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Abstract: Both ionic and enzymatic crosslink are efficient strategies for constructing network ma-
terials of high biocompatibility. Here chitosan was modified firstly and then crosslinked by these
two methods for complementary advantages. The preparation methods and ionic crosslinkers can
regulate the size and uniformity of the multiple-crosslinked nanogels. The multiple-crosslinked
nanogels with the smallest size and the best uniformity was selected for the drug delivery. The
drug-loading content and encapsulation efficiency were up to 35.01 and 66.82%, respectively. Their
release behaviours are correlated with the pH value and the drug dosage. In general, the lower pH
value and the lower drug dosage promoted the drug release. With the assistance of several kinetic
models, it is found that drug diffusion plays a preponderant role in drug release, while polymer
relaxation has a subtle effect. The multiple-crosslink resulting from ionic compounds and enzymes
may provide a new perspective on developing novel biocompatible materials.

Keywords: multiple-crosslinked nanogel; ionic crosslink; enzymatic crosslink; drug delivery; natural
polymeric materials

1. Introduction

Natural polymeric materials are popular candidates for drug carriers due to their
excellent biocompatibility and biodegradability. Many strategies have been devised to en-
dow the drug carriers based on natural polymeric materials with extensive and advanced
functions [1–3]. The stable and compact structures composed of natural polymers are
generally desired. Various kinds of crosslinkers play vital roles in building these struc-
tures [4,5]. The chemical crosslinking reagents (e.g., dialdehyde) were introduced early
and performed satisfactorily. However, the possible cytotoxicity [6] and strong covalent
bonding brought by chemical crosslinkers impair the biocompatibility and biodegradability
of natural polymeric materials. More attention has been paid to bio-friendly crosslinkers,
such as ionic crosslinkers and enzymatic crosslinkers.

Ionic crosslinking is a mild reaction that is suitable for natural polymers [7–9]. Chi-
tosan becomes a polycationic polymer in a solution of a pH value less than 6. Thus it
can be crosslinked by the anionic reagent, such as divalent sulphate (SO4

2−), trivalent
phosphate (PO4

3−), and pentavalent tripolyphosphate (TPP). Ionic crosslinked materials
often exhibit excellent biocompatibility and pH sensitivity, making them qualified for drug
carriers [10]. The enzyme can catalyze the crosslinking of natural polymers efficiently.
The amino acid residues on the gelatin chains are crosslinked rapidly with the catalysis of
microbial transglutaminase (mTG) [11–13]. The phenol groups grafted on the natural poly-
mers can be crosslinked in the presence of horseradish peroxidase (HRP) and H2O2 [14–16].
The enzymatic reactions occur fast and gently under the physiological environment. More
significantly, the biocompatibility of enzymes is beyond doubt [17,18].

However, the ionic crosslinked materials are hard to retain stable structures, and
enzymatic crosslinked materials may degrade quickly. It is realized that the combined
utilization may complement crosslinking methods for each other and obtain a material
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with optimized properties. The combinations of crosslinking methods have been reported
in the studies of tissue engineering scaffolds [19,20]. For example, the interpenetrating
polymer network (IPN) materials are composed of two different polymers crosslinked by
two different methods [21]. The IPN hydrogels prepared by Lee et al. were composed
of chitosan and poly (acrylic acid) [22]. The IPN hydrogels reported by Li et al. were
composed of gelatin and alginate [23].

Nevertheless, one polymer multiple-crosslinked by several methods is more favourable
as drug carriers with nanoscales because of the easier preparation and more controllable del-
icate structures. Here we crosslinked the same polymer by ionic and enzymatic crosslinkers
coordinately to prepare nanogels whose structures were easily regulated. Their perfor-
mances in a drug delivery were studied furthermore. The novel multiple crosslinking is
expected to bring a new perspective for the drug carriers with natural polymer.

2. Materials and Methods
2.1. Materials and Instruments

Chitosan (the deacetylation degree ≥ 95%), 1-(3-Dimethylaminopropyl)-3-ethylcar-
bodiimide hydrochloride (EDC-HCl), N-hydroxysuccinimide (NHS), Phloretic acid (PA),
2-(N-Morpholino)ethanesulfonic acid (MES), Sodium tripolyphosphate (TPP), and Sodium
molybdate (Na2MoO4) and horseradish peroxidase (HRP) (>300 U/mg, lyophilized pow-
der) were all purchased from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China)
and used as received. 5-Fluorouracil (5-FU) was obtained from Macklin Biochemical Co.,
Ltd. (Shanghai, China). Nuclear magnetic resonance (NMR) spectrometer (AVANCE NEO,
500 MHz, Bruker) and Fourier transform infrared (FTIR, MAGNA550, Nicolet) was used
for structural analysis. Nanoparticle size analyzer (Nano-ZS90, Malvern) was used to
determine the size of the nanogels. UV-Vis spectrophotometer (T6, Persee) was used to
determine the concentrations of 5-FU in the drug loading and release experiments.

2.2. Synthesis of Phenolic Hydroxyl Modified Chitosan (MC)

The phenolic hydroxyl group was conjugated to the amine group of chitosan in
the presence of EDC/NHS. 1.28 g of chitosan was dissolved in 100 mL of a 0.5% acetic
acid solution [24–26]. The pH value was adjusted to approximately 5.0 after complete
dissolution. PA of 0.88 g, 0.93 g of NHS, and 1.52 g of EDC-HCl were dissolved in a 100 mL
mixture of N, N-dimethylformamide (DMF) and deionized water (v/v = 3:2). Then it was
blended with a chitosan-acetic acid solution and kept at ambient temperature for 20 h.
The reaction mixture was dialyzed against deionized water for several days and then
freeze-dried to obtain the modified chitosan (MC). 1H NMR spectrum of MC in D2O was
recorded at 500 MHz. FTIR spectra of MC and chitosan were recorded in the wavenumber
range of 4000–400 cm−1 using KBr pressed disk technique.

2.3. Preparation of Nanogels with TPP and HRP Multiple-Crosslinking

The MC was dissolved in MES solutions for at least 24 h, and the pH values were kept
at 5.0. TPP and HRP were respectively dissolved at specific concentrations in advance. Then
the chitosan nanogels were prepared according to the composition listed in Table 1. Besides
the different TPP concentrations, different preparation methods were also employed. One
method was adding the MC solution into the TPP solution first and then mixing it with the
HRP and H2O2 solution. The other method was adding the MC solution into the TPP, HRP,
and H2O2 mixed solution. All the solution mixing and the preparations of the nanogels
were performed with mild electromagnetic stirring and stabilized at room temperature
for 24 h.
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Table 1. Composition of multiple-crosslinked nanogels with TPP and HRP.

Sample MC (mg mL−1) TPP (mg mL−1) HRP ((U mL−1) H2O2 (mM)

MC/T/H-A1 1.0 0.20 0.5 0.08
MC/T/H-A2 1.0 0.10 0.5 0.08
MC/T/H-A3 1.0 0.05 0.5 0.08
MC/T/H-A4 1.0 0.04 0.5 0.08
MC/T/H-B1 1.0 0.20 0.5 0.08
MC/T/H-B2 1.0 0.10 0.5 0.08
MC/T/H-B3 1.0 0.05 0.5 0.08
MC/T/H-B4 1.0 0.04 0.5 0.08

A: The crosslinking occurs with TPP first and then with HRP; B: The crosslinking occurs with TPP and HRP
simultaneously.

2.4. Preparation of Nanogels with Na2MoO4 and HRP Multiple Crosslinking

The nanogels with Na2MoO4 and HRP were prepared according to the method above,
and their composition was listed in Table 2.

Table 2. Composition of multiple-crosslinked nanogels with Na2MoO4 and HRP.

Sample MC (mg mL−1) Na2MoO4 (mg mL−1) HRP (U mL−1) H2O2 (mM)

MC/M/H-A1 1.0 0.20 0.5 0.08
MC/M/H-A2 1.0 0.10 0.5 0.08
MC/M/H-A3 1.0 0.05 0.5 0.08
MC/M/H-A4 1.0 0.04 0.5 0.08
MC/M/H-B1 1.0 0.20 0.5 0.08
MC/M/H-B2 1.0 0.10 0.5 0.08
MC/M/H-B3 1.0 0.05 0.5 0.08
MC/M/H-B4 1.0 0.04 0.5 0.08

A: The crosslinking occurs with Na2MoO4 first and then with HRP; B: The crosslinking occurs with Na2MoO4
and HRP simultaneously.

2.5. Measurement of the Nanogel Size

The nanogel size was determined by a nanoparticle size analyzer with the appropriate
dilution. Measurements of all the samples were repeated 3 times, and the hydrodynamic
diameter distribution was recorded based on the scattered light intensity.

2.6. Drug Loading

5-FU was dissolved in MES solutions and subsequently mixed with the MC solution.
The mass ratio of 5-FU to MC was 50, 100 and 150%, respectively. These mixtures were
used to prepare drug-loaded nanogels, referring to the method above. The solutions of
nanogels were dialyzed against deionized water for 3 h. Then the concentrations of 5-FU in
dialysates were determined by UV-Vis spectrophotometer. The standard solutions of 5-FU
were prepared in the concentrations of 2.5 mg/L, 5 mg/L, 7.5 mg/L, 10 mg/L, 12.5 mg/L,
respectively. The UV-Vis spectra of 5-FU solutions showed the highest absorption peak at
265 nm, which was selected as the measuring wavelength to determine the standard curve
of 5-FU. The standard calibration was repeated 3 times, and the R2 of the standard curve
were all more than 0.99. The drug-loading content (DLC%) and entrapment efficiency
(EE%) of the nanogels were calculated according to the reference [27].

2.7. Drug Release

The drug release in vitro was studied by UV-Vis spectrophotometer. The drug-loaded
nanogels (5 mL) were dialyzed against 50 mL of MES solutions at 25 ◦C. The pH value of
the MES solution was adjusted in advance to 5.5, 6.5 or 7.5 by adding hydrochloric acid
or potassium hydroxide. A 3 mL portion of the dialysate was extracted at predetermined
intervals to determine the concentration of the drug. At the same time, 3 mL of fresh MES
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solution was added to the dialysate. The experiments were performed in triplicate, and the
results were expressed in terms of the cumulative drug release [28].

The kinetics of the 5-FU released from the nanogels was determined by fitting the
release profiles to several theoretical models (including zero-order, first-order, Higuchi,
Korsmeyer-Peppas, and Peppas-Sahlin models).

3. Results and Discussion
3.1. Structural Characterization and Enzymatic Crosslinking of MC

The 1H NMR spectrum of MC (Supplementary Materials Figure S1) showed the chem-
ical shifts of both PA groups and chitosan, proving that the phenolic hydroxyl was grafted
on the chitosan. The chemical shifts at 6.76 and 6.44 ppm corresponded to the aromatic
protons of the phenolic group. The chemical shifts at 2.44 and 2.27 ppm corresponded to
the methylene protons of PA. The chemical shifts from 4.51 to 2.80 ppm corresponded to
the glucopyranose ring protons of chitosan. FTIR was also used to confirm the chemical
structure (Figure S2). In the FTIR spectrum of chitosan, the bands at 3354 cm−1 (stretching
vibrations of –OH and –NH2 in chitosan), at 1150 cm−1 (asymmetric stretching vibration
of C–O–C bridge between glucopyranose rings), at 1024 cm−1 (stretching vibrations of
glucopyranose ring) were observed. The FTIR spectrum of MC exhibited the bands at-
tributing to the stretching vibration of –OH in the phenolic group (3257 cm−1), asymmetric
stretching vibration of C–H in the methylene of PA (2920 cm−1), and stretching vibration
of C–C in the phenolic group (1644–1514 cm−1).

The crosslinking of the MC under the enzymatic catalysis was verified. The MC
solution was low-viscous and flowable before adding HRP, whereas the gel was formed
soon after adding HRP (Figure 1). It proves that the phenolic hydroxyl groups were grafted
with the chitosan chains, which linked to each other in the presence of HRP. Thus, a
three-dimensional network was constructed. This enzymatic crosslinking was in line with
expectations and ready for the preparation of multiple-crosslinked nanogels.
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Figure 1. The MC solution before (a) and after (b) HRP-catalysed crosslinking. The concentrations of
MC, HRP, and H2O2 are 10 mg mL−1, 5 U mL−1, and 0.8 mM.

3.2. Influences on the Preparations of Multiple-Crosslinked Nanogels

Two methods were used to prepare the multiple-crosslinked nanogels, where the
crosslinking occurred with the ionic crosslinker first and then with HRP (method A) or the
crosslinking occurs with the ionic crosslinker and HRP simultaneously (method B). Besides,
the nanogels prepared only with ionic crosslinkers were compared with them (Figure 2).

The different hydrodynamic diameters of the nanogels indicate that the HRP-involved
nanogel generally has a smaller size because the extra crosslinking provided by HRP makes
the chitosan networks more compact. Further comparing methods A and B shows that
the nanogels prepared by method B were smaller than those prepared by method A. it
is considered that the crosslinking of chitosan chains is more efficient when two types
of crosslinkers coexist. It is tricky for HRP to catalyze in method A because the ionic
crosslinking occurs first, making a part of the phenolic hydroxyl groups wrapped inside.
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Figure 2. Hydrodynamic diameter distributions of multiple-crosslinked nanogels prepared with
different methods. The concentrations of TPP (a) or Na2MoO4 (b) were 0.05 mg mL−1, respectively.

In addition to the method, the type of ionic crosslinker also significantly impacts the
preparation of multiple-crosslinked nanogels. The multiple-crosslinked nanogels prepared
with Na2MoO4 have a smaller size and narrower distribution, which is more competitive
for drug delivery. The crosslinking efficiency depends on the ionic bonds between anions
of the crosslinker and amino ions of the chitosan. TPP exists as a pentavalent anion, and
Na2MoO4 exists as a divalent anion in solutions. TPP possesses more joinpoints than
Na2MoO4 with the same mass. Hence more chitosan chains were linked with TPP rather
than Na2MoO4, causing the larger nanogels.

Moreover, the concentrations of ionic crosslinkers have an apparent effect on the size
of the multiple-crosslinked nanogels. The sizes of the nanogels decrease as the ion concen-
tration decreases, shown in both methods A and B (Figure 3). The higher ion concentration
provides more crosslinking points and thus increases the possibility of forming larger
crosslinking structures. It is noted that the nanogels prepared by method B were all smaller
than those prepared by method A in the case of four different concentrations.
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Figure 3. Hydrodynamic diameter distributions of multiple-crosslinked nanogels prepared with
the method A and B. The concentrations of TPP or Na2MoO4 were 0.20 (a), 0.10 (b), 0.05 (c),
0.04 (d) mg mL−1, respectively.

Considering the above influences, the multiple-crosslinked nanogel labelled as MC/M/H-
B4 was selected for the subsequent drug delivery experiments due to its smallest size and
the best uniformity among all the samples.
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3.3. Drug Loading in Multiple-Crosslinked Nanogels

In the drug delivery experiments, 5-FU was selected as a model drug. 5-FU is a
common anti-metabolism and anti-tumour drug, but it usually causes gastrointestinal
discomfort when taken directly. Therefore, a sustained-release carrier is necessary to
improve drug utilization and reduce the damage to healthy cells.

The drug-loading method determined by screening tests is to mix 5-FU firstly with MC
rather than with crosslinkers. This method is feasible because the 5-FU could be dispersed
evenly among the complex spatial conformation of chitosan longer chains, improving the
loading efficiency of 5-FU in the network structures of nanogels (Figure 4a).
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The size and uniformity of the drug-loaded nanogels are necessary for the long-term
circulation of drug carriers in the body. Here the influence of different drug dosages was
studied (Figure 4b). With the increase of drug dosage from 50 to 150%, the hydrodynamic
diameters of 5-FU loaded nanogels increase, and the size distributions become wide.

The essential criteria for drug-loading experiments are drug-loading content (DLC)
and entrapment efficiency (EE), listed in Table 3. The DLC increased from 23.55 to 35.01%
with the drug dosage increase. However, the increase gets small when the dosage increases
from 100 to 150%. It is indicated that increasing the drug dosage would not be worthwhile
because the DLC almost reached the maximum amount that the nanogels could withstand.
The EE decreased with the drug dosage increase and reached 66.82% when the drug dosage
was 50%. Overall, increasing the drug dosage could achieve a higher DLC, but more 5-FU
cannot be loaded in the carrier, resulting in a waste of drugs. The balance between the DLC
and EE should be determined on the requirements of specific applications.

Table 3. The drug-loading content and entrapment efficiency of MC/M/H-B4 nanogels for 5-FU (all
data are expressed as mean ± SD, n = 10).

m0/m (%)

50 100 150

DLC (%) 23.55 ± 4.68 32.30 ± 7.04 35.01 ± 5.19
EE (%) 66.82 ± 7.92 64.60 ± 4.09 58.35 ± 8.66

m0 and m are the weight of 5-FU and MC/M/H-B4 nanogels, respectively.

3.4. Drug Release from Multiple-Crosslinked Nanogels

Chitosan shows pH sensitivity due to the amino groups. Consequently, the release
profiles of chitosan-derived drug carriers are generally impacted by the pH values. The
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influences of pH on drug release behaviours from MC/M/H-B4 nanogels were studied
(Figure 5).
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Figure 5. Release profiles of MC/M/H-B4 nanogels (a–c) and the maximum cumulative 5-FU release
from nanogels with different drug dosages at different pH values (d).

The 5-FU release was slow in the first 30 h at pH 7.5, and the maximum cumulative
release was 38.7% (dosage of 50%). The 5-FU duration increased to 48 h at pH 6.5, and the
maximum cumulative release was 60.8% (dosage of 50%). The fastest 5-FU release occurred
at pH 5.5, and the maximum cumulative release was 71.2% (dosage of 50%). It shows that
the drug could be released from the MC/M/H-B4 nanogels and be easier to leave at lower
pH values. As the pH value decreases, the drug release becomes faster, and the maximum
cumulative release increases.

The reasons for the pH-responsive release were analyzed. The protonated chitosan
chains are more stretched and bring looser networks, causing faster drug release at a
lower pH. However, 5-FU was also protonated in the acid medium and competed with
chitosan. It is difficult for chitosan chains to maintain the loose structure when the 5-FU
concentration increases. Therefore the two higher dosages groups’ release at pH 5.5 slowed
down significantly after 20 h.

It is also found that the drug release becomes quicker, and the maximum cumulative
release increases with the drug dosage decrease at the three different pH levels. (Figure 5d).
The path of drug diffusion is complicated due to the network structure. Thus the drug
molecules are more difficult to arrive outside when the drug-loading content is higher.

Furthermore, several kinetic models were used to evaluate the drug release profiles
for revealing the mechanism of drug release. The equations and parameters of the different
models are listed in Table 4 [29–31]. The R2 of Korsmeyer-Peppas and Peppas-Sahlin are
higher than zero-order, first-order and Higuchi, indicating that Korsmeyer-Peppas and
Peppas-Sahlin are adequate for describing the release behaviours.
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Table 4. Kinetic parameters of 5-FU release from MC/M/H-B4 nanogels.

Models m0/m
(%) pH = 5.5 pH = 6.5 pH = 7.5

R2 R2 R2

Zero-order 50 0.9108 0.8786 0.9365
F = kt 100 0.8967 0.8655 0.7143

150 0.8902 0.7734 0.647

R2 R2 R2

First-order 50 0.9496 0.9081 0.9538
F = 1 − e−kt 100 0.9314 0.8881 0.7322

150 0.9077 0.7902 0.6562

R2 R2 R2

Higuchi 50 0.9856 0.9647 0.9874
F = kt0.5 100 0.9768 0.9661 0.8765

150 0.982 0.9149 0.8276

R2 n R2 n R2 n

Korsmeyer-Peppas 50 0.9908 0.6106 0.9798 0.6502 0.9767 0.4823
F = ktn 100 0.9849 0.4493 0.9893 0.3026 0.9536 0.2738

150 0.9947 0.3302 0.9687 0.2369 0.9444 0.2199

R2 k1 k2 R2 k1 k2 R2 k1 k2

Peppas-Sahlin 50 0.9947 0.3034 −0.0286 0.9853 0.2361 −0.0206 0.9851 0.1933 −0.0208
F = k1tm + k2t2m 100 0.9717 0.3067 −0.0385 0.9809 0.1161 −0.0094 0.9764 0.1333 −0.0174

150 0.9901 0.1568 −0.0194 0.9542 0.0686 −0.0062 0.9565 0.0935 −0.0132

In all models, F is the fraction mass of 5-FU released at time t, and k (or k1, k2) is the kinetic constant.

The diffusional release exponent (n) of the Korsmeyer-Peppas model reveals the
mechanism of drug release from porous hydrophilic polymers and is effective when the
released drug is no more than 60%. Moreover, the K2 of the Peppas-Sahlin model represents
the polymer relaxation’s contribution to the drug release with no restriction on the drug
release [32]. Therefore, a combination of these two models is optimal to analyze the
chitosan-derived nanogels.

The n values for the 100 and 150% dosage are less than 0.45, indicating that these
release mechanisms are Fickian diffusion. The n values for a dosage of 50% are more than
0.45 and less than 0.89, indicating a case II transport (erosion-controlled drug release) [33].
The n values increase with pH decrease. It is considered that the hydrogen bonds between
the chitosan and 5-FU are formed. The proportion of 5-FU that forms hydrogen bonds is
more prominent with less dosage, and the lower pH is conducive to hydrogen bonding.

K1 and K2 of Peppas-Sahlin models respectively represent drug diffusion and polymer
relaxation contributions to the drug release [34]. For all release profiles of 5-FU release
from MC/M/H-B4 nanogels, drug diffusion plays a preponderant role in the drug release
rate, while polymer relaxation has a subtle effect on the release rate.

4. Conclusions

The ionic (TPP or Na2MoO4) and enzymatic (HRP) crosslinkers were employed
to prepare the multiple-crosslinked chitosan nanogels. The size and uniformity of the
multiple-crosslinked nanogels are influenced by preparation methods and types and
concentrations of the ionic crosslinker. The multiple-crosslinked nanogels of small size and
high uniformity were selected for the drug delivery. The multiple-crosslinked chitosan
nanogels perform impressively on drug loading and controlled release. The drug-loading
content and encapsulation efficiency are up to 35.01 and 66.82%, respectively. Adjusting the
pH value and the drug dosage could change the release rate and the maximum cumulative



Polymers 2021, 13, 3565 9 of 10

release from the multiple-crosslinked nanogels. Moreover, the evaluation of kinetic models
explains the release mechanism under different conditions.

The ionic and enzymatic multiple-crosslinked nanogels positively impact biocompati-
bility and work well as drug carriers. The method developed in this study could provide
new opportunities for biomedical applications of natural polymers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13203565/s1, Figure S1: 1H NMR spectrum of MC in D2O at 500 MHz, Figure S2. FTIR
spectra of chitosan and MC.
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