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Abstract: To extend the alginate applicability for the sustained release of hydrophobic medicine
in drug delivery systems, the alkyl alginate ester derivative (AAD), including hexyl alginate ester
derivative (HAD), octyl alginate ester derivative (OAD), decyl alginate ester derivative (DAD),
and lauryl alginate ester derivative (LAD), were synthesized using the alkyl bromides with different
lengths of carbon chain as the hydrophobic modifiers under homogeneous conditions via the bi-
molecular nucleophilic substitution (SN2) reaction. Experimental results revealed that the successful
grafting of the hydrophobic alkyl groups onto the alginate molecular backbone via the SN2 reaction
had weakened and destroyed the intramolecular hydrogen bonds, thus enhancing the molecular
flexibility of the alginate, which endowed the AAD with a good amphiphilic property and a critical
aggregation concentration (CAC) of 0.48~0.0068 g/L. Therefore, the resultant AAD could form stable
spherical self-aggregated micelles with the average hydrodynamic diameter of 285.3~180.5 nm and
zeta potential at approximately −44.8~−34.4 mV due to the intra or intermolecular hydrophobic
associations. With the increase of the carbon chain length of the hydrophobic side groups, the AAD
was more prone to self-aggregation, and therefore was able to achieve the loading and sustained
release of hydrophobic ibuprofen. Additionally, the swelling and degradation of AAD microcapsules
and the diffusion of the loaded drug jointly controlled the release rate of ibuprofen. Meanwhile,
the AAD also displayed low cytotoxicity to the murine macrophage RAW264.7 cells. Thanks to
the good amphiphilic property, colloidal interface activity, hydrophobic drug-loading performance,
and cytocompatibility, the synthesized AAD exhibited a great potential for the development of
hydrophobic pharmaceutical formulations.

Keywords: alkyl alginate ester derivative; bimolecular nucleophilic substitution reaction; controlled
release performance; cytocompatibility; hydrophobic pharmaceutical formulations

1. Introduction

In recent years, synthetic amphiphilic polymers have drawn more and more attention
from researchers, and their self-aggregation performance has also become a research
hotspots [1,2], because the amphiphilic block polymer containing the hydrophilic groups
and the hydrophobic groups is able to self-aggregate into the micelle-like aggregates with
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a hydrophobic inner core and a hydrophilic outer shell in the aqueous solution, which can
be applied to the medical field as a novel drug delivery system with broad prospects [3,4].

Alginate, as a natural anionic heteropolysaccharide mostly derived from brown sea-
weed, has been extensively studied and applied to many biomedical applications owing
to its excellent advantages, such as low cost, non-toxicity, immunogenicity, and good
biodegradation and biocompatibility [5–7]. In particular, alginate can perform mild gela-
tion by divalent cations such as Ca2+, and the formed hydrogel can exhibit good coat-
ing, drug-loading, and sustained release properties, making it a good candidate as a
drug carrier for biomedical application [8–10]. Alginate is a linear unbranched copoly-
mer, consisting of two types of hexuronic acid residues: β-D-mannuronic acid (M) and
α-L-guluronic acid (G) residues, which are (1,4) linked to each other by the glycosidic
bonds and arranged in repeating GG (MM) blocks or alternating MG blocks [11,12]. Due
to the abundant carboxyl and hydroxyl groups on the molecular chains, the raw algi-
nate is very hydrophilic, which results in its poor compatibility with hydrophobic drug
molecules, such as ibuprofen. [13,14]. Furthermore, the presence of these hydroxyl and
carboxyl functional groups are very susceptible to forming intramolecular hydrogen bonds
within the molecules, which gives rise to the highly stretched rigid structure of algi-
nate chains that is not conducive to the loading of hydrophobic drugs [15]. In addition,
the existence of numerous hydrophilic groups also makes alginate exhibit unpredictable
and uncontrollable degradation kinetics and extensive water uptake properties, thus lead-
ing to its poor stability in biological buffers [16–18]. Therefore, with the raw alginate,
it is difficult to achieve effective loading and controlled release of hydrophobic medicines
in the biomedical field. Considering the abundant hydroxyl and carboxyl groups on the
backbone of alginate, the chemical modification of alginate by hydrophobic groups may
be an effective way to overcome its drawbacks as a hydrophobic pharmaceutical carrier
because the chemical modification can be performed at the two secondary C–2 and C–3
hydroxyl groups and the C–6 carboxylic acid groups [19]. Furthermore, the grafting of
hydrophobic segments onto the backbone of alginate can improve properties such as molec-
ular flexibility, hydrophobicity, and physicochemical and biological characteristics, which
make it capable of achieving the loading of hydrophobic drugs through its self-aggregation
and prolonging its stability in biological medium [13,17].

Due to the multi-functional groups of alginate, a few research strategies or methods,
involving the amidation, esterification, oxidation-reductive amination, and Ugi reaction
(multicomponent condensation reaction named after Ivar Karl Ugi) on the chemical mod-
ification of alginate, have been reported [13,19]. For example, Yang et al. [20] prepared
the amidic alginate derivatives by the amidation reaction for their application in the
microencapsulation of λ-Cyhalothrin. Yang et al. [21] synthesized cholesterol grafted algi-
nate derivatives using N, N’-bicyclohexyl carbodiimide as the coupling agent and 4- (N,
N’-dimethylamino) pyridine as the catalyst. The fluorescence analysis showed that it could
self-aggregate into micelles in a solution of 0.15 mol/L NaCl, with the critical aggregation
concentration (CAC) of 0.33 g/L. Kang et al. [22] performed the oxidation-reductive amina-
tion reaction to synthesize a series of alginate-derived polymeric surfactants with the linear
alkyl groups. The synthesized alginate-derived polymeric surfactants presented colloidally
stable aggregates with a unimodal size distribution. Fang et al. [23] performed the Ugi reac-
tion to prepare an amphiphilic alginate derivative, which was applied to stabilize Pickering
emulsion for hydrophobic drug delivery. In general, the hydroxyl and carboxyl func-
tional groups are very susceptible to forming intramolecular hydrogen bonds within the
molecules, which gives rise to the fully stretched rigid skeleton structure of alginate chains
and decreases the reactivity. Consequently, most chemical modifications require coupling
agents and catalysts, including perchloric acid [24], 1-ethyl-3- (3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC·HCl) [20], 4- (N, N’-dimethylamino) pyridine [21],
and 2-chloro-1-methylpyridinium iodide (CMPI) [18], to activate hydroxyl or carboxyl
groups to improve the reactivity. However, a few previous works [25–27] have proposed a
method for the chemical modification of alginate without the aid of a catalyst. This method
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mainly contains two processes: the neutralization of the alginic acid with tetrabutylam-
monium hydroxide (TBAOH) and its subsequent bimolecular substitution nucleophilic
(SN2) reaction, illustrated in Scheme 1. Recently, Pawar et al. [28,29] improved this method
with some modifications that increased the degree of substitution (DS) for alginate deriva-
tives. They provided a strategy to dissolve tetrabutylammonium alginate (TBAA) in polar
aprotic solvents with the presence of a dissolution promoter, such as tetrabutylammonium
fluoride (TBAF), so that the esterification of TBAA could be achieved under homogeneous
conditions via bimolecular substitution nucleophilic (SN2) reactions. The results showed
that the resultant alginate ester derivatives could exhibit high chemical activity, with a DS
close to 1.0. Although Pawar et al. [29] used TBAF-based two component solvent systems
as media for the chemical modification of alginate via the SN2 reaction under homogeneous
conditions, they only synthesized benzyl, butyl, ethyl, and methyl alginate esters as matrix
polymers for the amorphous solid dispersion (ASD) of drugs. Research on the chemical
modification of alginate using alkyl bromides with different lengths of carbon chain as the
hydrophobic modifiers under homogeneous conditions via the SN2 reaction, especially
the characterization, amphiphilic properties, self-aggregation behavior of the alginate
ester derivatives, and the effects of the alkyl groups with different length of carbon chain
(hexyl, octyl, decyl, and lauryl groups) on the physicochemical properties of the alginate
ester derivatives, have been rarely reported so far. Furthermore, amphiphilic alginate
ester derivatives could form micelle-like aggregates in aqueous media, so they could be
widely used in encapsulating hydrophobic drugs for the development of hydrophobic
pharmaceutical formulations for biomedical application.
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Scheme 1. Synthetic routes of the neutralization of the alginic acid with TBAOH and the synthesis of AAD via
the SN2 reaction.

In the current work, in order to extend the alginate applicability, thereby developing a
promising biomedical material with great potential for the sustained release of hydrophobic
medicine in drug delivery systems, the alkyl alginate ester derivative (AAD), including
hexyl alginate ester derivative (HAD), octyl alginate ester derivative (OAD), decyl alginate
ester derivative (DAD), and lauryl alginate ester derivative (LAD), were synthesized
using alkyl bromides with different lengths of carbon chain as the hydrophobic modifiers
under homogeneous conditions via the SN2 reaction. The structure and physicochemical
properties of the resultant AAD were contrastively characterized by Fourier transform
infrared spectroscopy (FT-IR), 1Hydrogen-nuclear magnetic resonance (1H NMR), X-ray
diffraction (XRD), thermal gravimetric analysis (TGA), fluorescence spectrophotometer,
transmission electron microscope (TEM), and dynamic light scattering (DLS). Moreover,
the effects of the alkyl groups with different lengths of carbon chain (hexyl, octyl, decyl,
and lauryl groups) on the physicochemical properties of AAD were examined. Finally,
the loading and in vitro release of ibuprofen for the AAD microcapsules prepared by
the emulsification method, and the cytotoxicity of AAD against the murine macrophage
RAW264.7 cells, were also investigated.

2. Experimental Procedure
2.1. Materials

Alginic acid (90%, MW = 137,100, M/G = 0.6), Tetrabutylammonium fluoride (TBAF,
99%), Tetrabutylammonium hydroxide (TBAOH, 25%), and ibuprofen (98%) were pur-
chased from Aladdin Reagent Co., Ltd., Shanghai, China. 1-bromohexane (99%) and lauryl
bromide (99%) were purchased from Adamas Reagent Co., Ltd., Shanghai, China. 1-
bromooctane (98%) and 1-bromodecane (98%) were purchased from Alfa Aesar Chemical
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Co., Ltd., Shanghai, China. The murine macrophage RAW 264.7 cells were purchased from
the Cell Bank of the Chinese Academy of Sciences, Shanghai, China. Dulbecco’s modified
eagle medium (DMEM) was obtained from Gibco, Thermo Fisher Scientific, Waltham, MA,
USA. Fetal bovine serum (FBS) was supplied by Biological Industries, Rehovot, Israel.
A Cell Counting Kit-8 (CCK-8) was obtained from Dojindo Chemical Laboratories, Ku-
mamoto, Japan. Other solvents, such as N, N-dimethylformamide (DMF), phosphate buffer
saline (PBS), hydrochloric acid (HCl), sodium hydroxide (NaOH), sodium chloride (NaCl),
ethanol, methanol, and ethyl acetate were also purchased from Aladdin Chemical Reagent
Co., Ltd., Shanghai, China. These chemicals were analytical grade and used without further
purification. All aqueous solutions were prepared with deionized water.

2.2. Homogeneous Synthesis of AAD with Different Hydrophobic Side Groups

As illustrated in Scheme 1, the synthesis route of AAD via the SN2 reaction involved
the neutralization of the alginic acid with TBAOH to prepare tetrabutylammonium alginate
(TBAA), followed by further esterification of the TBAA with alkyl bromides, which was
based on the previous methods with some modifications [28,29]. Firstly, 8.0 g of alginic
acid was dispersed in a 500 mL beaker containing 200 mL distilled water under stirring.
Secondly, the aqueous TBAOH was added dropwise to completely dissolve the polymer
until the pH was adjusted to 7~10, followed by suction filtration under vacuum using
coarse filter paper to remove insoluble particulate impurities. In order to further remove
the small unreacted substances, the resultant solution was dialyzed for 3 d and lyophilized
to obtain pale yellow TBAA with a yield of 61.5%.

Subsequently, 1.2 g (2.59 mmol of hexuronic acid residues) of dry TBAA was fully
dissolved in the 80 mL of DMF containing 0.8 g (3.06 mmol) of TBAF in a beaker under
vigorous stirring. A certain amount of the alkyl bromide was then directly added to the
blend solution, and the reaction was continuously stirred at ambient temperature for 24 h.
Afterwards, 40 mL of 2.5 mol/L NaCl aqueous solution was added to the mixture, followed
by stirring for another 2 h, so that the existing TBA+ ions could be replaced by Na+ ions.
Finally, the resultant product was completely precipitated with a five times volume of
ethyl acetate and separated by centrifuge at 8000 rpm to remove any residual reagents and
byproducts. The product was dialyzed with deionized water for 3 d to remove residual
impurities and then lyophilized to obtain the AAD. The experimental parameters for
the chemical modification of alginate with different hydrophobic side groups are shown
in Table 1. The AADs synthesized by 1-bromohexane, 1-bromooctane, 1-bromodecane,
and lauryl bromide were labeled as HAD, OAD, DAD, and LAD, respectively. Meanwhile,
sodium alginate (SA), prepared by neutralization of alginic acid with NaOH solution,
was used as a reference.

Table 1. Reaction parameters for the synthesis of AAD with different DS and yield.

Scheme NAlkyl bromide/NHexuronic
TBAA

(mmol)
Alkyl Bromide

(mmol) DS (%) Yield (%) a

HAD 0.3 2.59 0.78 26.2 76.8
HAD 0.5 2.59 1.30 44.6 79.5
HAD 1.2 2.59 3.11 100.0 83.4
OAD 0.5 2.59 1.30 42.3 78.4
DAD 0.5 2.59 1.30 41.5 79.7
LAD 0.5 2.59 1.30 40.1 78.6

a Yield = actual yield/theoretical yield × 100%.

2.3. Characterization of AAD

The DS values of the different AADs was calculated via saponification reaction ac-
cording to the method in the literature [29]. The molecular structure and crystallinity of the
AADs were characterized by Fourier transform infrared spectroscopy (FT-IR), 1Hydrogen-
nuclear magnetic resonance (1H NMR) and X-ray diffraction (XRD). The FT-IR spectra of
the samples were recorded on a Nicolet-6700 FT-IR spectrophotometer (Thermo Fisher
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Scientific, Waltham, MA, USA), and were acquired with 64 scans with a resolution of
4 cm−1 in the wavenumber range of 4000~400 cm−1. Approximately 2 mg of the sam-
ple was mixed with 100 mg of KBr, dried with an infrared lamp, and then compressed
to semitransparent disks for spectroscopic analysis to determine the composition of the
AAD functional groups. 1H NMR was performed on a Bruker AV 400 nuclear magnetic
resonance spectrometer (Bruker, Fällanden, Switzerland) using a 5 mm NMR tube at 25 ◦C.
The samples were dissolved in D2O (99%) to a concentration of approximately 10 mg/mL.
XRD analysis of the samples was performed on a Bruker AXS/D8 advance diffract meter
(Bruker, Cambridge, UK) using Cu-Kα (λ = 0.154 nm), and was operated at 40 kV and
100 mA in step scan mode at a scanning speed of 0.02◦/s. X-ray diffraction measurements
were performed over a 2θ range of 5◦~60◦. The thermal properties of AAD were measured
by thermal gravimetric analysis (TGA), which was conducted using a TA Instrument
Q600 Thermal Analyzer (TA Instrument, New Castle, DE, USA) in air at a heating rate of
20 K/min with the gas flow rate of 50 mL/min from 30 ◦C to 800 ◦C and cooling rate of
60 K/min.

2.4. Self-Aggregation Performance of AAD

The self-aggregation behavior of AAD was evaluated by fluorescence spectroscopy
using pyrene as a fluorescence probe. The measurement was performed in 0.15 mol/L
aqueous NaCl solution, which is beneficial to facilitate the aggregates of polymer samples.
Fluorescence measurement was performed on a Hitachi F7000 fluorescence spectropho-
tometer (Hitachi, Honshu, Japan). Pyrene as a fluorescence probe was excited at 335 nm,
and the emission spectrum was collected in the range of 350–500 nm at an integration time
of 1s with a slit width of 2.5 nm. The morphology of the AAD micelle-like aggregates
were observed with a JEM 2100 TEM (JEOL Co., Tokyo, Japan) at an acceleration voltage
of 200 kV. Transmission electron microscope (TEM) images of the samples were obtained
by placing a few drops of the aqueous dispersions of the samples onto a carbon-coated
copper grid and evaporating the solvent prior to observation. The hydrodynamic diameter
and zeta potential of AAD micelle-like aggregates were measured by DLS with a Malvern
Nano-ZS90 Zetasizer (Malvern, Worcestershire, UK) at a scattering angle of 90◦ at 25 ◦C,
employing an (He-Ne) argon laser (λ = 633 nm). The polymeric micelle-like aggregates
solution was prepared at 60 ◦C and diluted to a concentration of 1.0 mg/mL to avoid
multiple scattering.

2.5. Preparation of the Drug-Loaded AAD Microcapsules and Its Release Performance

The AAD microcapsules with the encapsulation of ibuprofen were prepared by the
high-speed shearing method using AAD as the emulsifier. A certain amount of ibuprofen
was dissolved in chloroform to prepare a chloroform solution with a drug concentration
of 25 mg/mL. Then, 1 mL of this chloroform solution and 4 mL of 12.5 mg/mL AAD
self-aggregated micelles solution were mixed well under high speed stirring to form the
drug-loaded AAD microcapsule emulsion [17,20]. The microstructure of the drug-loaded
microcapsules was observed by a fluorescent microscope (Nikon Ti-S FM, Tokyo, Japan).
The microcapsules were stained with Nile red on the glass microscope slide, and they
covered the coverslip for the observation. Additionally, the residual ibuprofen in the
aqueous phase was extracted by chloroform, which was further measured by GC-MS
(HP6890/5973MSD, Palo Alto, CA, USA) to determine the amount of residual ibuprofen.
The encapsulation efficiency (EE) for the drug-loaded AAD microcapsules can be calculated
using the following equation [30–32]:

Encapsulatione f f iciency(EE) =
totalibupro f en − residualibupro f en

totalibupro f en
(1)

The release of ibuprofen from the AAD microcapsules was performed in pH 7.4
phosphate buffered saline (PBS, 0.1 mol/L) medium at 37 ◦C. Approximately 2 mL of AAD
microcapsules solution was placed into a dialysis bag with a molecular cut-off of 8000,
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and they were then immersed in 50 mL PBS in a centrifuge tube. An amount of 50 mL of
the solution was replaced with the same volume of fresh PBS at different time intervals,
thus avoiding the influences of the saturated solutions. The released ibuprofen for each
time interval was measured by GC-MS, and the drug release procedure was performed in
triplicate to calculate the standard deviation.

To further investigate its release mechanism, the Korsmeyer-Peppas model [33]
was used to analyze the release profile.

Mt/M∞ = Ktn (2)

where Mt/M∞ is the fractional release of drug in time (t), K is a constant incorporating
structural and geometrical characteristics of the delivery system, and n is the diffusion
exponent characteristic of the release mechanism. For normal Fickian diffusion, the value
of n = 0.5, and for case II diffusion, n = 1.0; the values of n intermediate between the above
limits indicate non-Fickian transport [34].

2.6. Cytotoxicity of AAD

Cytotoxicity of the AAD was assessed using murine macrophage RAW264.7 cell,
which were cultured with DMEM supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin under the condition of 37 ◦C, 5% CO2, 95% air, and 100% rel-
ative humidity. The murine macrophage RAW264.7 cells were seeded at a density of
1.0 × 105 cells/100 µL in 96-well plates with complete DMEM medium and cultured at
37 ◦C in a humidified incubator. Sterilized AAD was added at the final concentrations of
100, 200, 300, and 400 µg/mL. After 2 d of incubation, 10 µL of CCK-8 solution was added
to each well. After 4 h of incubation, absorbance was measured at 450 nm using an ELISA
plate reader and then converted into a macrophage cell viability as follows:

Cell viability =

[
As − Ab
Ac − Ab

]
× 100% (3)

where As is the absorbance of the sample group, Ac is the absorbance of the control group,
and Ab is the absorbance of the blank group. Simultaneously, the cells cultured on the
96-well plates without AAD were served as the blank control group.

3. Results and Discussion
3.1. Synthesis and Characterization of AAD

According to previous work [28,29], we attempted to conduct the homogeneous syn-
thesis of AAD in N,N-dimethylformamide/tetrabutylammonium fluoride (DMF/TBAF),
and partially esterified hexyl, octyl, decyl, and lauryl alginates were synthesized via the
SN2 reaction with the corresponding alkyl halides. As shown in Scheme 1, the homoge-
neous synthesis of AAD in DMF/TBAF consisted of two processes: (1) synthesis of TBAA
intermediates; (2) esterification of TBAA intermediates. The SN2 reaction could be carried
out in a homogeneous solution because TBAA could be completely dissolved in DMF with
the aid of 1% TBAF. The successful synthesis of TBAA intermediates could be verified by
FT-IR spectra and 1H NMR spectra, as shown in Figure 1.

It was observed from Figure 1a that the SA displayed the main characteristic bands
at 2929, 1610, and 1414 cm−1, which were respectively assigned to the C–H stretching
vibration of the polysaccharide structure and the asymmetric and symmetric stretching
vibration of –COO– [35]. The absorption bands at 1094, 1034, and 951 cm−1 were attributed
to C–O and C–O–C stretching vibration on the polysaccharide skeleton, respectively [36].
In comparison with SA, the TBAA showed the chemical structure difference in its FT-IR
spectrum, and new weak bands at 2874 and 1474 cm−1, owing to the –CH2– stretching
vibration and –CH3 bending vibration of TBA+, could be observed. These results indicated
the successful synthesis of TBAA intermediates through the neutralization of the alginic
acid with TBAOH. In addition, it can be seen from Figure 1b that the signal peaks at
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5.5~3.0 ppm were ascribed to the proton signal peaks on the alginate backbone of SA [20].
In comparison with SA, the TBAA showed new proton signal peaks at 3.10~3.00, 1.42~1.66,
1.25~1.20, and 0.86~0.80 ppm, which were classified as –CH2– and –CH3 of TBA+. This
result further proved the successful synthesis of TBAA intermediates.
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To investigate the effects of alkyl groups with different lengths of carbon chain (hexyl,
octyl, decyl, and lauryl groups) on the physicochemical properties of AAD, the HAD,
OAD, DAD, and LAD were synthesized using the corresponding alkyl halides with the
NAlkyl bromide/NHexuronic molar ratios fixed at 0.5 via the SN2 reaction. The reaction pa-
rameters for the synthesis of AAD with different DS and yields are presented in Table 1.
It can be observed that the DS of HAD, OAD, DAD, and LAD was close to 40%. Meanwhile,
to prepare different DS of HAD, various N1-Bromohexane/NHexuronic molar ratios were per-
formed to achieve the chemical modification. The different DS and yields of HAD with the
N1-Bromohexane/NHexuronic values of 0.3, 0.5, and 1.2 are also presented in Table 1. It can be
seen that the DS and yield of HAD increased with the increase of N1-Bromohexane/NHexuronic
values. Even when the N1-Bromohexane/NHexuronic molar ratio was 1.2, the DS of HAD
reached approximately 100%. This result directly indicated that the SN2 reaction for the
chemical modification of SA was active. To note, it was reported that the AAD grafted
with the alkyl chains was able to associate to form self-aggregated micelles through both
intra- and intermolecular hydrophobic interactions [21]. However, these properties were
obtained only within a narrow range of DS. At low DS, AAD was not enough to drive
its self-aggregation, while at high DS, the polymer derivatives were no longer soluble in
water [37]. For this reason, we selected the AAD with the DS close to 40% to develop the
hydrophobic pharmaceutical formulations.

Figure 2a represents the FT-IR spectra of SA, HAD, OAD, DAD, and LAD. Compared
with the spectrum of SA, HAD, OAD, DAD, and LAD exhibited the additional weak bands
in addition to the basic characteris37tic absorption bands of SA. The absorption bands
of HAD, OAD, DAD, and LAD at 2930, 2928, 2927, and 2926 cm−1 were significantly
enhanced, and were ascribed, respectively, to the stretching vibration of –CH3 on the hexyl,
octyl, decyl, and lauryl groups. Furthermore, the additional bands appearing at 2860, 2860,
2858, and 2926 cm−1 were assigned, respectively, to the –CH2– stretching vibration of the
hexyl, octyl, decyl, and lauryl groups. In addition, the additional bands appearing at 1741,
1741, 1741, and 1740 cm−1 were owing to stretching vibration of C=O on the ester group,
while the other new bands appearing at 1244, 1245, 1243, and 1244 cm−1 were attributed
to the stretching vibration of C–O on the ester group [29]. These results indicated that the
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hexyl, octyl, decyl, and lauryl groups had successfully grafted onto alginate via the SN2
reaction to generate the AAD.
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Figure 2b shows the 1H NMR spectra of SA, HAD, OAD, DAD, and LAD. It can
be observed that all the samples exhibited proton peaks ranging from 5.0 to 3.5 ppm,
which were assigned to the proton signal of native alginate backbone [20]. However, in
comparison with SA, the spectra of HAD, OAD, DAD, and LAD showed new proton
peaks at 1.70~1.60, 1.40~1.20, and 0.90~0.70 ppm, which were attributed to –CH2– and
–CH3 signals on the hexyl, octyl, decyl, and lauryl groups, and these new peaks gradu-
ally increased with the increase of the carbon chain length of the alkyl groups [7,20,35].
The results further proved that the hydrophobic alkyl groups were successfully grafted
onto alginate molecular chains.

XRD is the most direct and effective method to analyze the change of crystal structures
of alginate in the SN2 reaction. It can be observed from Figure 3 that SA, HAD, OAD,
DAD, and LAD exhibited weak crystalline diffraction peaks, indicating their amorphous
structures. The diffraction peaks of SA at around 15◦ and 22◦ were typical characteristic
peaks of the hydrated crystalline structures resulting from the intramolecular hydrogen
bonds of SA [38,39], but HAD, OAD, DAD, and LAD revealed a sharp diffraction peak
at 2θ = 14.8◦ and a wider diffraction peak at 2θ = 20◦ after the chemical modification,
which was similar to the crystal structure characteristics of alginate derivatives reported by
Chen et al. [35]. By contrast, the diffraction peak of alginate decreased and became broad
after the esterification modification, which showed that the microcrystalline structures of
AAD had changed; therefore, the transformation of these crystal diffraction peaks for SA
indirectly indicated that the esterification modification had weakened and destroyed the
intramolecular hydrogen bonds of alginate, thus enhancing its molecular flexibility [7].

Thermogravimetric analysis was utilized to estimate the different thermal stabilities
of SA and HMAD, which could indirectly reflect the change of molecular structures of
alginate in the SN2 reaction. It can be observed from Figure 4 that the weight losses of
SA, HAD, OAD, DAD, and LAD at 800 ◦C were 70.2%, 70.5%, 76.1%, 78.9%, and 80.9%,
respectively. Moreover, SA, HAD, OAD, DAD, and LAD displayed two main weight loss
stages from their DTG curves: one was attributed to the losses of physically adsorbed water
at low temperature (80~120 ◦C), the other was ascribed to the decomposition of polymer
molecular at high temperature (200~250 ◦C) [40]. It can be observed that, with the increase
of the carbon chain lengths of the hydrophobic side groups, the hydrophobicity of AAD is
gradually enhanced, which lead to the reduction of the physically adsorbed water, thus
decreasing the weight loss in the temperature range of 50~200 ◦C. When the temperature
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was gradually rising, the molecular chain of the polymer broke down and generated
CO, CO2, and H2O [30,31], resulting in the rapid decrease of weight. The initiating
decomposition temperatures of SA, HAD, OAD, DAD, and LAD were 237, 224, 226, 223,
and 222 ◦C, respectively. Therefore, it was obvious that the AAD had lower thermal
stability due to the decrease of the carboxyl groups of the polymer and the formation of
ester bonds that destroyed the polymeric intramolecular hydrogen bond. These results
further imply the esterification of alginate via the SN2 reaction was successful.
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3.2. Colloidal Interface Activity of AAD

The colloidal interface activity of AAD was evaluated by fluorescence spectroscopy,
transmission electron microscopy (TEM), and dynamic light scattering (DLS). The pho-
tophysical characteristic of pyrene depended on its surrounding hydrophilic and hy-
drophobic environments, which could be applied to detect the self-aggregation behavior
of AAD [41,42]. In the present work, the amphiphilic property of AABD and its criti-
cal aggregation concentration (CAC) value were determined by the pyrene fluorescence
probe technique. Pyrene has five peaks in the emission spectra, and the ratio value of
the fluorescence intensity of the first peak at 372 nm (I1) to the third peak at 383 nm (I3)
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was influenced by the micro-environmental polarity in the aqueous solution [7,21]. Pyrene,
commonly used as the fluorescent probe, is insoluble in the aqueous medium, but it
can be encapsulated in the hydrophobic micro-domains formed by the alkyl chains of
AAD [7]. It can be accepted that the intensity ratio values of I1 and I3 (I1/I3) are re-
lated to the micro-environmental polarity surrounding pyrene molecules, which de-
creases with the reduction of the micro-environmental polarity. When the hydropho-
bic alkyl groups, such as hexyl, octyl, decyl, and lauryl groups, drove AAD to form
self-aggregated micelle, the ratio value of I1/I3 significantly decreased, so the lower the
ratio of I1/I3, the higher of the hydrophobicity for AAD [21]. As shown in Figure 5,
the ratio of I1/I3 for AAD was significantly lower than that of SA at the same concentration,
indicating that the AAD emerged as having the higher hydrophobicity. Furthermore, the
ratio of I1/I3 of AAD gradually decreased with the increase of its concentration. The de-
crease in the ratio of I1/I3 can be applied to evidence hydrophobic micro-domain formation
due to intermolecular hydrophobic associations after the formation of self-aggregated
micelle. Moreover, the critical aggregation concentration (CAC) of AAD, determined
from the change of fluorescence intensity ratio (I1/I3) in polymer concentration, is the
lowest concentration of self-aggregation formation by intramolecular or intermolecular
associations [4]. The CAC value of SA, HAD, OAD, DAD, and LAD were 1.55, 0.48, 0.12,
0.02, and 0.0068 g/L, respectively, which indicated that AAD possessed both hydrophilic
and hydrophobic properties. In particular, the OAD, DAD, and LAD curves of I1/I3 vs.
the concentration were consistent with the results reported by Yan et al. [7], which revealed
a typical characteristic with two plateaus, at low concentrations and at high concentrations,
respectively, similar to the classic surfactant. Furthermore, it was apparent that the CAC
of AAD was significantly lower than that of SA. The lower the CAC value, the higher the
stability of the micelles at low concentrations in aqueous medium or blood circulation
systems post administration. The results implied that the SN2 reaction was an effective
approach to endow the AAD with good amphiphilic functionality.
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Intermolecular hydrophobic associations of amphiphilic AAD resulted in the for-
mation of self-aggregated micelle at a concentration higher than its CAC in 0.15 mol/L
aqueous NaCl solution. The morphology of HAD, OAD, DAD, and LAD self-aggregated
micelles could be measured by TEM observation. As shown in Figure 6, SA only gener-
ated the irregular self-aggregates because its molecular chain contains a large number of
hydroxyl groups and negatively charged carboxyl groups, and it is easy to form strong
intramolecular hydrogen bonds and electrostatic repulsion in 0.15 mol/L aqueous NaCl
solution [21]. However, AAD could form regular self-aggregated micelles with a spherical
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shape and good structural integrity through molecular self-assembly. This result was
ascribed to the hydrophobic associations and hydrogen bonding of the hexyl, octyl, decyl,
and lauryl groups that were advantageous in terms of the self-aggregation behavior of
amphiphilic AAD, which not only facilitated the stability of self-aggregated micelle but
also influenced the morphology of the micelles [43,44].
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The colloidal property of AAD self-aggregated micelles was further investigated by
dynamic light scattering (DLS). As shown in Figure 7a, the AAD self-aggregated micelle
exhibited a narrow hydrodynamic diameter (dH) distribution in comparison with the
SA aggregates. The average dH of SA, HAD, OAD, DAD, and LAD self-aggregated mi-
celles were 570.2 nm (PDI = 0.49), 285.3 nm (PDI = 0.29), 245.0 nm (PDI = 0.36), 210.2 nm
(PDI = 0.32), and 180.5 nm (PDI = 0.21), respectively. As the alkane chain increased,
the average dH gradually decreased. The growth of the carbon chain length of the hy-
drophobic side groups enhanced the attraction between the ends of the tail, which caused
strong hydrophobic associations, resulting in the reduction of dH. These results were
attributed to the rigid and extended chain characteristics of SA molecules in aqueous
media that led to bigger diameters for the SA aggregates [45], while the grafting of the
hydrophobic side groups of the hexyl, octyl, decyl, and lauryl groups broke the intramolec-
ular hydrogen bonds and enhanced the molecular flexibility that enabled itself to curl
freely to form smaller diameters for the AAD self-aggregated micelle [35,45]. Moreover,
from Figure 7b, due to the enhancement of molecular flexibility, which exposed more
residual free-curling carboxyl groups on the surface, the SA, HAD, OAD, DAD, and LAD
self-aggregated micelles revealed the relatively high negative zeta potential at −27.4, −44.8,
−39.2, −38.3, and −34.4 mV, respectively, as a result of the presence of the negatively
charged carboxyl groups [30]. The zeta potential of the AAD self-aggregated micelle was
significantly lower than that of the SA aggregates, which was attributed to the fact that
the AAD with both the hydrophilic main chains and hydrophobic side groups was able to
self-aggregate into core-shell architectures where the hydrophilic carboxyl groups were ex-
posed, thus reducing its zeta potential. It was reported that the self-aggregated micelle was
stable in aqueous solution when its zeta potential was lower than −30 mV [7,46]. Therefore,
the HAD, OAD, DAD, and LAD self-aggregated micelle could be significantly stable in
aqueous solution due to the strong electrostatic repulsion that can prevent aggregation
among the micelles.
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Table 2 shows the comparison results of HAD, OAD, DAD, and LAD, including
the DS and CAC value and average dH and zeta potential. It was found that, with the
increase of carbon chain length of the hydrophobic side groups, the DS and CAC value
of AAD were gradually reduced, indicating that the chemical modification of alginate
with the shorter alkyl groups revealed the higher reaction activity, and the longer the
hydrophobic side groups of AAD, the stronger the hydrophobic association, thus displaying
better amphiphilic properties [7,20]. In addition, the average dH and zeta potential of
AAD also decreased with the increase of the carbon chain length of the hydrophobic
alkyl groups. This result shows that the longer the hydrophobic side groups of AAD,
the stronger the hydrophobic association, making the AAD more prone to self-aggregation,
thereby exhibiting higher colloidal interface activity, which was suitable to develop the
hydrophobic pharmaceutical formulations [21].

Table 2. Comparison of performance parameters of AAD with different hydrophobic side groups.

Sample DS (%) CAC Value (g/L) Average dH (nm) Zeta Potential (mV)

HAD 44.6 0.48 285.3 −34.4
OAD 42.3 0.12 245.0 −38.3
DAD 41.5 0.02 210.2 −39.2
LAD 40.1 0.0068 180.5 −44.8

3.3. Drug-Loading and Release Performance of AAD Microcapsules

Thanks to the good colloidal interface activity of AAD, it could be used to pre-
pare drug-loaded microcapsules by the emulsification method. The microstructures
of the fabricated drug-loaded AAD microcapsules were observed by fluorescent micro-
scope after fluorescence staining, and they are presented in Figure 8. It can be observed
that the emulsion droplets were in the regular spherical shape, indicating that HAD,
OAD, DAD, and LAD possessed emulsifying properties similar to traditional surfactants.
The emulsion droplets appeared red in the dark field for the Nile red excitation, which indi-
cates that the drug-loaded AAD microcapsule emulsion was an oil-in-water emulsion type
because the oil-soluble Nile red only existed in the oil phase and appeared red for its excita-
tion [47]. According to Equation (1), the encapsulation efficiency (EE) of HAD, OAD, DAD,
and LAD drug-loaded microcapsules was calculated to be 71.6%, 75.3%, 77.1%, and 78.8%
(Table 3) which were much higher than that of SA drug-loaded microcapsules. Moreover,
with the increase of the carbon chain length of the hydrophobic side groups, the EE of
AAD gradually increased for the enhancement of the hydrophobic associations. This result



Polymers 2021, 13, 3351 13 of 17

indicated that the modification reaction had greatly improved the loading performance of
the AAD for hydrophobic drugs [17,35].
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Table 3. SA, HAD, OAD, DAD, and LAD microcapsules fitting results for the ibuprofen release data.

Formulation
Code EE n R2 Diffusion

Mechanism

SA microcapsules 25.5% ± 3.2% 0.9310 ± 0.0064 0.9815 non-Fickian
HAD microcapsules 71.6% ± 2.8% 0.8524 ± 0.0061 0.9925 non-Fickian
OAD microcapsules 75.3% ± 3.0% 0.8603 ± 0.0058 0.9930 non-Fickian
DAD microcapsules 77.1% ± 2.3% 0.7990 ± 0.0057 0.9911 non-Fickian
LAD microcapsules 78.8% ± 2.5% 0.8165 ± 0.0050 0.9904 non-Fickian

Ibuprofen is a commonly used non-steroidal anti-inflammatory drug that has been
widely applied to the treatment of various musculoskeletal diseases and pain symptoms.
The release of ibuprofen from the drug-loaded microcapsules was achieved through self-
diffusion of the drug and the swelling and degradation of the drug-loaded microcap-
sules [31]. Figure 9 shows the release profiles of ibuprofen from SA, HAD, OAD, DAD,
and LAD microcapsules in pH 7.4 PBS at 37 ◦C. It can be observed that the SA micro-
capsules revealed a significant burst release, and approximately 85% of the drug was
quickly released within the first 120 min. However, at the same time, the release rate of
ibuprofen in the AAD microcapsules was significantly lower than that of SA microcapsules,
and it could be released continuously within 480 min, indicating that the hydrophobic
inner cavity of AAD microcapsules can effectively solubilize hydrophobic ibuprofen, thus
slowing down the diffusion rate of the drug and reducing the drug release rate. Meanwhile,
the increase of the carbon chain length of the hydrophobic side groups for AAD was more
conducive to achieving the controlled release performance because the enhancement of the
hydrophobic associations could effectively retarded the drug release rate. The prolongation
of release time may be helpful to improve the drug efficacy and drug utilization in actual
drug therapy [48,49]. Through the Peppas model fitting in Table 3, the model correlation
coefficients R2 of SA and AAD microcapsules were higher than 0.99, indicating that the
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release curves were well fitted by the model equation. Additionally, the characteristic
indexes, n, of the release process of the SA, HAD, OAD, DAD, and LAD microcapsules
were 0.9310, 0.8524, 0.8603, 0.7990 and 0.8165, respectively, indicating that the release
processes of the SA and AAD microcapsules belonged to the non-Fickian diffusion model,
indicating that the swelling and degradation of the AAD microcapsules was related to the
diffusion of the loaded drug, which jointly controlled the release rate of the ibuprofen [30].
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3.4. Cytocompatibility of AAD

The cytotoxicity of the HAD, OAD, DAD, and LAD was evaluated on the murine
macrophage RAW264.7 cell by CCK-8 assay. As shown in Figure 10, the murine macrophage
RAW264.7 cell with various concentration of AAD microcapsules displayed a similar cell
viability to the SA, which was close to the control, indicating that the RAW264.7 cell
could be viable and proliferate well on the HAD, OAD, DAD, and LAD [50]. However,
the cell viability gradually decreased with the increase of the AAD concentration, which
implied that excessively high concentrations of AAD might inhibit the viability of cells.
However, when the concentration of AAD was as high as 400 µg/mL, the cell viability
still remained above 90% after 2 days of incubation, exhibiting good cytocompatibility of
AAD. Therefore, in view of the good hydrophobic drug-loading capacity, release perfor-
mance, and cytocompatibility of AAD, they can be applied to the pharmaceutical field for
medical applications.
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4. Conclusions

In summary, we attempted to conduct the SN2 reaction to synthesize AAD, including
HAD, OAD, DAD, and LAD using alkyl bromides with different lengths of carbon chain as
the hydrophobic modifiers under homogeneous conditions. Experimental results showed
that HAD, OAD, DAD, and LAD was successfully synthesized, and the grafting of the hy-
drophobic alkyl groups onto the alginate molecular backbone had weakened and destroyed
the intramolecular hydrogen bonds, thus enhancing the molecular flexibility of the alginate.
Therefore, the resultant AAD could exhibit a good amphiphilic property to self-aggregate
into spherical micelles with an average hydrodynamic diameter of 285.3~180.5 nm and
zeta potential of approximately −44.8~−34.4 mV due to the intra- or intermolecular hy-
drophobic associations. With the increase of the carbon chain length of the hydrophobic
side groups, the EE of AAD gradually increased for the enhancement of the hydrophobic
associations, and the increase of the carbon chain length of the hydrophobic side groups
for AAD was more conducive to achieving the controlled release performance for the
enhancement of the hydrophobic associations that effectively retarded the drug release rate.
The swelling and degradation of AAD microcapsules and the diffusion of the loaded drug
jointly controlled the release rate of ibuprofen. Furthermore, the cytotoxicity test results
showed that the AAD also displayed low cytotoxicity to the murine macrophage RAW264.7
cells. Therefore, the synthesized AAD with good amphiphilic property, colloidal interface
activity, drug-loading performance, and cytocompatibility exhibited a great potential for
the development of hydrophobic pharmaceutical formulations for biomedical application.
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