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Abstract: In this study, a laccase-mediator system (LMS) using a natural mediator was developed as
a whitening agent for melanin decolorization. Seven natural mediators were used to replace synthetic
mediators and successfully overcome the low redox potential of laccase and limited access of melanin
to the active site of laccase. The melanin decolorization activity of laccases from Trametes versicolor
(lacT) and Myceliophthora thermophila (lacM) was significantly enhanced using natural mediators
including acetosyringone, syringaldehyde, and acetovanillone, which showed low cytotoxicity. The
methoxy and ketone groups of natural mediators play an important role in melanin decolorization.
The specificity constants of lacT and lacM for melanin decolorization were enhanced by 247 and 334,
respectively, when acetosyringone was used as a mediator. LMS using lacM and acetosyringone
could also decolorize the melanin present in the cellulose hydrogel film, which mimics the skin
condition. Furthermore, LMS could decolorize not only synthetic eumelanin analogs prepared by the
oxidation of tyrosine but also natural melanin produced by melanoma cells.

Keywords: laccase; melanin; decolorization; natural mediators

1. Introduction

Laccases (EC 1.10.3.2, benzenediol: dioxygen oxidoreductases) are multicopper pro-
teins that catalyze the oxidation of various phenolic and non-phenolic compounds via a
radical-catalyzed reaction mechanism by the reduction of molecular oxygen [1,2]. Laccases
have been used as biocatalysts for biodegradation processes, such as the bioremediation of
dyes [3,4], pharmaceuticals [5,6], and herbicides [7], and delignification [8–10]. Laccases
have also been used to catalyze the polymerization of dye precursors and organic com-
pounds [11]. In particular, their attractive properties, such as low substrate specificity, the
use of oxygen as the final electron acceptor, generation of water as a by-product, and no
demand (or no production) of peroxides, make them interesting in biotechnological and
environmental fields [1,11,12].

Four copper ions at the active site are involved in the catalytic activity of laccase.
“Blue” copper (T1 site) oxidizes the substrate, and the trinuclear copper cluster (T2/T3)
receives the electrons from the T1 site to reduce the molecular oxygen [1,12,13]. In
particular, the redox potential of the T1 site Cu is considered as a major factor in de-
termining the catalytic ability of laccases [14]. Laccases possess a relatively low redox
potential (0.4–0.8 V) compared to ligninolytic peroxidases (over 1 V) such as manganese
peroxidase and lignin peroxidase. Laccases cannot directly oxidize non-phenolic substrates
with redox potential above 1.3 V [13,14]. Therefore, to overcome the limitations of laccase,
laccase-mediator systems (LMS) using small molecular compounds, such as 2,2′-azinobis(3-
ethylbenzthiazoline-6-sulphonate) (ABTS), 1-hydroxybenzotriazole (HOBt), violuric acid
(VLA), N-hydroxyphthalimide (HPI), N-hydroxyacetanilide (NHA), and TEMPO, which
act as redox mediators, have been suggested [15–17].
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These mediators permit the oxidation of bulky compounds via different oxidation
routes. The laccase-ABTS system oxidizes substrates by generating a cationic ABTS radical
via an electron transfer (ET) mechanism. LMSs with HOBt, VLA, HPI, or NHA produce
nitroxyl radicals via the hydrogen atom transfer (HAT) mechanism [1,12,17]. Furthermore,
mediators such as TEMPO and its analogs react via ionic pathways to generate oxoammo-
nium ions [1,12,18]. The use of these mediators can oxidize a wide range of compounds
in various applications, such as dye degradation [3,4], drug degradation [5,6], and lignin
degradation [8–10]. Nevertheless, the applications of synthetic mediators in industrial
fields have been limited due to their potential toxicity, high cost, and enzyme inactivation
effect. Recently, lignin-derived phenolic molecules as natural mediators (e.g., syringalde-
hyde, acetosyringone, vanillin, acetovanillone, methylvanillate, ferulic acid, sinapic acid,
p-coumaric acid, etc.) have been studied to replace synthetic mediators [1,12]. The advan-
tages of natural mediators are low cost and low toxicity because they are obtained from
natural and renewable sources [19].

Melanin is a group of natural pigments produced by melanogenesis through the oxida-
tive polymerization of tyrosine by melanocytes. Natural melanin can be classified into five
categories of eumelanin, pheomelanin, allomelanin, pyomelanin, and neuromelanin [20].
Recently, various medical and electrochemical applications using melanin or melanin
precursors have been studied [20,21]. The human skin color is mostly determined by the
presence of melanin. In the cosmetic industry, the direct depigmentation of melanin using
enzymes has been proposed for the development of skin-whitening agents. Several peroxi-
dases have been studied to decolorize melanin. Woo et al. showed that synthetic melanin
can be directly decolorized by lignin peroxidase from P. chrysosporium [22]. The Keneko
and Mohorčič groups also reported the enzymatic decolorization of melanin by manganese
peroxidase isolated from fungi (Sporotrichum pruinosum and Phlebia radiata) [23,24]. Kim
et al. reported that crude enzyme mixtures containing manganese peroxidase, lignin per-
oxidase, and laccase showed melanin depigmentation activity [25]. When peroxidases
decolorize melanin, they require hydrogen peroxide (H2O2) as a cofactor that can irritate
the skin. Thus, to reduce the usage of H2O2, glucose oxidase or laccase was introduced
into the enzyme combination system [26,27]. Laccases can decolorize melanin without
the use of hydrogen peroxide. Khammuang and Sarnthima reported that laccase from
Lentinus polychrous Lév showed melanin decolorization activity using ABTS, vanillin, and
vanillic acid as mediators [28].

In this study, LMS using a natural mediator was developed as a whitening agent for
melanin decolorization. Various lignin-derived phenolic molecules have been tested as
mediators of melanin decolorization to replace synthetic mediators. The effect of mediator
concentration and pH on melanin decolorization in LMS using commercially available
laccases from Trametes versicolor and Myceliophthora thermophila was investigated, and the
cytotoxicity of natural mediators was also investigated. The enhancing effect of natural
mediators was quantitatively analyzed by a kinetic study of the melanin decolorization
reaction using LMS. Furthermore, the decolorization of melanin in the cellulose hydrogel
film, which mimics the skin condition, and the decolorization of natural melanin produced
by melanoma cells was also studied.

2. Materials and Methods
2.1. Materials

Laccases from Trametes versicolor (lacT), laccase from Myceliophthora thermophila (lacM),
synthetic melanin, acetosyringone, syringaldehyde, vanillin, p-coumaric acid, acetovanil-
lone, vanillic acid, vanillyl alcohol, 1-hydroxybenzotriazole hydrate (HOBt), sodium phos-
phate dibasic, penicillin, streptomycin, phosphate-buffered saline, neutral red (NR), mi-
crocrystalline cellulose (MCC), and 1-ethyl-3-methylimidazolium acetate ([Emim][Ac])
were purchased from Sigma-Aldrich (St Louis, MO, USA). Citric acid was obtained from
Junsei (Tokyo, Japan). Trypsin-EDTA, fetal bovine serum, and DMEM were obtained from
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Thermo Fisher Scientific (Waltham, MA, USA). All chemicals used in this study were of
analytical grade and were used without further purification.

2.2. Melanin Decolorization by LMS

The saturated melanin solution (1.4 mg/mL) was prepared by the dissolution of
3 mg synthetic melanin in 1.3 mL of 10 mM NaOH. The solution was centrifuged at
8500 rpm for 5 min to remove the undissolved melanin, and the supernatant was diluted
with 0.1 M citric acid phosphate buffer (pH 3, 4, 5, 5.5, 6, or 7) and used as a substrate
solution for LMS. The concentration of melanin in the substrate solution was 63 µg/mL and
spectrophotometrically confirmed at 475 nm. The 0.8 mL of melanin substrate solution was
mixed with 0.1 mL mediator solution (0–1 mM) in a 1.5 mL Eppendorf tube. The melanin
decolorization reaction was initiated by adding 0.1 mL of laccase solution (15.8 µg (0.6 U)
lacT or 19.2 µg (1.8 U) lacM) to a mixture of melanin and the mediator at 25 ◦C in a shaking
water bath at 120 rpm. After the reaction, the reaction mixture was centrifuged, and the
absorbance of the supernatant was measured at 475 nm. The decolorization yield (%) was
calculated using the following equation:

Decolorization (%) = (A0 − At)/A0 × 100, (1)

where A0 is the absorbance of the melanin solution before the decolorization reaction and
At is the absorbance of the melanin solution after the decolorization reaction.

The protein content of the laccase solution was determined by the BCA method. One
unit (U) corresponds to the amount of laccase that converts 1 µmol of ABTS per minute at
pH 5.5 and 25 ◦C.

2.3. Kinetic Study of Melanin Decolorization by LMS

To determine the kinetic constants for the melanin decolorization reaction by LMS, the
initial rates of laccase (0.6 U lacT or 1.8 U lacM) with or without 0.1 mM acetosyringone
were measured using various melanin concentrations (0–420 µg/mL). The melanin solution
was prepared by diluting completely dissolved melanin (1 mg/mL) in 10 mM NaOH. The
kinetic constants were obtained from the Michaelis–Menten equation using the non-linear
regression function of SigmaPlot 12 (Systat Software, San Jose, CA, USA).

2.4. Cytotoxicity of Natural Mediators

The B16F10 melanoma cell line (Korea Cell Line Bank, Seoul, Korea) was used to
determine the cytotoxicity of natural mediators for LMS. A neutral red (NR) assay was
performed to measure the cytotoxicity of the mediators [29]. NR measures the viability of
live cell lysosomes. Melanoma cells with a concentration of 3 × 104 cells were dispensed
into each well of a 96-well plate. After 24 h of cultivation, the cells were treated with natural
mediators (1, 2, 5, 10, 22, and 46 mM). After additional cultivation for 2 days, the cells
were treated with 50 µg/mL NR solution dissolved in DMEM and incubated for 3 h. After
removing the supernatant through suction, an NR desorb solution (1% glacial acetic acid,
49% ethanol, and 50% distilled water) was used for color extraction. After the extraction
process, the change in absorbance was measured at 540 nm.

2.5. Preparation and Decolorization of the Melanin/Cellulose Hydrogel Film

To prepare the melanin/cellulose film, 0.5% (w/v) synthetic melanin was dissolved in
[Emim][Ac] under ultrasound irradiation for 10 min. The melanin solution was centrifuged
at 8500 rpm for 20 min to remove insoluble melanin, and then 7 wt % of cellulose was
dissolved in the supernatant at 100 ◦C for 2 h with stirring. The mixture solution was
cast on a glass slide to a thickness of 0.3 mm using an applicator/1117 (Mitutoyo Corp.,
Kawasaki, Japan), and dissolved melanin and cellulose were regenerated with distilled
water. The prepared film was washed with 0.1 M citric acid phosphate buffer (pH 5.5) until
no absorbance of [Emim][Ac] was measured at 211 nm. The melanin/cellulose hydrogel
film was stored in 0.1 M citric acid phosphate buffer (pH 5.5) until further use.
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To measure the decolorization activity of LMS for the melanin/cellulose film, the
prepared hydrogel film was cut into a 1 × 2 cm sheet. The hydrogel film was immersed
in 4 mL of 0.1 M citric acid phosphate buffer (pH 5.5); subsequently, 0.5 mL of 1 mM
acetosyringone and 0.5 mL of lacM solution (2.5 U) were added to the buffer. The de-
colorization reaction was carried out in a water bath with shaking at 120 rpm and 25 ◦C
for 3 h. After the reaction, the film was washed with distilled water and attached to the
inner side of the cuvette to measure the change in the spectra in the range of 400–800 nm
using a UV/Vis spectrophotometer. Control reactions without lacM or mediators were also
conducted under the same conditions. The release of melanin from the film or color change
of the melanin/cellulose film was not detected under the reaction conditions. Furthermore,
the change in color parameters (L*, a*, and b* values) of the melanin/cellulose film after
the decolorization reaction by LMS was also recorded using a colorimeter (KONICA MI-
NOLTA, Tokyo, Japan). The ∆L (metric lightness difference), ∆E (total color difference), YI
(yellowness index), and WI (whiteness index) values were obtained using the following
equations [30–32]:

∆L = Lafter − Lbefore, (2)

∆E = [(∆L)2 + (aafter − abefore)2 + (bafter − bbefore)2]0.5, (3)

YI = (142.86 × b*)/L*, (4)

WI = 100 − [(100 − L*)2 + a*2 + b*2]0.5, (5)

where Lafter, aafter, bafter, Lbefore, abefore, and bbefore are the mean color values after and
before the decolorization reaction, respectively.

2.6. Preparation of Natural Melanin

Natural melanin was obtained from B16F10 melanoma cells. The cells were treated
with alpha-melanocyte-stimulating hormone to produce melanin. After 4 days of incuba-
tion, the cells were captured using trypsin-EDTA and sonicated for 10 min. The supernatant
was obtained by centrifugation at 8000 rpm for 10 min and then adjusted to pH 1.5 using
6 M HCl. The solution was boiled at 100 ◦C for 4 h to hydrolyze the residual protein
fractions. The solution containing natural melanin was washed with acetone, followed
by chloroform and ethanol, and then washed with deionized water to eliminate residues,
such as cells, media components, and protein fractions [33,34]. All washing processes were
performed more than twice. Finally, natural melanin was obtained by freeze-drying and
used as a substrate for LMS.

3. Results and Discussion
3.1. The Effect of Mediators on the Melanin Decolorization by LMS

The effect of various mediators on the melanin decolorization reaction by LMS was
investigated using two laccases from T. versicolor (lacT) and M. thermophila (lacM) (Figure 1).

When lacT was used without a mediator for melanin decolorization, the decolorization
yield was only 1% after 5 h of reaction. When HOBt was used as a mediator for lacT, the
decolorization yield was slightly enhanced to 2% after 5 h of reaction. The use of various
synthetic mediators, such as HOBt, ABTS, VLA, and TEMPO, in the laccase-catalyzed
oxidation of phenolic or non-phenolic compounds significantly enhanced the reaction
rates [10,15]. When the access of target compounds into the active site of laccase is limited
by their steric hindrance, mediator radicals formed by laccase can efficiently oxidize the
target compounds by the electron transfer or hydrogen atom transfer mechanism [12].
HOBt is one of the most commonly used synthetic mediators in LMS due to its high
redox potential (1.1 V) [6]. However, HOBt is not a good cosmetic ingredient because
of its potential cell toxicity and ability to inactivate laccase. Thus, we selected seven
natural mediators, acetosyringone, syringaldehyde, p-coumaric acid, vanillin, vanillic
acid, vanillyl alcohol, and acetovanillone, for the melanin decolorization reaction by LMS.
Interestingly, all of the natural mediators act as more efficient mediators than HOBt for
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melanin decolorization by lacT. When acetosyringone, syringaldehyde, and p-coumaric
acid were used, the decolorization yields were 28%, 22%, and 18%, respectively, after 5 h
of reaction. These results clearly demonstrate the usefulness of natural mediators for the
melanin decolorization reaction by LMS. The mediators in the LMS are oxidized to mediator
radicals by laccase, and the mediator radicals induce the oxidation and decolorization
of melanin. When lacT was used without a mediator for melanin decolorization during
a sufficient reaction time, which could reach the equilibrium state, the decolorization
yield was 7% after 24 h of reaction. The natural mediators, except vanillic acid, act as
more efficient mediators than HOBt for melanin decolorization by lacT after 24 h of
reaction. The decolorization yield after 24 h reaction using vanillic acid as a mediator
was lower than that after 5 h of reaction. This may be caused by the low stability of
the oxidized radical form of vanillic acid. When acetosyringone, syringaldehyde, and
acetovanillone were used, the decolorization yields were 34%, 30%, and 31%, respectively,
after a 24 h reaction. p-Coumaric acid was more efficient in enhancing the initial reaction
rate than acetovanillone, while acetovanillone induced a higher decolorization yield at the
equilibrium state than p-coumaric acid.

The effect of the mediator on the decolorization reaction by LMS using lacM was also
very similar to that obtained by LMS using lacT. When lacM was used without a mediator
for melanin decolorization, the decolorization yield was only 2% after 5 h of reaction. HOBt
as a mediator for lacM did not enhance the decolorization yield during the 5 h reaction. All
of the natural mediators, except p-coumaric acid and vanillin, acted as efficient mediators
of melanin decolorization by lacM. When acetosyringone and syringaldehyde were used,
the decolorization yields were 25% and 22%, respectively, after 5 h of reaction. p-Coumaric
acid and vanillin were used as efficient mediators for lacT, but they could not efficiently
enhance the decolorization rate in LMS using lacM. This may be caused by the lower
substrate specificity of lacM for p-coumaric acid and vanillin. The decolorization yields
after 24 h of reaction of lacM with p-coumaric acid and vanillin were similar to those
obtained by lacT. This indicates that the oxidized forms of p-coumaric acid and vanillin can
efficiently decolorize melanin, although their oxidation rate by lacM was much lower than
that by lacT. When lacM without a mediator was used for melanin decolorization during a
sufficient reaction time, the decolorization yield was 5% after 24 h of reaction. The natural
mediators, except vanillic acid, also act as more efficient mediators than HOBt for melanin
decolorization by lacM after 24 h of reaction. When acetosyringone, syringaldehyde,
and acetovanillone were used as mediators for lacM, the decolorization yields were 34%,
28%, and 31%, respectively, after 24 h of reaction. When vanillic acid was used as a
mediator for both lacT and lacM, it showed the lowest decolorization yield. This may be
caused by the low stability of the oxidized radical form of vanillic acid. Khammuang and
Sarnthima reported that vanillin and vanillic acid could be used as mediators for melanin
decolorization using laccase from Lentinus polychrous [28]. However, they showed much
lower decolorization activity for melanin than acetosyringone when they were used as
mediators for lacT and lacM.

These results clearly indicate that natural mediators are more efficient for melanin
decolorization by LMS than HOBt. HOBt has been considered as an efficient synthetic
mediator for laccase because of its high redox potential and the catalytic role of the N-
OH group of HOBt [5]. The efficiency of mediators to oxidize target substrates is highly
dependent on the ability to form stable radicals as well as the steric hindrance caused
by bulky alkyl substituents rather than the redox potential of the mediators [19,35]. The
low stability of the oxidized intermediate of HOBt has been determined through cyclic
voltammetry [6]. Therefore, the low decolorization yield by LMS using HOBt may be
caused by the low stability of HOBt under the reaction conditions of laccase. Although the
redox potential of syringaldehyde was lower than that of HOBt, syringaldehyde showed
relatively higher stability than HOBt [6].
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Figure 1. The effect of mediators on the melanin decolorization by LMS using laccase from T. versicolor
(a) and M. thermophila (b). Black and white bars represent 5 h and 24 h reactions, respectively. Reaction
conditions: 50 µg/mL melanin, 0.1 mM mediator, and 0.1 M citric acid phosphate buffer (pH 5.5) at
25 ◦C.

As shown in Figure 2, the natural mediators used in this work have various sub-
stituents (e.g., hydroxyl, methoxy, carboxyl, ketone, or aldehyde) at different positions
on the benzene ring [12,19]. Mediators with two methoxy groups (acetosyringone and
syringaldehyde) showed higher decolorization rates than those with one methoxy group.
The decolorization rate obtained by p-coumaric acid with no methoxy group was depen-
dent on the type of laccase. The p-coumaric acid with lacT showed a higher decolorization
rate than those with one methoxy group, while p-coumaric acid with lacM showed the
lowest decolorization rate in the 5 h reaction. Fillat et al. also showed similar results for
the decolorization of flexographic inks by fungal laccases with natural mediators [36]. The
phenolic natural mediators (acetosyringone, methyl syringate, and syringaldehyde) with
two methoxy substituents in the ring were oxidized by laccase faster than p-coumaric acid
with no methoxy group. This indicates that methoxy groups play a more important role as
electron donors than the double bond of the lateral chain of p-coumaric acid. When the
mediators with one methoxy group were compared, the decolorization yield increased in
the following order: acetovanillone > vanillin > vanillyl alcohol > vanillic acid. Acetovanil-
lone, which has a ketone group, showed a higher decolorization rate and yield than the
mediators with aldehyde, hydroxyl, and carboxyl groups. Acetosyringone with a ketone
group also showed a higher decolorization rate and yield than syringaldehyde with an
aldehyde group.

In the following experiments, acetosyringone, syringaldehyde, and acetovanillone,
which showed high melanin decolorization ability, were selected as mediators for LMS to
decolorize melanin. The effect of the mediator on the decolorization reaction by LMS was
investigated over time (Figure S1). The decolorization reaction using lacT with acetosy-
ringone, syringaldehyde, and acetovanillone resulted in 21%, 18%, and 1% decolorization
yields after 1 h of reaction, respectively. The decolorization reaction using lacM with
acetosyringone and syringaldehyde resulted in 19% and 18% decolorization yields after
1 h of reaction, respectively. Both laccases showed similar reaction profiles when the
same mediator was used. Acetosyringone and syringaldehyde significantly enhanced the
decolorization rate during the initial reaction. These results show that acetosyringone
and syringaldehyde containing dimethoxy groups were more efficient in enhancing the
initial rate of decolorization by LMS than acetovanillone containing one methoxy group.
Fillat et al. also reported that the methoxy groups in the ring structures of mediators act as
accelerators for the oxidation of substrates [36]. On the other hand, the decolorization yield
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after 24 h of reaction by acetovanillone was similar to that by syringaldehyde, although
acetovanillone moderately enhanced the reaction rate.

Figure 2. The structure of mediators used for LMS. (a) HOBt, (b) acetosyringone, (c) syringaldehyde,
(d) p-coumaric acid, (e) vanillin, (f) vanillic acid, (g) vanillyl alcohol, (h) acetovanillone.

3.2. Effect of Mediator Concentration on Melanin Decolorization by LMS

The effect of the mediator concentration on the decolorization yield by LMS was in-
vestigated (Figure 3). The LMS using lacT and 100 µM acetosyringone showed the highest
decolorization yield, which was 4.4-fold higher than that without the mediator. The LMS
using lacM and 100 µM acetosyringone showed the highest decolorization yield, which
was 6.7-fold higher than that without the mediator. When lacT was used for LMS, the
decolorization yields using acetosyringone, syringaldehyde, and acetovanillone increased
with increasing concentration and then reached a maximum at concentrations of 100, 50,
and 200 µM, respectively (Figure 3a). Acetosyringone and syringaldehyde more efficiently
enhanced the decolorization yield at a lower concentration than acetovanillone. When
lacM was used for LMS, the effect of mediator concentration was very similar to the re-
sult obtained with lacT. The decolorization yields using acetosyringone, syringaldehyde,
and acetovanillone reached a maximum at concentrations of 100, 50, and 200 µM, respec-
tively (Figure 3b). A mediator concentration of over 200 µM significantly decreased the
decolorization yield (data not shown). Therefore, a mediator of 100 µM was chosen as
the optimal concentration for the following experiments. Lloret et al. reported that the
optimal mediator concentration should be used because laccase can be inactivated by a
high concentration of mediator [6], whereas Khammuang and Sarnthima reported that the
melanin decolorization activity of LMS using vanillin and vanillic acid was not significantly
influenced by high concentrations of up to 10 mM [28]. The optimal mediator concentration
may be dependent on the mediator type and the target compound of the laccase-catalyzed
reaction [5,6]. When the LMS catalyzed the degradation of isoproturon, the degradation
yield increased with increasing concentration of acetosyringone, while the concentrations
of vanillin and syringaldehyde were not related to the degradation yield [7].

3.3. Cytotoxicity of Natural Mediators

To use natural mediators as skin-whitening cosmetic ingredients, the cytotoxicity of
mediators (acetosyringone, syringaldehyde, and acetovanillone) was investigated using
the B16F10 melanoma cell line. The natural mediators were treated on the cultured cells
and the cell viability was measured by the NR assay. When mediators of over 22 mM were
added to the cultured cells, they considerably reduced cell viability (Figure 4). When the
concentration of the mediator was higher than 5 mM, cell viability increased in the fol-
lowing order: acetosyringone > syringaldehyde > acetovanillone. Furthermore, mediators
of less than 1 mM showed no inhibitory effect on B16F10 melanoma cells. These results
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indicate that the optimal mediator concentration of 0.1 mM used in this work showed
negligible cytotoxicity.

Figure 3. The effect of mediator concentration on the melanin decolorization by LMS using laccase
from T. versicolor (a) and M. thermophila (b). N: acetosyringone, H: syringaldehyde, �: acetovanillone.
Reaction conditions: 50 µg/mL melanin and 0.1 M citric acid phosphate buffer (pH 5.5) at 25 ◦C for
24 h.

Figure 4. Cytotoxicity of natural mediators used for LMS. Black bars: acetosyringone, white bars:
syringaldehyde, gray bars: acetovanillone.

3.4. The Effect of pH on Melanin Decolorization by LMS

Figure 5 shows the effect of pH on the LMS decolorization yield. The lacT without a
mediator showed the highest decolorization yield at pH 4, and the decolorization yield
decreased with increasing pH (Figure 5a). This profile is similar to the effect of pH on
laccase-catalyzed ABTS oxidation [37]. In general, lacT has optimal activity at acidic
conditions of less than pH 5, and its activity decreases with an increase in pH. At higher
pH, the hydroxide anions combine with the T2/T3 coppers of lacT and disturb the electron
transfer and cause a decrease in catalytic activity. However, the effect of pH on LMS is more
complicated and can be influenced by the activity and stability of laccase and oxidized
mediators [1,7]. The decolorization yield of lacT with acetosyringone increased with
increasing pH up to 7 (41%). The optimal decolorization yields of lacT with syringaldehyde
and acetovanillone were 32% and 42%, respectively, at pH 6. Although lacT showed lower
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catalytic activity at higher pH, melanin decolorization increased with increasing pH. These
results could be explained by the high activity and stability of the oxidized forms of natural
mediators at high pH.

Figure 5. The effect of pH on melanin decolorization by LMS using laccase from Trametes versicolor
(a) and M. thermophila (b). •: no mediator, N: acetosyringone, H: syringaldehyde, �: acetovanillone.
Reaction conditions: 50 µg/mL melanin and 0.1 mM mediator at 25 ◦C for 24 h.

The lacM without a mediator showed the highest decolorization yield at pH 6, and
lacM showed a lower decolorization yield in all pH ranges compared to lacT. The optimal
pH of lacM was approximately 6 for the oxidation of ABTS [38]. Therefore, the optimal
pH of lacM without a mediator was similar to that of lacM for ABTS oxidation. When the
natural mediators were used with lacM, the decolorization yields were highly dependent
on the reaction pH (Figure 5b). The decolorization yield of lacM with natural mediators
increased with increasing pH up to pH 7. The maximum decolorization yields of lacM with
acetosyringone, syringaldehyde, and acetovanillone were 40%, 32%, and 33%, respectively,
at pH 7. The high melanin decolorization activity at neutral pH makes the use of LMS with
natural mediators better for skin, because the optimal pH range is similar to that of normal
skin (around 5.5).

3.5. Kinetic Study of Melanin Decolorization by LMS

A kinetic study of melanin decolorization by LMS with acetosyringone was inves-
tigated quantitatively to understand the enhancing effect of natural mediators (Table 1).
The Km value of lacT without a mediator was 10.6-fold higher than that of lacT with
acetosyringone. This means that the affinity for melanin was highly enhanced by the use of
a mediator. The kcat value of lacT with the mediator was 22.6-fold higher than that of lacT
without a mediator. This indicates that the decolorization rate was significantly increased
by the mediator. The specificity constant (kcat/Km) of lacT was enhanced 247 times by
using acetosyringone as a mediator. These results clearly show that the limited access
of melanin to the active site of laccase was overcome by acetosyringone. The Km value
of lacM without a mediator was 2.4-fold higher than that of lacM with acetosyringone.
The affinity for melanin can be enhanced by using a mediator. However, the increasing
effect for melanin affinity by lacM with acetosyringone was lower than that by lacT with
acetosyringone. The kcat value of lacM was approximately 26% of that of lacT. The lacM
without a mediator showed very low activity for melanin decolorization. However, the kcat
value of lacM with the mediator was 161-fold higher than that of lacM without a mediator.
The decolorization rate by lacM was significantly increased by the mediator. Therefore, the
specificity constant of lacM was 334 times enhanced using acetosyringone as a mediator.
These results clearly demonstrate the usefulness of acetosyringone as a mediator of laccases
for melanin decolorization.
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Table 1. Kinetic constants of laccase from T. versicolor and M. thermophila for the melanin decoloriza-
tion reaction using acetosyringone as a mediator.

Km
(µg/mL)

kcat
(/h)

kcat/Km
(×10−3 mL/µg/h)

Laccase from
T. versicolor

w/o mediator 284.6 0.44 1.5
w/mediator 26.8 9.93 371.0

Laccase from
M. thermophila

w/o mediator 319.7 0.11 0.4
w/mediator 132.8 17.75 133.7

3.6. Decolorization of the Melanin/Cellulose Film by LMS

A melanin/cellulose composite hydrogel film was prepared to mimic melanin in
the skin. The melanin/cellulose hydrogel film could be prepared by the co-dissolution
of melanin and cellulose in [Emim][Ac], which is followed by regeneration with water.
The obtained film exhibited a transparent dark brown color. The decolorization of the
melanin/cellulose hydrogel film was performed by lacM with acetosyringone in 0.1 M citric
acid phosphate buffer (pH 5.5). The color of the melanin/cellulose film changed from dark
brown to pale brown after the LMS-catalyzed reaction (Figure 6a). When the absorbance of
the melanin/cellulose film was measured after the decolorization reaction in the range of
400–700 nm, the absorbance of the melanin/cellulose film decreased significantly over the
entire wavelength range (Figure 6b). The decolorization of melanin was also confirmed
through the measurement of color values (L*, a*, and b*) of the melanin/cellulose film using
a colorimeter. The ∆L, ∆E, YI, and WI values were calculated from the color parameters
(Table 2). After the melanin decolorization reaction by LMS, the L* (lightness) value
of the melanin/cellulose film was considerably increased, while the a* (redness) and b*
(yellowness) values decreased slightly. The ∆E value representing the color difference
between the samples was 31.1. An ∆E value greater than 12 indicated that the colors
of the film before and after the reaction are quite different from each other [31]. The
yellowness (YI) of the film decreased from 209 to 92 after the decolorization reaction, while
the whiteness (WI) increased from 16 to 43. Łopusiewicz et al. reported that the YI of
poly(lactic acid)/melanin film increased with increasing melanin content, whereas the WI
of the film decreased [32]. Therefore, the changes in the color properties quantitatively
explain the decolorization of melanin in the melanin/cellulose hydrogel film. These results
show that LMS can efficiently decolorize melanin in a cellulose hydrogel environment.

Figure 6. (a) Photo images and (b) spectrum of the melanin/cellulose films before and after the
decolorization reaction by LMS using laccase from M. thermophila and acetosyringone.
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Table 2. Color parameters and indices of the melanin/cellulose hydrogel films before and after the
decolorization reaction.

Decolorization of
Melanin/Cellulose Film L* a* b* ∆L ∆E YI WI

Before 28.3 13.3 41.4 - - 208.9 16.2
After 59.2 12.2 38.0 30.9 31.1 91.6 43.0

3.7. Decolorization of Natural Melanin Produced by Melanoma Cells

Natural melanin in human skin is divided into eumelanin (black to brown) and
pheomelanin (yellow to red), while the synthetic melanin prepared by the oxidation of
tyrosine with hydrogen peroxide is an analog of eumelanin. Therefore, the decolorization
of natural melanin produced by melanoma cells was also investigated in this work. The
decolorization of synthetic melanin and natural melanin by LMS with lacM and acetosy-
ringone was compared by measuring the absorbance in the range of 400–700 nm (Figure 7).
The absorbance of synthetic melanin rapidly decreased with increasing reaction time at all
wavelengths. However, the absorbance of decolorized natural melanin showed a different
pattern compared to that of decolorized synthetic melanin. The absorbance of decolorized
natural melanin decreased at wavelengths greater than 450 nm, while the absorbance
increased at wavelengths less than 450 nm. More studies are required to understand the
increase in absorbance of decolorized natural melanin.

Figure 7. Changes in spectra of the synthetic melanin (a) and natural melanin (b) after the decoloriza-
tion reaction by LMS using laccase from M. thermophila and acetosyringone. Solid line, dashed line,
and dotted line represent no reaction, 15 min reaction, and 60 min reaction, respectively.

4. Conclusions

In this study, melanin decolorization was achieved by using the “O2/laccase/mediator”
system, since laccase showed low catalytic activity for the direct oxidation of melanin due
to its low redox potential and limited access of melanin into the active site of laccase.
Seven kinds of natural mediators were successfully used to replace synthetic mediator
(HOBt) for melanin decolorization by LMS using lacT and lacM. Among the tested natural
mediators, acetosyringone and syringaldehyde, containing two methoxy groups, showed
high decolorization rates and yields. Acetovanillone containing one methoxy group and
one ketone group also showed a high decolorization yield in the equilibrium state. The
LMS with natural mediators showed high decolorization activity at the pH of normal
skin, and the cytotoxicity of natural mediators was very low. A kinetic study of LMS
using acetosyringone for melanin decolorization showed that acetosyringone efficiently
overcame the limitations of lacT and lacM by increasing the affinity for melanin and de-
colorization activity. LMS with acetosyringone decolorized the melanin present in the
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cellulose hydrogel film, which mimics skin. Furthermore, LMS with acetosyringone could
decolorize not only synthetic eumelanin analogs prepared by the oxidation of tyrosine but
also natural melanin produced by melanoma cells. Thus, LMS using natural mediators can
be used as an effective skin-whitening agent in the cosmetics industry.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13213671/s1, Figure S1: The melanin decolorization by LMS using laccase from T.
versicolor and M. thermophila, Figure S2: The initial rate for the melanin decolorization reaction by
laccase from T. versicolor and M. thermophila.
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