temperature
sensors in the runner, and indirect pressure sensors at the bottom of the lens core. The
temperature signal showed a reliable correlation with respect to the resin-arrival-time
difference, but the pressure signal did not produce a reliable result. Guan et al. [25]
proposed that the mold surface strain profile could indicate the part weight or thickness
and the critical time when the part surface lost contact with the cavity surface in a large
area. The monitoring of the mold surface strain could serve as an interesting alternative
to the direct monitoring of the cavity pressure, with respect to process and part quality
control for ICM.
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As the characteristic value of cavity pressure, the peak cavity pressure and area under
the curve can be used to detect the qualified range of products in the paper. The linear
relationship between various process parameters and the cavity pressure was explored,
and accurately adjusted the process parameters, by calculating the integral value, so as to
greatly improve the qualified rate of the products.

2. Experiments
2.1. Materials

The sample material used in this work was polypropylene in the form of pellets and
with a trade mark 5090T (MFI = 15 g/10 min), supplied by the Formosa petrochemical
Corp, Taiwan, China.

2.2. Micro-Injection Moulding Experiments

Micro-injection molding machine: the experimental work was carried out on an
injection molding machine of type BOY XS, Germany concept having a maximum injection
pressure 2298 bar, with screw diameter for plastication 14 mm and maximum weight of the
product 6.1 g as shown in Figure 2.

Figure 2. Experimental setup.

Mold: The multi-spline injection mold constructed from two parts (tensile specimen
and impact specimen). The mold cavity thickness is 1 mm. The cavity pressure and
temperature are measured in the mold cavity by the quartz sensor for mold cavity pressure
type Kistler 6190CA, which has a front of 4.0 mm diameter. Data output from the amplifier
is collected using a Kistler 5865 Como injection system. Computer is used to record the
output reading of the acquisition system through an interface cart by the help of lab view
program. The dimensions of specimen and gate are shown in Figure 3.
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Figure 3. Dimension of specimen and gate.

Mold temperature controller: The mold temperature controller (model TP6ZE) was
adopted using PIOVAN Co. Ltd, Italia.

Chiller (model ML-CA03) was adopted Ming Lee Co. Ltd, Hong Kong, China.
Electronic balance (model CP214) was adopted OHAUS Co. Ltd, America. The

accuracy is 0.1 mg.

2.3. Parameters Setting

Melt temperature, mold temperature, packing pressure were chosen as the process
parameters. Parameters of injection molding process are reported in Table 2.

Table 2. Parameters of injection molding process.

Run Melt
Temperature(◦C)

Mold
Temperature(◦C)

Packing
Pressure(MPa)

1 210 30 80
2 220 40 90
3 230 50 100
4 240 60 110

Orthogonal design is a high-efficiency design method for tests to arrange multi-factor
tests and seek optimal level combinations. The design method of orthogonal tests is able
to determine optimal parameters by simply calculating influences of each factor on test
results, showing the influences in charts, and then comprehensively comparing differences.
The calculation is carried out on orthogonal tables, so the whole process is simple and clear.
In this way, enough information can be obtained through a few tests, thus saving costs.
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An L16(43) orthogonal array was selected for the experimental design for each of the three
factors. The four levels for the three parameters were identified during the 16 experiments.
The values of these parameters are presented in Table 3. The twenty samples were collected
for each run, after the machine had been allowed to reach steady state.

Table 3. The micro-injection molding parameters and corresponding levels.

Run Melt Temperature
(◦C)

Mold Temperature
(◦C)

Packing Pressure
(MPa)

1 210 30 80
2 210 40 90
3 210 50 100
4 210 60 110
5 220 30 90
6 220 40 80
7 220 50 110
8 220 60 100
9 230 30 100
10 230 40 110
11 230 50 80
12 230 60 90
13 240 30 110
14 240 40 100
15 240 50 90
16 240 60 80

3. Results and Discussions

In the process of injection molding, the pressure curves of different molds are not the
same, but the general trend of the pressure curves of different molds is the same. They can
reflect the flow of melt in the mold cavity and the state of each injection molding shot. It
can be observed from the figure that injection molding is a dynamic cycle process, from
injection to pressure holding and then to cooling. In addition to observing the general shape
of the curve, cavity pressure data are correlated to part quality by deriving quantitative
values representing the features of the curve. In the present study, the peak pressure and
area under the curve are the two attributes obtained from the curve, as shown in Figure 4.
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3.1. Effect of Different Injection Velocity

Figure 5 shows the results obtained from two different injection velocity trials. The
packing pressure is 60 MPa, the melt temperature is 210 ◦C, and the mold temperature
is 40 ◦C. The injection velocity is 35% and 45%, respectively. The 35% and 45% injection
velocities represent thirty-five percent and forty-five percent of the machine maximum
injection rate. All the molding parameters were unchanged, except injection velocity. As
shown in the figure, the trial with the higher injection velocity reaches the packing phase
and cooling phase earlier. Because this is higher, the injection rate injects the material faster
and causes the cavity to be filled faster. The difference in filling rates between the trials is
easily noticeable from the figure. The red line (higher injection velocity) has a steeper slope
at the filling stage. Despite the difference in the filling stage, both the trials share the same
cooling rate (slope of cooling phase) and final cavity pressure value.
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3.2. Effect of Different Pack Pressure

Figure 6 shows how pressure curves respond to different pack pressure settings. Here,
only the pack pressure settings were varied, while the other settings remained unchanged.
As can be observed from the figure, the three curves are similar before the switchover point.
The curves start to behave differently after the switchover happens, due to different pack
pressure settings. After the switchover point, the entire filling phase is solely relying on
pack pressure. As a result, a higher pack pressure produces a higher cavity pressure and
faster filling rate. The result is reasonable, as the higher pack pressure forces more polymer
melt into the cavity in a shorter time frame. The 90 MPa line reaches the packing stage the
earliest, as the filling is completed by the higher pack pressure. The high pack pressure also
produces a higher peak cavity pressure value. The 60 MPa line reaches the packing phase
slower and has a lower peak cavity pressure. Here, the pack pressure is lower, it is still
able to fill up the part completely, at a slower rate. On the other hand, the 0 MPa line does
not reach the packing phase at all. From Figure 6, it is clear that the polymer melt stops
filling the cavity once the switchover takes place, causing the pressure to drop immediately.
It can be deduced, from the cavity pressure curve behavior, that a short part is produced
from this trial.
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3.3. Effect of Different Switchover Setting

The following discussion focuses on the relationship between peak cavity pressure
and switchover settings. The peak cavity pressure increases when the switchover occurs
later in the cycle. This result corresponds with the initial prediction that a later switchover
allows the polymer melt to fill up more of the cavity, and hence generate a higher peak
cavity pressure. The pressure curves with a switchover of 4 mm have a relatively low
peak pressure value and a small area under the curve, in Figure 7. This reflects the fact
that very little polymer melt was able to fill up the cavity. For pressure curves with a later
switchover of 10 mm, a sharp rise in pressure is observed. This indicates that the polymer
melt has at least filled up the thin wall section. Given that there is no pack pressure during
the molding process, the polymer melt stops filling once the switchover takes place. As a
result, a later switchover allows the injection to proceed longer and allows the melt to flow
further into the cavity before the injection phase ends.
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In terms of part quality, a normal visual inspection can also easily detect some obvious
defects on the parts. In the cavity pressure curve corresponding to short-shot 3, the cavity
pressure peak is too small, and the molten polymer cannot fill the whole cavity, that
is, the experimental spline of short-shot 3 has a very low cavity pressure peak. For the
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experimental splines of short-shot 1 and short-shot 2, the filling stage was completed and
the pressure holding stage was entered. The slope of the pressure curve and the pressure
value of the mold cavity increased at the same time, but the pressure holding stage was
incomplete, the end and detail parts of the product were not filled completely, and the
product density was low. The pressure peak value of the cavity corresponding to the
short-shot 1 and short-shot 2 fails to reach the peak value in the case of complete filling,
and the increased degree of the slope of the pressure curve is insufficient.

3.4. Relationship between Cavity Pressure and Part Weight

Two attributes obtained from the cavity pressure—peak cavity pressure and area
under curve—are utilized to relate with the part weight. Figure 8 shows the average part
weights and average value of the area under the curve for all the trials, while Figure 9 shows
the average weights and average peak cavity pressure. Both the figures show that both the
attributes appear to have promising correlation with part weight, as shown in the figures,
respectively; the higher part weight has the higher value in both the attributes. In terms
of the standard error of every trial for average part weight, average peak cavity pressure,
and average area under the curve, the error values are not presented in Figures 8 and 9,
because they are relatively small and hardly noticeable from the plots. The small value of
standard error signifies that the average value obtained has small scattering and deviation
from the mean value.
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Figure 8. Area under curve and part weight for the trials.

To further investigate the relationship between cavity pressure and part weight, the
coefficient of determination (R2 value) was calculated, to determine how well the peak
cavity pressure and area under the curve correlate with the part weight. The coefficient
of determination is a measure of the degree of correlation or dependence between the
dependent and independent variables in a regression analysis. A high R2 value indicates
that the two variables are well correlated. The higher R2 value shows that a later switchover
in the injection molding process not only produces a better quality part, but also produces a
better correlation between part quality and cavity pressure (both peak value and area under
the curve). A plot to show the correlation of the average area under the curve and the peak
cavity pressure, with respect to part weight, is presented in Figure 10. The distribution of
all the shots of both attributes in the DOE trial with respect to part weight. As shown in
the figure, both the attributes have good correlation with the part weight.
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Figure 10. Area under curve and peak cavity pressure vs. part weight.

Under the current processing parameter range, both the attributes are found to have
a second-order polynomial relationship with part weight. The curves start to increase
linearly at the beginning and then begin to flatten out. The flat part corresponds to trail
5, trail 7, trail 10, and trail 13. In the four experimental parameter settings, the set values
of melt temperature and packing pressure are higher, that is, a higher melt temperature
and packing pressure can make more molten polymer fill the cavity in the lower response
pressure range. Although both attributes respond to part weight in an almost similar
manner, the R2 values are different. The area under the curve is found to have a higher R2

value of 0.856 compared to the peak cavity pressure, with an R2 value of 0.77. This signifies
that area is a better quality characterization than peak cavity pressure.
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A possible explanation to this difference is the significant effect of pack pressure.
Pack pressure provides extra material to compensate for the part shrinkage in the cavity.
However, this action is not well represented by the peak cavity pressure, as it only indicates
the maximum pressure at the moment the part is fully filled; anything that occurs after
the part is filled is overlooked. On the other hand, the area under curve covers the entire
processing window, from the moment the melt enters the cavity to the time when the part
solidifies. In the current trials, pack pressure appears to have an important effect on the
part weight, therefore the area appears to be a better attribute to correlate to part quality.

Here, only the area under curve will be presented, since it has a higher R2 value, as
discussed earlier. In general, the result obtained from Figure 11 is expected, since trials
with low level settings, such as trial 1, trial 2, trial 6, trial 11, and trial 16, produced lighter
parts and lower attribute values, while trials with higher level settings, such as trial 5, trial
7, trial 10, and trial 13, produced heavier parts and a greater area under the curve. As
shown in the figure, two distinct clusters are observed from in the data, with most of the
parts weighing from ~530 mg to ~580 mg and a second group falling in the range from
~590 mg to ~630 mg. This second group consists of trial 3, trial 7, trial 10, and trial 13.
Both of these trials were conducted at high-level settings in two of the three processing
parameters. The trail 5 has a large area under the curve, but a lower weight, which may be
due to the greater influence of the packing pressure. The separation of the trials suggests
the possibility of having an excessive gap between each level for the pack pressure setting.
Despite the disjointed data, the results show that pack pressure has the greatest effect on
part weight.
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Figure 11. Area under curve vs. part weight of DOE trial.

3.5. Relationship between Part Weight and Runner Weight

Figure 12 presents the relationship between part weight and runner weight. As shown,
part weight and runner weight have little to no relationship between them. This means
that the weight of the product is not affected by the weight of the runner system. A
logical explanation to this dissimilarity is the pack pressure setting. When pack pressure is
involved in the injection molding process, at the switchover point, the screw will continue
to move forward for a certain distance and speed, to attain the required pack pressure.
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4. Conclusions

An experimental work is carried out to study the quality characterization method of
micro-injection products based on cavity pressure in this paper. In terms of the relationship
between cavity pressure and part weight, the peak cavity pressure and area under the
curve were the two attributes that were used to correlate to part quality. The following
items summarize the major finding of this experiment:

(1) A later switchover allowed the injection to proceed longer and produce heavier parts;
(2) By comparing different cavity pressure curves, the general shapes of the curves were

able to indicate different types of shortages produced;
(3) The coefficient of determination of part weight, for peak cavity pressure and area

under the curve, were 0.77 and 0.856, respectively. This showed that the area under the
curve appeared to be a better process and quality indicator than peak cavity pressure.
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