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Abstract: The selection of nanofillers and compatibilizing agents, and their size and concentration,
are always considered to be crucial in the design of durable nanobiocomposites with maximized
mechanical properties (i.e., fracture strength (FS), yield strength (YS), Young’s modulus (YM), etc).
Therefore, the statistical optimization of the key design factors has become extremely important to
minimize the experimental runs and the cost involved. In this study, both statistical (i.e., analysis of
variance (ANOVA) and response surface methodology (RSM)) and machine learning techniques (i.e.,
artificial intelligence-based techniques (i.e., artificial neural network (ANN) and genetic algorithm
(GA)) were used to optimize the concentrations of nanofillers and compatibilizing agents of the
injection-molded HDPE nanocomposites. Initially, through ANOVA, the concentrations of TiO2 and
cellulose nanocrystals (CNCs) and their combinations were found to be the major factors in improving
the durability of the HDPE nanocomposites. Further, the data were modeled and predicted using
RSM, ANN, and their combination with a genetic algorithm (i.e., RSM-GA and ANN-GA). Later,
to minimize the risk of local optimization, an ANN-GA hybrid technique was implemented in this
study to optimize multiple responses, to develop the nonlinear relationship between the factors (i.e.,
the concentration of TiO2 and CNCs) and responses (i.e., FS, YS, and YM), with minimum error and
with regression values above 95%.

Keywords: polymer–matrix composites (PMC); computational modeling; statistical optimization;
mechanical properties; durability; artificial neural network (ANN); genetic algorithm (GA)

Highlights

HDPE nanocomposites were developed using injection molding.
The impact of the type and size of the nanofillers and the compatibilizing agent on the

mechanical properties (i.e., fracture strength, yield strength, and Young’s modulus, etc.) of
the developed nanocomposites was analyzed.

Both statistical (i.e., ANOVA, RSM) and machine learning techniques (i.e., ANN, GA,
ANN-GA) were used to assess the effect of nanofillers and the compatibilizing agent on
the durability of the developed HDPE nanobiocomposites.

Nano-TiO2 and cellulose nanocrystals were found to have a positive impact on im-
proving the mechanical integrity of the HDPE nanobiocomposites.

Artificial neural network with genetic algorithm (ANN-GA) provided a better predic-
tion with minimum error than the response surface methodology.
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1. Introduction

The success of the designed biomaterials to replace natural scaffolds depends on their
ability to facilitate cell growth. More specifically, they should aid the cross-talk between
cells, growth factors, and protein, thereby initiating cell adhesion, proliferation, and dif-
ferentiation [1,2]. For these procedures to occur in the proper sequence, an extracellular
matrix having the required mechanical integrity (i.e., durability) and biocompatibility
is much needed [3]. Over the last few decades, polymers have proven to be excellent
candidates, exhibiting the properties required for materials to be in the extracellular ma-
trices. Polyurethane [4], poly(lactic acid) [5,6], polyester [7,8], and polyethylene [9,10] are
among the most commonly used polymers in tissue engineering. In this study, high-density
polyethylene (HDPE) was considered the base polymer due to its long-reported success in
tissue engineering. To be more specific, HDPE is an organic polymer and possesses good
mechanical and physical properties, excellent chemical resistance, and biocompatibility,
which make it suitable for various biological applications [11].

Earlier, metal oxides, carbon nanotubes, natural fibers, etc. were being added to the
polymer as fillers to reduce the production cost of polymeric materials. Over time, these
fillers, particularly nanofillers, have become an inseparable part of polymer composites [12].
The application of nanofillers is not only limited to improving polymers’ mechanical
properties, but also to enhance their conductivity, biocompatibility, thermal stability, and so
on. In simple words, fillers should provide the properties, which are inherently absent in
the polymer, without changing its intrinsic features, or adding extra weight, or affecting its
processability [12,13]. Among the inorganic nanofillers, titanium dioxide has proven to be
an excellent candidate to be combined with HDPE, owing to its recommendable mechanical
properties, thermal degradation, reduction of ultraviolet (UV) light, and resistance to
corrosion [14]. The combination of HDPE and titanium dioxide has shown some promising
results in tissue engineering [9,15,16].

In the past few decades, CNCs have gained much interest owing to their strong
physical, mechanical property, nanoscale dimension, high surface area, and low density.
These biopolymers can easily be modified to be biodegradable and renewable [15,16].
More specifically, CNCs individually has a young’s modulus of 167.5 GPa and impressive
mechanical strength [17]. Due to these attributes, this study also considers the impact of
incorporating CNCs into the polymer mix as one of the design parameters. Moreover,
n-TiO2 and n-CNCs have been proven to improve the cell adhesion and proliferation of
chondrocytes and to demonstrate antimicrobial properties [9,15,18–20].

However, the binding of polar nanoparticles to the non-polar polymer matrix remains
a critical concern in nanocomposites design. Typically, compatibilizers or coupling agents
are added to the composites to modify the composites’ interfaces. These agents may include
saline [21,22], itaconic acid [23], and graft copolymers of maleic anhydride [24,25]. In this
study, two different coupling agents, such as polyethylene grafted maleic anhydride and
3-(Trimethoxysilyl) propyl methacrylate, have been considered. In polyethylene grafted
maleic anhydride, the maleic anhydride can be bonded with the metal oxides, e.g., TiO2,
SiO2, etc., while the polyethylene part of the coupling agent would have a physical inter-
action with the polyethylene composite matrix [26,27]. Typically, the nanoparticles have
a high surface-to-volume ratio, attributed to a significant amount of surface energy and
Vander Walls forces. These energies attract the nanoparticles to each other leading to the
formation of aggregates onto the polymeric surfaces. On the other hand, saline coupling
agents such as 3-(Trimethoxysilyl) propyl methacrylate increase the surface area and ensure
a uniform distribution of the filler on the polymeric surfaces [21,28]. The mechanism of the
compatibilizing agents’ binding to polyethylene is postulated and illustrated in Supplemen-
tary Figure S1 (polyethylene grafted maleic anhydride) and Figure S2 (3-(Trimethoxysilyl)
propyl methacrylate).

The selection of the nanofillers and compatibilizers, their size, and their concentra-
tion vary significantly depending on the sought properties of the biomaterials and their
potential application(s). It involves vigorous experimentation to tune up these parameters.
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However, the experimental runs required and the time duration needed can be reduced
using statistical analyses and computational techniques [9,29]. Recently, multivariate sta-
tistical analyses have been popularly adopted, through which researchers can identify
the optimal combination of the design factors and their interaction Typically, the research
design involves the following steps: (1) determining the mathematical model coefficient
from the relationship between the factors (i.e., independent variables) and the responses
(i.e., dependent variables), (2) estimation of the predicted response, and (3) evaluation
of the adequacy of the model. There are different techniques for multivariate analyses
ranging from simpler ones such as factorial design to many complex ones such as the
response of surface methodology (RSM) [30,31]. Box and Wilson were the first to develop
RSM [32] to evaluate the interactions of various variables together and to specify an empir-
ical equation depicting the impact of the variables and their interaction to the measured
response(s). RSM has been used to optimize the fabrication method(s) of polymer nanocom-
posites [33,34], to evaluate the influence of numerous process variables on the technique(s)
under consideration [34,35], and to quantify the effect of several different parameters on
the properties of polymer nanocomposites [36,37]. However, only a linear relationship
between the factors and the responses can be developed using RSM. Indeed, the nonlinear
relationship with a complex situation is beyond the scope of the RSM method [30,31].

However, most of the practical problems deal with the nonlinear relationship between
the dependent and independent variables [38]. Hence, artificial intelligence and machine
learning have garnered significant interest in modeling the experimental data, as these
models can develop and compute nonlinear relationships by exploiting the available
experimental data [39,40]. An established model can significantly reduce the routine testing
involved in developing new polymer composites. The techniques of machine learning
include artificial neural network (ANN), genetic algorithm, support vector regression (SVR),
etc. [41,42]. ANN can model complex data without the need for extensive experimental
data [43,44]. This benefit can be explored to model and predict the properties of the polymer
nanocomposites using ANN [45,46]. Although ANN establishes nonlinear relationships, it
can be time-consuming and can lead to false convergence or enables local convergence, and
overfitting [41,42]. However, these error(s) can be minimized using a genetic algorithm
(GA) [47]. GA is based on the evolutionary computational technique using the principle
of the survival of the fittest or natural selection [44,48]. In this method, [49] the undesired
overfitting can be minimized by splitting the data into training and testing sets, and by
dealing with higher population size [50]. Owing to these benefits, several studies have
implemented the genetic algorithm to develop novel polymer nanocomposites [51,52].

To the best of our knowledge, the detailed and systematic approach using both
statistical and machine learning techniques has not yet been implemented to determine the
influence of the nanofiller(s) and compatibilizing agent on the mechanical integrity of HDPE
nanocomposites. In this study, HDPE-nanofillers-compatibilizing agents nanocomposites
were fabricated and characterized. The experimental dataset was then exposed to a single
or combination of several different statistical and computational techniques to reduce
the predicted error(s) and to generate the best model by using the experimental findings.
A preliminary analyss of these results has been reported in [10]. The initial objective
of this study is to eliminate the factors that have no influence or negative impact on
the HDPE nanocomposites’ properties. Then, this study aims to develop a relationship
between the factors (i.e., size and concentration of TiO2, the concentration of CNC, the
effect of coupling agents, etc.) and responses (i.e., fracture strength (FS), yield strength (YS),
Young’s modulus (YM) of the developed nanobiocomposites) to enhance the durability
of the HDPE nanobiocomposites using nanofillers and coupling agents. TiO2 and CNCs
nanofillers and polyethylene grafted maleic anhydride and 3(Trimethoxysilyl) propyl
methacrylate coupling agents are considered as the factors. The final objective of this work
is to find the best synergy of the ingredient(s) to improve the mechanical properties of
HDPE nanobiocomposites by using ANOVA, RSM, ANN, and genetic algorithm (GA).
However, the risk of undesirable local optimization in this regard is grossly overlooked in
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the literature. In this study, ANN-GA approach has been implemented to minimize the
chances of local optimization.

2. Methodology
2.1. Materials

High-density polyethylene (HDPE) was used as the polymer matrix (having a melt
flow index of 2.2 g/10 min at 123 ◦C). The two compatibilizing agents used in this study
were polyethylene grafted maleic anhydride (PEgMAH) (having a viscosity of 500 Cp at
140 ◦C), 3-(Trimethoxysilyl) Propyl Methacrylate (MPS) (1.045 g/mL at 25 ◦C and boiling
point at 190 ◦C). TiO2 nanoparticles (average particle size 150 nm, 21 nm) and cellulose
nanocrystals (CNCs) were used as nanofillers. CNCs were obtained from the University of
Maine (freeze-dried powder form and obtained from acid hydrolysis). These nanocrystals
were 150–200 nm long and had a density of 1.5 g/cm3 when they are in dried powder form.
A few other miscellaneous items used in this study were ethanol (with a vapor density
of 1.59 and 99.8% pure) and ammonia (≥99.95% pure and boiling point at −33 ◦C). All
the materials mentioned above were purchased from Sigma Aldrich (Munich, Germany)
unless otherwise stated.

2.2. Design, Development, and Characterization of the HDPE Nanocomposites
2.2.1. Functionalization of TiO2 Nanoparticles with MPS Coupling Agent

First, ten gm of n-TiO2 were uniformly distributed in 250 mL of ethanol by using a
magnetic stirrer (Sigma Aldrich, Munich, Germany). Then, thirteen gm of ion-exchanged
distilled water, 6.8 gm of ammonia, and 6.2 gm of MPS were added to the evenly homoge-
nized M-(n-TiO2)-methanol mixture. The final mixture was ultra-sonicated for one hour,
followed by mechanical stirring for 24 h. The free MPS was then removed from the mixture
by flushing with water and ammonia for five sedimentation cycles. The samples were then
dried at room temperature to obtain the functionalized/modified n-TiO2 (M-(n-TiO2)).

2.2.2. Development of HDPE Nanocomposites

The HDPE nanocomposites were developed using a Ray-ran injection molding ma-
chine (Ray-Ran Test Equipment, Ltd., Warwickshire, UK) The randomized sample design
was obtained using full factorial design and center composite design. Five factors (i.e.,
n-TiO2, n-CNC, PEgMAH, M-(n-TiO2), size of the nanofillers) with three replicates were
used in a full factorial design, whereas two factors (i.e., n-TiO2 and n-CNC) with three
center points and three replicates were applied in the center composite design for further
modeling. The maximum concentrations of nanofillers and compatibilizing agents used
in this study are 5 wt.%. Based on the sample design, the predetermined concentration of
the factors and HDPE were blended utilizing the ultra-centrifugal mixture ((Retsch GmbH,
ZM 200, Haan, Germany)The homogeneous formulation was then transferred to the barrel
of the injection molding machine through the hopper. Our previous studies concluded
that a barrel temperature of 150 ◦C for the residence time of 50 min is the optimum for
processing HDPE [18]. After the retention time was elapsed, samples were injected into
molds of desired shape using air pressure. The operating conditions used in the injection
molding machine are presented in Table 1.

Table 1. Processing conditions of the injection molding technique used for the fabrication of the
HDPE nanocomposites.

Variables Parameter

Barrel temperature 150 (◦C)
Mold temperature 100 (◦C)

Holding time in barrel 50 (min)
Injection pressure (bar) 3–4 (bar)



Polymers 2021, 13, 3100 5 of 27

2.2.3. Mechanical Testing

Briefly, 20 mm long dog-bone samples have been used to evaluate their mechanical
durability using MTS universal testing machine (MTS system corporation, Eden Prairie,
MN, USA). Fracture testing was carried out in a universal testing machine equipped with a
100 KN load cell, and samples were stretched with an overhead speed of 5 mm/min. From
the stress-strain curve, the nanocomposites’ fracture strength (FS), yield strength (YS), and
Young’s modulus (YM) were measured.

2.2.4. Differential Scanning Calorimetry (DSC)

The nanocomposites’ thermal stability was characterized using TA instruments (Model
Q 200, TA Instruments, New Castle, DE, USA), which was maintained in a controlled
environment of N2 gas. To avoid oxidation of the samples, 5 mg of the samples were sealed
using aluminum pans. These pans were exposed to the heating and cooling cycles. The
heating rate was maintained at 10 ◦C/min. From the generated DSC curves, melting and
crystallization points were obtained.

2.2.5. XRD (X-ray Diffraction Spectroscopy)

The developed HDPE nanocomposites were exposed to an XRD diffraction spec-
trometer (X’Pert3, PANalytical X-ray diffraction system, PANalytical, Denver, CO, USA).
The Anode of the instrument was made of copper with CuKα radiation maintained at
λ = 1.54 A◦. The equipment was run at a voltage of 45 kV and a current of 40 mA. The
interplanar distance between the molecules is given by Braggs law [53].

nλ = 2dsinθ (1)

To evaluate the crystalline size of the nanocomposites, the Scherrer equation is
used [54].

Lhkl =
Kλ

β cos θ
(2)

where K is the shape factor for the crystal thickness and is taken to be 0.9, β is the half-height
of the diffraction peak (rad), λ (nm) is the wavelength, and θ is Bragg’s angle.

The degree of crystallinity is calculated as follows [55]:

XC =
I110 + 1.46 I200

I110 + 1.46I200 + 0.75Ia
∗ 100% (3)

where I110 and I200 are the integral intensity of (110) and (200) lattice planes for respective
diffraction peaks. Xc. is the degree of crystallinity, and Ia is the integral intensity of the
amorphous phase.

2.3. Screening of the Factors
2.3.1. Procedure and Design of Experiments

Initially, five factors and their interactions (i.e., n-TiO2, n-CNCs, M-n-TiO2, PEgMAH
and the particle size of n-TiO2 (21 nm, 150 nm)) were designed by full factorial design with
three replicates for improving the responses (i.e., fracture strength, yield strength, Young’s
modulus of the HDPE nanocomposites). Significant factors were determined by subjecting
these factors and responses to perform the analysis of variance (ANOVA) in the MINITAB
17 statistical software program.

2.3.2. Statistical Design of Experiments

The full factorial design allows for a systematic evaluation of the effect of multiple
parameters’ effects and their interaction on the response variables [56,57]. Therefore, a full
factorial design was performed to obtain a clear picture of the factors’ influence and their
interactions on the developed nanocomposites’ mechanical durability. The factors and the
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levels chosen in this study are tabulated in Supplementary Table S1. All analyses were
performed in triplicate to investigate the experimental error(s).

2.4. Modelling of the Factors Using Statistical and Machine Learning Algorithm

The statistical analysis concluded that n-CNCs and n-TiO2 were the major contributors
to improve the nanocomposites’ fracture strength, yield strength, and Young’s modulus.
Their interaction also had a p value less than 0.050, which indicates that the factor is
significant. Therefore, the experimental design was obtained using a randomized central
composite design with two factors (concentration of n-CNCs and n-TiO2), three center
points, and three replicates. Factors were modeled using the response surface methodology
(RSM), artificial neural network (ANN), and genetic algorithms. A sequence of these
analyses is illustrated in Figure 1.

Figure 1. Flow diagram indicating the order of experimental design and the modeling techniques.

2.4.1. Response Surface Methodology (RSM)

Box and Winson [38] developed the central composite design to produce a second-
order polynomial equation. This equation facilitates the development of the response
surface second-order model and optimizes the influence of n-TiO2 nanofiller and n-CNC
concentrations on the durability of the developed HDPE-nanocomposites. To design the
matrix, a central composite design with two factors, three center points, and three replicated
were employed. The number of experiments is determined by 2f + 2f + 1 wherein f is the
number of factors. In the experimental design (Figure 2), +1 and –1 indicate the highest
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value and the lowest value, respectively, and the axial point (α) was kept as the default
value, which is 1.414.

Figure 2. Central composite design for two factors.

Using Minitab 17.0, a second-order polynomial relationship between factors and
responses was developed. The second-order polynomial equation is given by

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i,j

βijXiXj +
k

∑
i=1

βiiX
2
i (4)

where β0 is the intercept, Y is the response variable, Xi (1, 2, 3, . . . , k) represent the
independent variables, βi is the coefficient of the ith factor, βij represents the coefficient of
interaction factor, and βii is the quadratic factor.

2.4.2. Artificial Neural Network (ANN)

ANN comprises of several neurons that can be categorized as processing units, classi-
fied as input, output, and hidden layers. In this study, data moves only in one direction.
Thus, a feedforward network was implemented for this purpose. Information flows from
the input layer to the hidden layer and finally to the output layer. The network’s algorithm
and architecture play a crucial role in its learning rate and capacity. Among several different
algorithms and activation functions of ANN, backpropagation and tansig function are
deemed to be more appropriate to process one-directional data of our kind. Since this
study’s dataset consists of both input data and target data, a supervised learning type has
been chosen. The learning data were distributed randomly in three units training (70%),
validation (15%), and testing (15%). In this network, the input layer was the concentration
of n-TiO2 and n-CNC, while the output layer was the responses such as fracture strength,
yield strength, and young’s modulus. The hidden layer and the hidden neuron were fixed
by the trial-and-error method. The neural network was designed and processed by Matlab
toolbox for the neural network. The steps involved in ANN are schematically represented
in Figure 3. The working parameters and the architecture of the neural network used in
this study are shown in Supplementary Table S2 and Figure 4. The values of R2 and MSE
(mean square error) are based on the relations below:

R2 =
∑N

i=1

(
σ

Exp
i − σavg

)2
− ∑N

i=1

(
σ

Exp
i − σANN

i

)2

∑N
i=1

(
σ

Exp
i − σavg

)2 (5)
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MSE =
1
N

N

∑
i=1

(σ
Exp
i − σANN

i )
2

(6)

Figure 3. Flow diagram of the artificial neural network used in this study.

Figure 4. The neural network architecture used in this study.

2.4.3. ANN-Genetic Hybrid Algorithm (ANN-GA)

To carry out the ANN-GA method, neural designer software (Neural Designer, Sala-
manca, Spain) was implemented. The input of data with the appropriate format was loaded
into the software. The input data were differentiated into continuous and categorical vari-
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ables, and the responses were assigned as the target variables. Target variables can also be
subdivided as the used and unused data. The hidden layer, the hidden neuron, and the
scaling approach need to be selected to design the neural network. Once the network is
recorded, the learning function and its parameters, and the error of interest can be modified.
This step is continued several times until a network with the minimum error was obtained.
After retrieving the network with minimum error, the network was validated to obtain the
network’s global optimization. All steps are presented in Figure 5 as a flow diagram. The
data were further processed with two more optimization techniques, such as simulated
annealing and the genetic algorithm. The parameters used for these two optimizations are
presented in Supplementary Table S3.

Figure 5. Flow diagram of the artificial neural network-genetic algorithm used in this study.

3. Results and Discussion

Although the combination of multiple nanofillers with polymer matrix has extensive
mechanical integrity advantages, this synergy cannot reach its utmost potential due to
their deficiency in compatibility [58,59]. The blending of the multiple nanofillers is re-
stricted by the high surface energy of the nanoparticles, leading to the agglomeration of
the nanocomposites [9]. On the other hand, the primary purpose of using compatibilizing
agents is to enhance the interfacial properties and to improve the nanocomposites’ mor-
phology [60,61]. With these agents, the polymer end region binds to the matrix as they
have a similar backbone structure. The maleic anhydride part of the PEgMAH is attracted
to the metal oxides’ polar surface [61,62]. The binding of the organosilanes side of MPS to
the nanoparticle minimizes the surface energy of the metal oxides, thereby reducing the
possibility of agglomeration [63].
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The HDPE nanocomposites incorporated with the nanofillers (i.e., TiO2, CNC) and
compatibilizing agents (i.e., PEgMAH, MPS) were developed using an injection molding
machine. In designing nanocomposites for biomedical applications, the materials should
acquire excellent durability to accommodate the cells and to provide the structure for their
growth and proliferation. In tissue engineering, fracture strength (FS), yield strength (YS),
and Young’s modulus (YM) are considered among the best characteristics of the mechanical
integrity (i.e., durability) of the materials to be used as biomaterials [7,11]. Hence, in this
study, the influence of the nanofillers and compatibilizing agents on the durability of the
nanobiocomposites was analyzed using ANOVA.

3.1. Screening of the Factors by Analysis of Variance (ANOVA)

The initial screening of the factors (n-TiO2, n-CNC, PEgMAH, M-(n-TiO2), size of the
nanofillers) and the responses (FS, YS, YM) was performed by using analysis of variance
(ANOVA). The factors and levels used in designing a factorial design are summarized
in Supplementary Table S1. The p and F values are estimated by using the degree of
freedom, the sum of the square, and the mean square. The probability of the factor and
its interaction less than or equal to 0.050 (p ≤ 0.050) was considered to be significant. On
careful examination of the influence of PEgMAH on the mechanical properties, its role was
found to be insignificant, as shown in Supplementary Tables S4–S6. In all instances, the
p-value of this factor was found to be greater than 0.050 (p > 0.050). Moreover, the interac-
tion’s significance was rejected as the factor on its own did not have any significant role in
improving the durability of the nanocomposites. However, according to Supplementary
Tables S4–S6, the factor M-(n-TiO2) and its interaction had a significant role in enhancing
the fracture strength, yield strength, and Young’s modulus as the p-value came out to be
less than 0.050. Further, the factor n-TiO2 was found to be significant in improving the
responses (i.e., mechanical properties of the nanocomposites), whereas the particle size
of the TiO2 nanoparticles (i.e., the categorical variable) was not found to be significant, as
evident from Supplementary Tables S4–S6 and Figure S3. The responses found with two
different sizes of nanoparticles (21 nm and 150 nm) were not much different. Moreover,
while comparing the performance of pure n-TiO2 and M-(n-TiO2) concentrations on im-
proving the nanocomposites’ durability, pure TiO2 was found to be better than M-(n-TiO2)
based on its percentage contribution in fitting the model. On further evaluation of the
ANOVA results shown in Supplementary Tables S4–S6, it can be concluded that the CNC
concentration has a significant role (p < 0.05) in improving the developed nanocomposites’
durability. Moreover, the highest F values for CNC (presented in Supplementary Tables
S4–S6) correspond to the fact that it contributed the most to fit the model. This significant
improvement of the mechanical strength using CNCs can be attributed to the fact that
CNCs on their own have mechanical strength and Young’s modulus close to 167.5 GPa [17].

3.2. Thermomechanical Properties of the Nanocomposites
3.2.1. Mechanical Properties of the HDPE Nanocomposites

Further, to develop a second-order model the experiments were run using the central
composite design as the design pattern using both TiO2 and CNCs as the factors. HDPE
nanocomposites samples were developed using an injection molding machine in replicates
of three. To deduce the durability of the HDPE nanocomposites, tensile testing was
carried out. The fracture strength, yield strength, and Young’s modulus were extracted
from the stress-strain curves and summarized in Table 2. The developed nanocomposites’
fracture strength varied from 22.6 to 22.7 MPa, the yield strength was within the range
21.7–27.7 MPa, and the Young’s Modulus was between 314.7 and 815.1 MPa.
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Table 2. The mean mechanical properties of the developed HDPE nanobiocomposites.

CNC TiO2
Fracture Strength

(MPa)
Yield Strength

(MPa)
Young’s Modulus

(MPa)

1 1 22.6 23.2 347.3
0.17 3 24.9 22.9 338.1

3 3 26.7 23.8 363.9
5 1 24.4 25.2 385.2
3 0.17 25 24.1 367.8

5.8 3 25.6 27.7 815.1
1 5 25.9 23.6 353.7
3 5.8 26.4 24.6 375
5 5 27 26.2 540.5
0 0 22.9 22.3 322
0 0 22.9 21.9 315.8
0 0 22.6 21.7 314.7

3.2.2. Thermal Behavior of HDPE Nanobiocomposites
X-ray Diffraction Spectroscopy XRD

The effect of titanium dioxide and cellulose nanocrystals was investigated by exposing
the HDPE nanocomposites samples to X-ray diffractometry. Prominent X-ray diffraction
peaks were visualized at 21.4◦ and 23.7◦ corresponding to the peaks found for standard
high-density polyethylene [64]. The diffraction peaks indicating the presence of TiO2 were
located at 25.4◦, 37.9◦, and 48.1◦, which are in correlation with standard peaks of titanium
dioxide [18,19]. There is a chance of overlap between the primary diffraction peaks of CNC
(2T= 22.5◦ and 23◦) and HDPE (2T= 21.4◦ and 23.7◦), as the peaks are at a similar angle.
Hence, the CNC peaks cannot be visualized in the graph, but their effect can be interpreted
by viewing variation in the crystal size and degree of crystallinity [65]. As shown in Table 3
and Figure 6, the peaks of HDPE with nanofillers have developed more defined peaks.
This modification in peaks can be attributed to their crystal size reduction and degree of
crystallinity increment. Thereby, it can be concluded that both TiO2 and CNC will act as
nucleating agents, which can be observed in the form of peaks [18,66]

Table 3. XRD results for the HDPE/TiO2/CNC nanobiocomposites.

Sample No. Sample Name TiO2 (%) CNC Crystal Planes 2T(◦) Lhkl
Degree of

Crystallinity (%)

1 HDPE 0 0
110 21.29 23.2

93.7200 23.65 17.26

2 HDPE-TiO2 5 0
110 21.33 24.4

95200 23.67 15.22

3 HDPE-CNC 0 5
110 21.29 24.4

96.3200 23.65 15.2

4 HDPE-TiO2 -CNC 5 5
110 21.31 24.4

96.9200 23.65 13.9

Differential Scanning Colorimetric DSC

The melting and crystallization temperatures were obtained upon exposing the pure
HDPE and the HDPE nanocomposites to heating (from 25 ◦C to 200 ◦C) and cooling cycles
(from 200 ◦C to 25 ◦C), respectively. The first heating curve was rejected to reduce the
probability of the influence of moisture or impurity in the obtained results. As shown in
Figures 7 and 8 and Table 4, the melting temperature decreases with the addition of TiO2,
whereas the crystallization temperature increases compared to the pure HDPE. However,
with adding of CNCs to the polymer mix, both the melting and crystallization temperatures
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increase with respect to that of pure HDPE. The rise in both temperatures may indicate
perfect crystallization of the developed nanocomposites [67]. Similarly, Sapkota et al. [68]
observed improved thermal stability due to the introduction of both microcrystalline
cellulose and cellulose nanocrystals into the low-density polyethylene. However, upon
the addition of two nanofillers (5% TiO2 and 5% CNCs), a decrease in the crystallization
process occurs, as presented in Table 4, which could be attributed to the fact that two
nanofillers may have hindered the packing of the molecule chain in polyethylene [66].

Figure 6. XRD diffractograms of the pure HDPE and HDPE nanobiocomposites.

Figure 7. Effect of nanofillers (TiO2, CNC, and both) on the melting temperature of the injection-
molded HDPE/n-TiO2/n-CNC nanobiocomposites.

According to Table 4, the heat of fusion of the developed HDPE nanobiocomposites
decreases when only one nanofiller (either TiO2 or CNC) was used. However, when 5 wt.%
of each of the nanofillers (TiO2 or CNC) were incorporated in the nanobiocomposites, the
heat of fusion was greatly elevated. The decrease of the heat of fusion can be attributed
to the fact that the addition of a single nanofiller into the polymer matrix hinders the
integrity of the crystalline area of the polymeric matrix. However, as the quantity of
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the nanofiller increases when both nanofillers were added to the matrix, more lamellar
crystals are formed by a heterogeneous nucleation process, which then leads to a rise in the
crystallization process [1–3].

Figure 8. Effect of nanofillers (TiO2, CNC, and both) on the crystallization temperature of the
injection-molded HDPE/n-TiO2/CNC nanobiocomposites.

Table 4. DSC results for the HDPE/TiO2/CNC nanobiocomposites.

Sr. No. Sample Melting
Temperature (◦C)

Crystallization
Temperature (◦C)

Heat of Fusion
(J/g)

1 HDPE 128.92 114.22 170.0
2 HDPE-n-TiO2 127.48 114.86 127.8
3 HDPE-n-CNC 131.96 115.33 45.47
4 HDPE-n-TiO2-n-CNC 127.86 114.22 175.0

3.3. Modelling with Response Surface Methodology (RSM)

From the preliminary screening performed by ANOVA, it was found that CNCs
and TiO2 nanofillers were the major players in improving the mechanical durability of
the developed HDPE nanocomposites. To reduce the probability of data redundancy,
randomized experimental runs using these two factors (i.e., CNCs and TiO2) were designed
using a central composite design. In this design, the range of CNCs and TiO2 nanoparticles’
concentration was taken as 0–5.8 wt.% with three center points and three replicates. Data
were processed and modeled into a second-order polynomial equation to develop a linear
relationship between independent and dependent variables. Table 5 summarizes the model
equations and their regression for fracture strength, yield strength, and Young’s modulus
of the developed nanocomposites using RSM in Minitab.

To confirm the models’ adequacy, the regression coefficient, normality plot, and the
significance of the model from ANOVA play a significant role. Regression coefficients (R2)
for fracture strength, yield strength, and Young’s modulus were found to be 73.01%, 92.04%,
and 56.64%, respectively. Since the values of the Adjusted R2 are not much different than
those of R2 (Table 5) it can be concluded that improvement of R2 has happened because of
the goodness of the fit, not just by chance. Even though some of the regression coefficients
found in RSM were not high enough, for all of the responses (i.e., FS, YS, YM) the model
p values were found to be less than 0.05, indicating that the models were significant.
Moreover, since most points are passing through the straight line shown in the normality
plots presented in Figure 9, the models do not have the normality issue. Figure 9 also
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contains the residual plots for all three responses used in this study. It is found that the
residual plot for any response did not produce any particular shape (i.e., funnel), which in
turn confirms that the residual parameter has been satisfied and the models are adequate.
On confirmation of the fitted model, using the regression equation, the responses are
predicted and summarized in Table 6.

Table 5. The models developed by RSM.

Response R2 Adjusted R2 Equations

Fracture strength (MPa) 73.01% 68.52% 22.707 + 0.364 CNC − 0.039 TiO2 + 0.1353 CNC*CNC +
0.1860 TiO2*TiO2 + 0.2564 CNC*TiO2

Yield Strength (MPa) 92.40% 91.14% 22.067 + 0.216 CNC + 0.335 TiO2 + 0.0946 CNC*CNC −
0.0214 TiO2*TiO2 +0.0116 CNC*TiO2

Young’s Modulus(MPa) 56.64% 49.17% 337.9–17.3 TiO2 − 3.5 CNC + 0.21 TiO2*TiO2 + 0.44
CNC*CNC + 15.83 TiO2*CNC
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Table 6. Summarized predicted mechanical properties of the HDPE nanobiocomposites by using
RSM equations.

CNC TiO2
Fracture

Strength (MPa)
Yield Strength

(MPa)
Young’s

Modulus (MPa)

1 1 23.1 22.7 333.6
0.17 3 24.2 22.9 336.5

3 3 24.3 24.3 423.9
5 1 26.8 25.8 333
3 0.17 24.9 23.6 295.5

5.8 3 26.5 27.1 513.8
1 5 26.4 23.6 393.4
3 5.8 26.6 24.6 557.9
5 5 26.0 26.4 646.1
0 0 22.7 22.1 337.9
0 0 22.7 22.1 337.9
0 0 22.7 22.1 337.9

The 3D plots (Figure 10) have been produced to visualize the impact of the factors
(concentration of CNC and TiO2 nanoparticles) on the responses (FS, YS, and YM). In
these 3D plots, the interaction between variables has been indicated using the curvatures.
Depending on the application of interest, the maximum and minimum values for these
responses can be obtained for each factor through the 3D plots [36]. The contour and surface
plots for a varying concentration of the factors were plotted for each of the responses. The
3D plot of Figure 10a shows a maximum fracture strength obtained in the presence of higher
concentrations of both CNCs and TiO2 nanofillers and the minimum fracture strength is
obtained when less than 2 wt.% of both factors incorporated in the nanocomposites. The
curvatures in Figure 10b indicate a clear interaction between the independent variables. The
change in the yield strength of the developed nanocomposites with varying concentrations
of both factors is represented in Figure 10c,d. Both contour and surface plots indicate
that, with increasing concentrations of TiO2 and CNC, higher values of yield strength can
be obtained. Similarly, Young’s modulus (Figure 10e,f) can reach its maximum when the
concentrations of the factors are at high levels.

3.4. Multi-Objective Optimization with Response Surface Methodology Coupled with Genetic
Algorithm (RSM-GA)

It is well known that single response optimization is a tedious and time-consuming
approach. The major problem of single response optimization lies in the fact that there
is a probability of obtaining the resultant combination of the factors impacting only one
of the responses positively while impacting other responses negatively. Multi-objective
optimization by implementing both statistical and machine learning approaches can be an
excellent method to resolve this concern [69,70]. In this study, a nonlinear and randomized
modeling between the three responses (i.e., FS, YS, YM) and two factors (i.e., the concen-
tration of CNCs and TiO2 nanofillers) have been carried out using Optimization tools
application with the gamultiobj function in MATLAB simulation system. The regression
equations, known as fitness equations, obtained from the response surface methodology
(shown in Table 5) have been used as the base equations to optimize the responses. A
random population was initially assigned using the fitness equations and the with help
of lower and upper bounds of the variables. This study’s population type is a double
vector, and the population size was set at 150. The population was allowed to crossover at
a ratio of 0.8. The crossing over function was allowed at the intermediate stage, and the
maximum generations were assigned at 150. The resulting population scores are plotted
and represented in a surface plot in Supplementary Figure S4. This shows that the improve-
ment in Young’s modulus and yield strength of the developed nanocomposites has been
achieved at the expense of fracture strength of the nanocomposites. Figure 11a–f represent
the scatter and contour plots of the factors with each response (fracture strength (a,b),
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yield strength (c,d), and Young’s modulus (e,f)) modeled by the RSM-GA. As observed in
Figure 11a,b, the incorporation of 1.0 wt.% of n-TiO2 and 5.74 wt.% CNCs to the polymer
matrix produced the maximum yield strength of 23.9 Mpa, whereas the highest value of
fracture strength was obtained as 23.6 MPa by combining HDPE with 0.03 wt.% n-TiO2 and
5.74 wt.% of CNCs (shown in Figure 11c,d). The maximum Young’s modulus achieved was
327 MPa when the concentration of TiO2 and CNCs were used at 0.04 wt.% and 0.60 wt.%,
respectively (Figure 11e,f). The R2 for the regression equations for FS, YS, and YM were
found to be 68.52%, 91.14%, and 49.17%, respectively. Although R2 is recommended to be
higher than 95% to achieve better-predicted data, our data could not achieve such a value.
This could explain the difference between the experimental and predicted results [71,72].

Figure 10. Surface and Contour plots for fracture strength (a,b), yield strength (c,d), and
Young’s modulus (e,f) of the developed HDPE nanobiocomposites modeled by response surface
methodology (RSM).
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Figure 11. Scatter and Contour plots for simultaneously optimized multi-responses [fracture strength
(a,b), yield strength (c,d), and Young’s modulus (e,f)] of the developed HDPE nanobiocomposites
modeled by RSM-GA.

3.5. Modelling with Artificial Neural Network (ANN)

The artificial neural network (ANN) is a special type of machine learning algorithm
that is modeled after the human brain. ANN is typically used to develop a nonlinear
relationship between the factors and the responses. Initially, the parameters such as
weights and biases are assigned at random. The pattern between the factors and responses
is determined, and a new sample set is loaded to the network to obtain the predicted target
values. Then, the obtained predicted target values are checked with the actual target values,
and the difference (i.e., error) is noted. Depending on the error, the weight and biases are
being updated. The network is being run several times until the R2 is close to 1. The mean
square error for that network is at its minimum [73,74]. In this study, the neural network
was developed using NN ToolBox in MATLAB using a feedforward multilayer perceptron
approach. After running several different algorithms, the Levenberg-Marquardt algorithm
was found to be the most suitable one for the data used in the study. as this algorithm
exhibited minimum error. Both the input and output variables were initially stored in
MATLAB and using the neural network toolbox, a network with a varying number of
hidden neurons and hidden layers was developed. Initially, the network was run, keeping
the weight and biases at random. Using the trial-and-error method, the most efficient
hidden layer and hidden neurons were obtained. Depending on the R2 and the mean
square error, the network was being saved or rejected. The process parameters such as
Epochs, Mu, and gradients were being adjusted to obtain the network with the least mean
square error. Once the most suitable network was retrieved, the network was rerun with a
new set of input given to the network. The network’s prediction of the output was stored
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and compared with the experimental data. The R2 for fracture strength, yield strength, and
Young’s modulus of the HDPE nanocomposites were found to be 0.97491, 0.98802, and
0.96299, respectively, confirming that the designed network is adequate to generate the
optimum predicted outputs with minimum errors, as shown in Figures 12 and 13. The
outputs of the predicted and experimental results for all of the responses (i.e., YS, FS, YM)
are summarized in Table 7. The mean square error for fracture strength, yield strength, and
Young’s modulus were found to be 2.5 × 10−2, 2.8 × 10−2, and 6.9 × 10−2, respectively,
further confirming the adequacy of the model.

Figure 12. Regression plots for the fracture strength modeled by ANN ((a): training, (b): validation,
(c): testing, (d): average) and the yield strength of the developed nanobiocomposites modeled by
ANN ((e): training, (f): validation, (g): testing, (h): average).
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Figure 13. Regression plots for Young’s modulus modeled of the developed nanobiocomposites by
ANN ((a): training, (b): validation, (c): testing, (d): average).

Table 7. Summarized predicted mechanical properties of the HDPE nanobiocomposites by ANN.

CNC TiO2
Fracture

Strength (MPa)
Yield Strength

(MPa)
Young’s

Modulus (MPa)

1 1 22.7 23.2 340.1
0.17 3 24.8 22.8 341.9

3 3 26.3 23.8 363.5
5 1 24.3 25.6 380.5
3 0.17 25.0 24.1 370.5

5.8 3 26.1 27.4 791.5
1 5 25.4 23.5 354.3
3 5.8 26.5 24.6 375.8
5 5 27.2 26.2 542.7
0 0 22.6 21.1 322.7
0 0 22.6 21.1 322.7
0 0 22.6 21.1 322.7

Equation (5) is used to present the relationship between the factors and responses
in the neural network [75]. The weights and biases of the designed neural network are
summarized in Supplementary Table S7. The output can be predicted by substituting the
hidden layers’ weights and biases and the hidden neurons into Equation (7)

Y = B1 + LW × TANSIG(B2 + IW × X) (7)

where Y is the response variable; X is the input variable, LW is the weights corresponding
to the connection assigned between the hidden layers to the output layer, IW represents
the weights corresponding to the connection assigned between the input layers to hidden
layers, while B1 and B2 denote bias vectors for the output and hidden layers.

Validation of Artificial Neural Network Data by Genetic Algorithm

The artificial neural network is known to be a reliable technique when fitting nonlinear
and ill-fitted data. However, local optimization and overfitting are the two major concerns
of artificial neural network-based optimization. The hybrid of artificial neural networks
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and genetic algorithms was implemented to achieve global optimization and to reduce data
overfitting [76]. In this approach, initially, the data are assigned randomly to a particular
population of neural networks. Upon running the simulation, each population tries to
optimize the target for the input database. These data are then stored in the form of a
chromosome, in which the locus of the chromosome represents one subunit of the neural
network. Using chromosomes as a reference, a new set of the population is assigned. The
new population is decided based on the concept of the ‘survival of the fittest’ while the
chromosome or network that provides the highest fitting value is considered for the next
run. The current population undergoes crossover and mutation to design an improved
neural network [77]. These steps are being continued until a network with minimum
error is obtained. Finally, a fresh set of test samples is added to this network to check the
designed network’s efficiency. The predicted output ANN-GA is stored and compared
with the predicted output of ANN. Figure 14 shows almost no difference in the predicted
results obtained from both ANN and ANN-GA, which indicates that the designed neural
network did not show any overfitting and the optimized results were not locally optimized.

Figure 14. Comparison of the outputs of the modeling techniques with the experimental results.

3.6. Comparison between RSM and ANN Model

Both RSM (statistical method) and ANN (machine learning algorithm) are powerful
techniques to develop a relationship between the dependent and independent variables.
Both of these models were able to predict the results by fitting the experimental data. The
difference between experimental and predicted values (i.e., errors) is used to check model
efficacy. As shown in Figure 15, errors were higher in the case of the RSM predicted results
than that of ANN. Comparing the coefficient of regression for all three responses (YS, FS,
YM) modeled with RSM (Figures 10 and 11, Supplementary Figure S4, and Table 6) and
ANN (Figures 12 and 13 and Table 7), it is evident that ANN is a better technique than
RSM to model the set of data used in this study to determine the influence of nanofiller
concentration on the properties of HDPE nanocomposites. The R2 values obtained by RSM
were 73.01% (FS), 92.04% (YS), and 56.64% (YM), but the R2 values were above 98% for all
three responses modeled by ANN, as shown in Figures 12 and 13. Similar results were
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obtained regarding the impact of clay and EPDM (ethylene–propylene diene monomer) for
optimizing the mechanical properties of polypropylene using the RSM and ANN methods.
By modeling and predicting the data using RSM and ANN, Nakhaei et al. [78] concluded
that the ANN provided an adequate interpretation of the responses. Moghri et al. [69,70]
predicted the fracture modulus for composites prepared using polyamide-6/nano clay
using RSM and ANN methods and reported that ANN was adequate to model the data
with a sample size of 20% less. On the contrary, similar effectiveness of both RSM and
ANN has been reported in predicting the responses [29,79] while others have found that
the RSM is better than ANN in modeling [80].

Figure 15. Bar charts representing the predicted errors of (a) yield strength; (b) fracture strength and
(c) Young’s modulus of the developed nanocomposites by ANN and RSM.

3.7. Multi-Objective Optimization Using Artificial Neural Network-Genetic Algorithm
(ANN-GA)

The above analysis confirmed that the ANN-GA machine learning optimization
technique is found to be the most reliable technique to model the type of data used in this
study. Although ANN is the recommended tool to optimize the nanofiller concentrations
for the mechanical durability of the HDPE nanocomposites, there is a high probability of
overfitting and local optimization. To confirm the fitting and to attain global optimization,
the genetic algorithm plays an important role. In this study, multi-objective optimization
was performed using a combination of artificial neural networks and genetic algorithms.
Initially, a network was developed between the two factors and three responses, and
after conducting the trial-and-error method, the number of hidden neurons and hidden
layers were obtained. Upon training the developed network and obtaining the minimum
mean square error, the data was computed to a genetic algorithm network. Parameters
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employed for the genetic algorithm were obtained by trial-and-error approach. Once the
best network was obtained, the fresh input was loaded into the software as shown in
the genetic algorithm architecture in Figure 16. The predicted outputs generated by the
ANN-GA hybrid technique are illustrated in Figure 17a–f. Using the ANN-GA method,
the highest fracture strength (28 MPa) was obtained with the addition of 5.0 wt.% of CNCs
along with 4.0 wt.% of TiO2 to the HDPE polymer matrix (Figure 17a,b). The maximum
yield strength obtained from the network was 27.9 MPa when the concentration of TiO2 was
about 4 wt.% and CNCs 5 wt.% (Figure 17c,d), while upon the addition of 5 wt.% of each
of TiO2 and CNCs nanofiller to the polymer matrix, it was predicted that Young’s modulus
would be 870 MPa (Figure 17e,f). Upon running the multiple objective optimizations
by ANN-GA and RSM, the differences in error(s) are represented using the bar plots in
Figure 15. It is evident that there was only a slight variation between the experimental run
and predicted results found in ANN-GA, but the differences in RSM are significant.

Figure 16. Final Architecture of ANN- GA network.

Figure 17. Scatter and contour plots for multi-optimized responses (fracture strength (a,b), yield
strength (c,d), and young’s modulus (e,f)) of the developed HDPE nanobiocomposites modeled by
ANN-GA Hybrid.
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4. Conclusions

While developing nanobiocomposites, thermomechanical characteristics play a crucial
role in their performance depending on the application of interest. Polyethylene has proven
to be an excellent candidate for the polymer matrix in bone and cartilage tissue engineering.
However, achieving mechanical integrity similar to the natural tissue or organ is still an
unresolved issue. A wide range of ingredients (i.e., nanofillers) is commonly incorporated
into the polymer matrix to improve the mechanical durability of the nanocomposites on
a trial-and-error basis. Nevertheless, this trial-and-error method is tedious, expensive,
and at times unreliable. However, the statistical and machine learning techniques can be
conveniently used to minimize the time and expenses required for rigorous experimenta-
tion. As per our knowledge, systematic multivariable optimization of the key factors that
improve the mechanical durability of the HDPE nanobiocomposites using both statistical
and machine learning algorithms has not yet been reported. The current study can be
concluded as follows:

(1) Initially, five factors (i.e., n-TiO2, n-CNC, PEgMAH, M-(n-TiO2), size of the
nanofillers), and three responses (yield strength, fracture strength, and Young’s modulus)
were chosen and screened for the insignificant factors by ANOVA using a full factorial
design experiment. The concentrations of TiO2 and CNCs nanofillers were found to be the
significant factors to improve the mechanical durability of the HDPE nanobiocomposites.

(2) Upon confirming the significant factors, a central composite design was used to de-
velop a new set of experiments using the significant factor (i.e., TiO2 and CNCs nanofillers)
only. The resulting data were then modeled using the response surface methodology (RSM)
and artificial neural network (ANN). Due to its ability to predict the new inputs, ANN has
been found to be better than RSM in predicting the mechanical properties of the developed
nanobiocomposites by varying the two significant factors (i.e., TiO2 and CNCs nanofiller).

(3) Later in this study, the same data were optimized with ANN-GA and it was found
that the predicted data obtained from ANN and ANN-GA are more or less the same,
confirming that the modeled dataset was not locally optimized and/or overfitting did
not occur.

(4) Finally, the ANN-GA multi-objective optimization predicted the mechanical prop-
erties of the developed HDPE nanobiocomposites similar to the experimental ones, and
the maximum fracture strength, yield strength, and Young’s modulus were predicted to be
28 MPa, 27.9 MPa, and 670 MPa, respectively, upon the incorporation of TiO2 and CNC
nanofillers of less than 5 wt.%.

Based on the modeled results, the proposed approach may be considered a promising
method to optimize the amount and type of nanofillers that need to be added to the
polymer matrix. The responses (i.e., mechanical integrity) can be safely predicted through
this procedure for any chosen concentration of TiO2 and CNC nanofillers.
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fracture strength (b) yield strength and (c) Young’s modulus. Figure S4. Surface plot comparison
between the responses using RSM-GA. Table S1. Factors and levels used for ANOVA analysis; Table
S2 Working parameters for ANN model. Table S3: Working parameters for GA-ANN model. Table S4.
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