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Abstract: Smart or adaptive materials often utilize stimuli-responsive polymers, which undergo a
phase transition in response to a given stimulus. So far, various stimuli have been used to enable
the modulation of drug release profiles, cell-interactive behavior, and optical and mechanical prop-
erties. In this respect, molecular recognition is a powerful tool to fine-tune the stimuli-responsive
behavior due to its high specificity. Within this contribution, a poly(2-oxazoline) copolymer bear-
ing adamantane side chains was synthesized via triazabicyclodecene-catalyzed amidation of the
ester side chains of a poly(2-ethyl-2-oxazoline-stat-2-methoxycarbonylpropyl-2-oxazoline) statistical
copolymer. Subsequent complexation of the pendant adamantane groups with sub-stoichiometric
amounts (0-1 equivalents) of hydroxypropyl 3-cyclodextrin or 3-cyclodextrin enabled accurate tun-
ing of its lower critical solution temperature (LCST) over an exceptionally wide temperature range,
spanning from 30 °C to 56 °C. Furthermore, the sharp thermal transitions display minimal hysteresis,
suggesting a reversible phase transition of the complexed polymer chains (i.e., the 3-cyclodextrin
host collapses together with the polymers) and a minimal influence by the temperature on the
supramolecular association. Analysis of the association constant of the polymer with hydroxypropyl
B-cyclodextrin via 'H NMR spectroscopy suggests that the selection of the macrocyclic host and
rational polymer design can have a profound influence on the observed thermal transitions.

Keywords: stimuli-responsive polymer; post-polymerization modification; supramolecular associa-
tion; poly(2-oxazoline)s; cyclodextrin

1. Introduction

The ability of a material to undergo a physical or chemical change in response to a
change in its immediate environment, viz. adapt, is generally considered as an attractive
feature, whereby clever design and engineering allows one to exploit this behavior to
develop next-generation materials [1,2]. For this reason, polymers that respond to various
stimuli, such as temperature [3], pH [4], light [5], mechanical stress [6,7], and oxidative
and electrical potentials [8,9] have seen increased use in advanced applications such as
drug delivery, tissue engineering, sensing applications, and shape memory materials [1,2].
One frequently exploited adaptive behavior is the phase transition of a polymer solution as
a response to a change in temperature, whereby a lower critical solution temperature (LCST)
behavior entails phase separation as the temperature increases (i.e., an entropy driven
phase separation) [10], while upper critical solution temperature (UCST) behavior entails
phase separation upon cooling (i.e., an enthalpy-driven phase separation) [11]. These
processes and the temperature at which phase separation occurs are highly dependent
on the concentration and ionic strength of the solution, as well as the polymer composi-
tion [12-14]. For LCST behavior in particular, the hydrophilic-hydrophobic balance in the
polymer structure can be carefully optimized to tune the LCST behavior, or more specif-
ically, the phase separation temperature or the cloud point temperature (T¢p) at a given
polymer concentration. In this regard, numerous hydrophilic-hydrophobic monomer
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combinations have been explored for several biocompatible polymer classes, such as
poly(acrylamides) [15-17], oligoethyleneglycol functional polymers [10,18,19], poly(amino
acids), polypeptoids, and poly(2-alkyl-2-oxazoline)s (PAOx) [20-24], and they are subse-
quently exploited in tissue engineering or drug delivery contexts [25-30]. While tuning the
LCST behavior by varying the relative ratio of hydrophilic to hydrophobic monomers might
seem straightforward, several factors have to be taken into account, viz. the reactivity ratios
of the respective monomers and the resulting monomer distribution along the polymer
chain, which can complicate the accurate tuning of the T,. Furthermore, the relationship
between the monomer feed ratio and the observed T¢p is not necessarily linear, as multi-
ple studies have shown complex exponential relationships, even for near-ideal random
copolymers [31-38]. Hence, considerable synthetic effort and thorough characterization
are required to thoroughly understand and accurately tune the thermoresponsive behavior
as a function of polymer structure.

A potential alternative strategy to tune the LCST behavior of a polymer is the uti-
lization of molecular recognition or supramolecular complexation in order to mask the
hydrophobic parts of a given polymer, which results in an increase in the T¢p, [39]. For this
purpose, several hydrophilic hosts have been utilized to accommodate a variety of pendant
hydrophobic groups on the polymer chains. Most notable is the utilization of various
macrocycles, such as cucurbit[7]urils [40], pillararenes [41,42], and cyclobis(paraquat-p-
phenylene)s [43,44] to modulate the LCST behavior of thermoresponsive polymers through
complexation with polymer termini or side chains [40,45-51]. Among these different
hosts, cyclodextrins have been prominently featured for the modulation of thermorespon-
sive behavior, as they can accommodate a wide variety of hydrophobic guest molecules,
have an extensively studied complexation chemistry, and various sizes («, 3, and y-
cyclodextrin) [52] and chemical variants are commercially available or can be readily
prepared [53,54]. In addition, cyclodextrins and several of their derivatives are generally
recognized as safe, which is ideal for biomedical applications [55,56]. Thus far, they have
been utilized to complex polymers with pendant adamantane groups [45-47], various
aromatic systems [48,49], long or cyclic alkyl chains [40,46,50,51], and even some polymer
backbones [51], resulting in the formation of pseudorotaxanes. Despite this structurally
diverse pool of potential polymer inclusion complexes that can be formed, the ability of
cyclodextrins, and macrocyclic hosts in general, to elicit large shifts in Tcp upon complex-
ation is limited. In most cases, a substantial molar excess of the host has to be added to
elicit a small shift in the Tp, where most systems display a small shift of 5-20 °C in the T¢p
upon full complexation. The highest reported shift in T¢p elicited by a macrocyclic host so
far is 30 °C at equimolarity upon complexation of the nonyl side chains of a poly(2-ethyl-2-
oxazoline-ran-2-nonyl-2-oxazoline) copolymer with a cucurbit[7]uril host [40]. Treatment
of the same systems with various cyclodextrins only led to a shift of 10-15 °C at equimolar-
ity [40]. This limited the control over the Tcp, and the need for the stoichiometric excess
of the host strongly limits their advantages over non-supramolecular systems and their
applicability in settings where thermoresponsive behavior can be exploited, being mainly
limited to sensing applications. In order to increase the attractiveness and applicability of
polymer inclusion complexes, efforts should be aimed at designing systems that enable the
tuning of the T, over a wide range, with substoichiometric quantities (0-1 equivalents)
of the host as well as systems characterized by high association constants. The latter not
only reduces the required quantity of the host necessary to elicit a change in thermorespon-
sive behavior, but also entails the robustness of the system in biological settings, where
a free host is subject to constant removal. Inspired by these challenges, we report the
rational design of a poly(2-alkyl-2-oxazoline) (PAOx) copolymer with pendant adaman-
tane groups, which allows straightforward tuning of the T, over a 30-56 °C range by
the addition of substoichiometric quantities (0-1 equivalents) of 3-cyclodextrin deriva-
tives, as illustrated in Figure 1. Furthermore, the formed polymer inclusion complexes
display sharp thermal transitions upon heating and cooling with minimal hysteresis over
the entire temperature range, suggesting a reversible phase transition of the complexed
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polymer chains (i.e., the B-cyclodextrin host collapses together with the polymers) and
a minimal influence of temperature on the supramolecular association. Together, these
results demonstrate the potential of polymer inclusion complexes to provide a high degree
of tunability and to accurately control the thermoresponsive properties in a simple and
straightforward manner.
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Figure 1. Schematic illustration on the application of rational polymer design through post-polymerization modification in

combination with host-guest chemistry (polymer inclusion), presented in this work toward the development of widely

tunable lower critical solution temperature (LCST) behavior.

2. Materials and Methods
2.1. Materials

The following chemicals were used as received, unless otherwise stated. Barium oxide
(BaO, 90%), magnesium sulfate (MgSQOy, anhydrous, 97%), and 2-chloroethylamine hy-
drochloride (98%) were purchased from Acros Organics (Geel, Belgium). Sodium methox-
ide (NaOMe, 95%), thionyl chloride (SOClp, >99%), sodium carbonate (NayCO3, anhy-
drous, >99%), piperidine (99%), methyl p-toluenesulfonate (MeOTs, 98%), dichloromethane
(DCM, >99%), diethylether (Et,O, >99%), triethylamine (TEA, 99%), (2-hydroxypropyl)-f3-
cyclodextrin (average My, ~1540), LiCl (anhydrous, >99%), and 1,5,7-Triazabicyclo[4.4.0]dec-
5-ene (TBD, 98%) were purchased from Sigma-Aldrich (Overijse, Belgium). Succinic anhy-
dride (95%) and 1-adamantanemethylamine (98%) were purchased from TCI (Zwijndrecht,
Belgium). The 2-Ethyl-2-oxazoline (EtOx) was kindly provided by polymer chemistry
innovations (Tuscon, AZ, USA), and was further purified by distilling over BaO and nin-
hydrin. The 3-Cyclodextrin was kindly provided by Wacker Chemie (Munich, Germany).
Deuterated water (D,0), dimethylsulfoxide (DMSO-d6), and chloroform (CDCl3) were pur-
chased from Eurisotop (Saint-Aubin, France). The 2-methoxycarbonylpropyl-2-oxazoline
(C3MestOx) was synthesized by following a previously reported protocol [57]. The cy-
clodextrins were dried overnight under vacuum at 50 °C before use. The piperidine was
dried over 4 A molecular sieves before use.

2.2. Equipment

The 1D 'H spectra were measured on a Bruker Avance Il spectrometer operating at a
'H frequency of 400.13 MHz and equipped with a 5 mm PABBO BB— probe. Alternatively,
the 1D 'H and diffusion ordered spectroscopy (DOSY) spectra were measured on a Bruker
Avance Il spectrometer, operating at a 'H frequency of 500.13 MHz and equipped with a
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5 mm 1H 13C 19F triple resonance observe (TXO) probe. For each sample measurement,
the sample temperature was set at 25 °C (and controlled within £ 0.1 °C with a Eurotherm
2000 VT controller), and the chemical shifts were given in parts per million () relative
to tetramethylsilane. Size-exclusion chromatography (SEC) was performed on an Agi-
lent 1260-series HPLC system equipped with a 1260 online degasser, a 1260 ISO-pump,
a 1260 automatic liquid sampler (ALS), a thermostatted column compartment (TCC) set
at 50 °C equipped with two PLgel 5 um mixed-D columns (7.5 mm X 300 mm) and a pre-
column in series, a 1260 diode array detector (DAD), and a 1260 refractive index detector
(RID). The used eluent was N,N-dimethylacetamide (DMA, HPLC-grade, Sigma-Aldrich)
containing 50 mM of LiCl at a flow rate of 0.500 mL/min. The spectra were analyzed
using the Agilent Chemstation software with the GPC add-on. The molar mass values
and molar mass distribution (i.e., dispersity (D)) values were calculated against the poly-
methylmethacrylate (PMMA) standards from polymer standard service (PSS). The infrared
(IR) spectra were measured on a Perkin-Elmer 1600 series FTIR spectrometer in attenuated
total reflectance (ATR) mode and are reported as wavenumbers (cm™h). Lyophilization
was performed on a Martin Christ freeze dryer (model Alpha 2—4 LSC plus). High-speed
vibration milling (HSVM) was performed in a Fritsch Mini-Mill Pulverisette 23 in a 10 mL
stainless steel grinding bowl with a grinding ball 15 mm in diameter. Preparative SEC
was performed on disposable PD-10 desalting columns from GE Healthcare, following
the gravity protocol described in the accompanied instructions. The polymerizations
were performed in capped vials in a single mode microwave Biotage initiator sixty (IR
temperature sensor).

2.3. Synthesis of Poly(2-ethyl-2-oxazoline)qy-stat-poly(2-C3Mest-2-oxazoline)19 Copolymer
(Poly(EtOx-stat-C3MestOx))

The copolymer was synthesized in accordance with the literature [58]. EtOx (5.447 mL,
54 mmol), C3MestOx (1.03 mL, 6 mmol), MeOTs (0.090 mL, 0.6 mmol), and acetonitrile
(ACN) (8.52 mL) were added to a 20 mL microwave vial and then polymerized in the
Biotage microwave for 12 min at 140 °C. Termination of the polymerization was done by the
addition of a fourfold molar excess of piperidine relative to the MeOTs. The polymer was
isolated by precipitation in a tenfold excess of Et,O. After decanting the Et,O, the polymer
was dissolved in water and freeze dried to obtain a white powder (yield = 92% 'H NMR
(500 MHz, DMSO-dg) 6 3.58 (m, 33H), 2.44-2.12 (m, 227H), 1.69 (m, 20H), 1.61-1.30 (m,
10H), 0.97 (m, 270H); SEC: M, = 11.7 kDa, b = 1.14).

2.4. TBD-Catalyzed Amidation of the Poly(2-ethyl-2-oxazoline)gp-stat-poly(2-C3Mest-2-oxazoline)1o
Copolymer with 1-adamantanemethylamine (P(EtOx-stat-AdamantanOx))

The amidation procedure was performed according to a procedure reported ear-
lier [59]. In short, 100 mg of the polymer (1 eq., 0.93 mmol of methyl ester groups), 93 mg
of 1-adamantanemethylamine (6 eq., 5.58 mmol), and 39 mg of TBD (3 eq., 2.79 mmol)
were added to a stainless steel grinding vessel along with a steel ball 15 mm in diameter.
Next, the grinding vessel was mounted onto the HSVM device and agitated for 4 h at a
frequency of 50 Hz. Upon completion, 2 mL of water was added in order to redisperse the
polymer. This solution was then further diluted and neutralized and subsequently purified
by passing the solution over a PD-10 desalting column. Finally, the polymer was isolated in
a yield of 82% by freeze drying the aqueous solution ('H NMR (400 MHz, DMSO-d) & 7.61
(m, 7H), 3.92-2.88 (m, 536H, H,O contamination) 2.41-2.01 (m, 236H), 1.92 (28H), 1.78-1.51
(m, 70H), 1.42 (55H), 1.29-1.19 (m, 6H), 0.96 (270H); SEC: M, = 10.3 kDa, b = 1.20)

2.5. Cloud Point Measurements

The cloud points of the polymers were determined via parallel turbidimetry, which
was performed on either 5 mg/mL or 10 mg/mL polymer solutions in D,O using an
Avantium Crystall6 parallel crystallizer turbidimeter. The samples were heated and cooled
at 1 °C/min while stirring at 700 revolutions per minute. Three heating and cooling cycles
were performed. The Tps and clearance points (Ts) were determined as the temperature
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at which 50% transmittance was reached, and they are reported here as an average of the
three heating and cooling cycles with error bars.

2.6. 'TH NMR Titration Experiments

The 'H NMR spectroscopy titration experiment was performed on a 400.13 MHz
Bruker Avance Il spectrometer. Here, a 5 mg/mL polymer solution was titrated with
aliquots of a 100 mg/mL hydroxypropyl-3-CD stock solution, and 32 scans were recorded
for each point with a delay time of 2 s. All spectra were referenced using the residual H,O
solvent signals at 4.79 ppm.

2.7. Diffusion Ordered NMR Spectra (2D DOSY)

The 'H experiments were performed using the zg pulse program from the standard
Bruker library (90° pulse-acquire sequence). For the H experiments, the spectral width
used was 19 ppm with 8 scans of 65,000 data points each being accumulated, preceded by
8 dummy scans. A relaxation delay (d1) of 1 s was used throughout, and the spectrometer
excitation frequency (O1) was set to 5.0 ppm. Processing consisted of one order of zero
filling to 65,000 real data points, followed by exponential apodization using a 0.30 Hz line
broadening factor prior to Fourier transformation, followed by phase correction and a
zero-order baseline correction. The spectra were referenced using the residual H,O solvent
signals at 4.79 ppm. Pulsed field gradient stimulated spin echo (PFGSTE) translational
diffusion or DOSY measurements were performed by using a convection-compensated
sequence; more specifically, a double stimulated echo with monopolar gradients with an
extended phase cycle was used [60,61]. The magnetic field z-gradients were calibrated at
65.6 G-mm~!. The diffusion encoding-decoding gradients were varied linearly between
2% and 98% of their maximum output over 16 or 32 increments. The duration of these
gradients and the diffusion delay time were chosen so that, at the highest gradient strength,
the intensity of the signals of interest was decreased to at least 10% of the intensity at
the lowest gradient strength. The obtained intensity decays were fitted using the built-in
diffusion processing suite of Topspin 3.X.

3. Results and Discussion
3.1. Polymer Synthesis

In order to obtain adamantane functional PAOx, a copolymerization of 2-ethyl-2-
oxazoline (EtOx) with 2-methoxycarbonylpropyl-2-oxazoline (C3MestOx) with a feed ratio
of 9:1 was performed, where the EtOx provided overall water solubility while the C3MestOx
enabled straightforward modification with a wide variety of primary amines [59,62,63].
The statistical copolymerization was initiated with MeOTs under microwave irradiation
and was terminated with piperidine. The obtained statistical copolymer poly(EtOx-stat-
C3MestOx) was well-defined, with a D below 1.2, although a minor double molecular
weight shoulder can be observed (Figure 2A, black curve), which is a common feature for
PAOx prepared at elevated temperatures and in high monomer conversion [64]. In fact,
PAOx copolymers often have more pronounced shouldering than their homopolymer coun-
terparts of a similar molecular weight [65]. Finally, the 'H NMR spectrum (Figure S1) shows
that the polymer composition closely matched the feed ratio. Next, the ester groups of
the copolymer were modified with 1-adamantane methyl amine via a triazabicyclodecene
(TBD)-catalyzed amidation, using a mechanochemical approach that was environmentally
friendly [66], simplified the work-up, and provided a high concentration of reagents to en-
sure rapid and full conversion of the methyl ester groups. The 1-adamantane methyl amine
was chosen over the more sterically demanding—but biologically active—1-adamantane
amine [67,68], as substitutions on esters are known to be sterically controlled [69,70].
Figure 2B shows the successful incorporation of the 1-adamantane methyl amine, as the
ester signal at 1730 cm ™! in the FTIR spectrum disappeared after functionalization. Further-
more, the TH NMR spectrum in Figure 2C shows the broad but characteristic IH signals
for adamantane, which confirms their attachment to the polymer, while the observed
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A

——P(EtOx-stat-C3MestOx
——P(EtOx-stat-AdamantanOx)

ratio of adamantane protons to EtOx protons closely matched the ratio of C3MestOx to
EtOx protons of the starting material, which is indicative of quantitative conversion (see
Figures S1 and S2). In addition, DOSY NMR showed that the observed adamantane pro-
tons had a comparable diffusion coefficient to the polymer in D,O, which confirms their
covalent attachment and confirms the absence of free adamantane (Figure S3). Finally,
the refractive index (RI) signal obtained from SEC showed the absence of additional chain
coupling reactions, while the well-defined nature of the size-distribution was maintained.
However, the polymer did not show a clear shift in retention time, which can be attributed
to the strong hydrophobicity of the adamantane group, which reduced the hydrodynamic
volume of the polymer in the DMA mobile phase, despite the increase in the absolute
molecular weight of the polymer. This, therefore, led to an observed decrease in the rela-
tive molecular weight versus the PMMA standards upon modification. This reduction in
polarity was also observed upon assessing the T¢p of the P(EtOx-stat-AdamantanOx) at
5 mg/mL, which was 32 °C, whereas the T of the starting material was reported to be
89 °C [58].
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Figure 2. (A) Normalized RI traces of P(EtOx-stat-C3MestOx) in black and P(EtOx-stat-AdamantanOx) in red, with My and
D relative to PMMA standards. (B) FTIR spectra of P(EtOx-stat-C3MestOx) in black and P(EtOx-stat-AdamantanOx) in red.
(C) Annotated "H NMR spectrum of P(EtOx-stat-AdamantanOx) measured in DMSO-d6 at room temperature. End-groups
were not annotated for clarity reasons.
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3.2. Tuning Thermoresponsive Behavior by Molecular Recognition

Next, the thermoresponsive behavior of the polymer was explored by turbidimetry
in the presence of 3-CD or hydroxypropyl-3-CD (HP-3-CD). Figure 2 shows the results
obtained for a 10 mg/mL and a 5 mg/mL polymer solution with increasing 3-CD and
HP-B-CD contents, respectively. It should be noted that, due to the low water solubility
of 3-CD (18.5 mg/mL), the use of a stock solution was not possible, as this would entail
significant dilution of the polymer solution (i.e., for every 0.2 eq, approximately 0.1 mL
would have to be added), which would significantly affect the obtained values. Hence,
for each titration step, the 3-CD was weighed, and the polymer solution was subsequently
added to the solid host and measured. To minimize any practical weighing errors, which
might be more pronounced at lower concentrations 10 mg/mL was chosen, although the
data obtained at 5 mg/mL corresponded well to that obtained at 10 mg/mL (Figure S4).

Figure 3A,C shows the heating and cooling curves of the second heating run in the
presence of a 0-1 equivalent of 3-CD and HP-3-CD, respectively. Overall, the thermal
transitions are sharp and display minimal hysteresis (<3.4 °C) between the cooling and
heating curves. This is in contrast with our earlier work, where a hysteresis of 10 °C (at the
same heating rate) was observed for CD complexes with a poly(2-ethyl-2-oxazoline-ran-2-
nonyl-2-oxazoline) random copolymer, which was attributed to partial decomplexation
upon heating [40]. The lack of significant hysteresis in this work suggests that the com-
plexation of the adamantine side chains with CD was thermodynamically favorable over
the investigated temperature range (i.e., complex formation does not impose a significant
entropic penalty), and that the polymer collapse occurred with intact host—guest complexes
(i-e., the CD was entrapped in the collapsed polymer phase). This can be partially attributed
to the relatively high association constants (K,s) of the adamantane 3-CD complexes, typ-
ically in the order of 10* [71-76], which is a hundredfold higher than the K,s reported
for the poly(2-ethyl-2-oxazoline-ran-2-nonyl-2-oxazoline) random copolymers [40]. For 1-
adamantanemethylamide derivatives in particular, a relatively high K, with 3-CD has been
reported, viz. 5.2 x 10% [77].

Next, the average Tcps and Tgs obtained from three heating and cooling runs were
plotted as a function of the equivalents of the 3-CD and HP-3-CD added (Figure 3B,D,
respectively). Note that above 1.2 equivalents of 3-CD, no T, could be detected, as the
mixture remained transparent over the entire temperature range. This observation suggests
that the inclusion complex was relatively polar, as poly(2-ethyl-2-oxazoline) of a similar
chain length has a Tep of £+ 91 °C under these experimental conditions [33]. Further-
more, this indicated that not all adamantane groups are fully complexed at a 1.2 ratio of
CD:adamantane. Plotting the T, and T as a function of the equivalents of the host added
should allow the determination of the association constant in a similar fashion to our previ-
ous work [40] when a 1:1 binding stoichiometry is assumed. Rather than obtaining typical
binding isotherms for 1:1 complexation, viz. hyperbolic functions, more complex sigmoidal
relationships were obtained, which were indicative of positive cooperativity. It should be
noted that the turbidimetry measurements probed both the inclusion complex formation
and temperature-induced phase separation, and that the observed positive cooperativity
could be related to both phenomena. While it cannot be excluded, it seems unlikely that
the binding of one 3-CD to the multivalent polymer would lower the energetic barriers
for subsequent binding events and thereby facilitate positive cooperativity, as was also
confirmed by the isothermal determination of the K, by 'H NMR spectroscopy, which did
not indicate cooperativity, vide infra. A more likely explanation is that the cooperativity
was related to the temperature-induced phase separation, where it may be speculated
that subsequent binding events prevented the formation of intermolecular hydrophobic
adamantane clusters, thereby leading to a cooperative enhancement of water solubility
and not just a change in the hydrophilic-hydrophobic balance. In addition, the presence
of multiple CD host-guest complexes along the polymer chain may have facilitated coop-
erative hydrogen bonding between the polymer and the solute, further promoting water
solubility. Due to the existence of this large variety of possible secondary interactions,
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the direct determination of the association constant from correlation of the T, with the
equivalents of CD was not possible, which demonstrates the limitations of T¢p, as a physical
parameter for the determination of association constants. Nonetheless, the variation in
Tep as a function of the host content can still be useful to compare the complexes formed
with different hosts. Figure 4 shows that, initially, both hosts elicited similar responses,
which could be related to the overall reduction of hydrophobicity due to shielding of the
adamantane groups, though the collapse of the polymer chains was still mainly driven by
the hydrophobic interactions of the adamantane groups. Beyond 0.4 equivalents, rather big
differences in AT, occurred between the different hosts, where 3-CD elicited larger shifts.
The smaller shifts elicited by HP-3-CD were likely associated with its larger hydrophobic
cavity, which resulted in the partial shielding or dehydration of the polar secondary amide
group. The shielding and dehydration of the secondary amide reduced the cooperativity
due to reduced hydrogen bonding, therefore resulting in a net AT, of & 30 °C for the
HP-B-CD:polymer inclusion complexes at equimolarity. For the 3-CD, shielding of the
secondary amide should be minimal; therefore a larger AT, of + 42 °C was observed
at equimolarity for a 5 mg/mL solution, which increased to 56 °C for a 10 mg/mL so-
lution, indicating a larger extent of complexation at a higher concentration. Presumably;,
the operating window could be increased further by optimizing the adamantane content in
the polymer or polymer concentration, thus presenting a viable alternative to exhaustive
copolymer synthesis for providing a thermal response at any given temperature.
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Figure 3. (A) Stacked turbidimetry plots of a 10 mg/mL solution of P(EtOx-stat-AdamantanOx) with a varying -CD
content, showing heating and cooling curves in red and blue, respectively. (B) Observed T¢p and T as a function of the
-CD content for a 10 mg/mL solution of P(EtOx-stat-AdamantanOx) with error bars (n = 3). (C) Stacked turbidimetry
plots of a 5 mg/mL solution of P(EtOx-stat-AdamantanOx) with a varying HP-3-CD content. (D) Observed Tcp and T as a
function of HP-3-CD content for a 5 mg/mL solution of P(EtOx-stat-AdamantanOx) with error bars (n = 3).
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3.3. Molecular Recognition of Adamantane Pendant Groups by Hydroxypropyl-B-CD

Next, the molecular recognition between P(EtOx-stat-AdamantanOx) and hydroxypropyl-
B-CD (HP- B-CD) was investigated via 'H NMR spectroscopy titration in D,O. HP-3-CD was
chosen instead of 3-CD due to its higher water solubility (i.e., up to 50% w/v in water
compared with 18.5 g/L for 3-CD), therefore leading to minimal dilution of the polymer
solution over the course of the titration experiment. Figure 5A shows the downfield shift-
ing of the original adamantane signals (554) over the course of the titration experiment,
which is indicative of inclusion complex formation with HP-f3-CD, whereby upon full
complexation, 6cp.aq would be reached (full spectra are provided in Figure S5). The grad-
ual downfield shifting of the adamantane signals also suggest a fast exchange between
complexed and non-complexed species on the NMR time scale. This is in line with the tur-
bidimetry experiments and literature, where a fast exchange was observed between 3-CD
and adamantane functional polymers with long spacers between the pendant adamantane
groups and the polymer backbone [45].

B
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Figure 5. (A) Stacked THNMR spectra of the titration of P(EtOx-stat-AdamantanOx) (5 mg/mL in D,O with an increasing
HP-B-CD concentration in increments of 0.2 equivalents, relative to the adamantane groups from bottom to top). The arrows

and red line indicate the peaks of interest and guide the eye. (B) Binding isotherm obtained from the titration experiment,

whereby the chemical shift is plotted as a function of the HP-3-CD concentration. The applied fitting is displayed in red.

Subsequent plotting of the chemical shift (8,psq) Of the adamantane signal around
1.48 ppm as a function of the HP-f3-CD concentration ([CD]y) enabled the determination of
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the association constant (K) between the pendant adamantane groups and the HP-f3-CD via
non-linear regression of the binding isotherm. This signal was chosen as it remained clearly
resolved throughout the titration and did not overlap with signals from the host or the
polymer terminus. In contrast to the data obtained from turbidimetry, the binding isotherm
had the expected hyperbolic shape, therefore confirming that the positive cooperativity
observed earlier was associated to the phase separation event itself and not to the host—
guest binding. Furthermore, the binding isotherm suggests that HP-3-CD binds in a
1:1 fashion to the pendant adamantane groups on the polymer. Therefore, the binding
constant can be determined via well-established non-linear regression analysis [78-80],
whereby the binding isotherm is fitted to the following equation [81,82]:

dobsd = 0ad + (1 — [Ad]/[Ad]o)(dcp-ad — 8Ad)
This equation is fitted with the following:
[Ad] = {K[Ad]y — K[CD]y — 1 + y/((K[Ad]y + K[CD]o + 1)* — 4K* [Ad]o[CD]o)} /2K

The obtained K, of 4.8 x 10% was an order of magnitude lower than what is typically
described for 1-adamantanemethylamide derivatives in particular, viz. 5.2 x 10% [77].
However, the observed order of magnitude lower K,, compared to native 3-CD complexes,
is not uncommon for inclusion complexes formed with HP-3-CD, where the observed
association constants drop as the hydroxylpropylation degree increases [83]. This drop
has been attributed to their extended hydrophobic cavity, which imposes an enthalpic
penalty due to dehydration of the polar groups on the guest. The complexation of the
pendant adamantane groups with HP-3-CD was therefore driven by contributions of
both enthalpy and entropy, whereas complexation with native 3-CD was mainly enthalpy
driven [84]. It has been described that, in the case of neutral polar groups, in this case
a secondary amide, the net gain in the entropic factor is unable to compensate for the
increased enthalpy, leading to a tenfold decrease in the association constant [83]. These
results further support the observations made from the turbidimetry measurements and
highlight the importance of linker and host compatibility in the synthesis of thermoresponsive
supramolecular assemblies.

3.4. Diffusion Ordered NMR Spectroscopy

Next, the single-chain behavior of the polymers and the polymer (3-CD inclusion com-
plexes was studied as a function of temperature by DOSY NMR spectroscopy (Figures S6-S9).
From the DOSY measurements, the hydrodynamic radius could be calculated via the
obtained diffusion constant and the Stokes-Einstein equation, assuming a spherical shape
for all components. For the calculation of the hydrodynamic radius, the temperature
dependent viscosity of D,O was taken into account [85]. The results listed in Table 1 show
that P(EtOx-stat-AdamantanOx) underwent a small decrease in size from 3.68 nm below
the T, to 3.52 nm above the Tcp, which corresponds to the collapse of the polymer chains.
When 3-CD was added to the P(EtOx-stat-AdamantanOx), the solvated structure increased
in size from 3.68 nm to 4.26 nm, which was indicative of complex formation and improved
hydration below the Tc,. The DOSY spectrum in Figure 6 also shows that the 3-CD diffused
together with the polymer, further proving the inclusion complex formation. When the
inclusion complex was heated above the T¢p, a strong reduction in size was observed from
4.26 nm to 0.66 nm, indicating that the collapsed polymer globules were no longer observed
by DOSY NMR, and only a minor fraction of the released 3-CD was observed.
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Table 1. Diffusion constant and size of P(EtOx-stat-AdamantanOx), 3-CD, and their complexes at a
5:1 guest-to-host ratio above and below the Tcp.

Compound Df (m?/s) Ry, (nm)
P(EtOx-stat-AdamantanOx) (25 °C) 541 x 10~ 1 3.68
P(EtOx-stat-AdamantanOx) (42 °C) 8.34 x 10711 3.52

B-CD (25 °C) 2.66 x 10710 0.75

B-CD (42 °C) 3.83 x 10710 0.77

Complex (25 °C) 4.68 x 101 426
Complex (42 °C) 442 x 10710 0.66
H

Fix10”

Fx10®

D (cm?/sec)

Fx107

Lixio®

T T T T T T T T T T T T T T T T T
85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00 05
Chemical shift (ppm)

Figure 6. Two-dimensional diffusion ordered spectroscopy (2D DOSY) NMR spectrum of P(EtOx-stat-AdamantanOx) with
0.2 equivalents of 3-CD at 25 °C in D,O.

3.5. Rationalization of Polymer Design with Respect to Thermal Response

The obtained results indicate that the observed thermal transitions were the result of
the polymer design as a whole and not just the host—guest complexation. Therefore, it can
be rationalized that different parameters in the polymer design affect the subtle interplay of
supramolecular interactions involved in the temperature-induced phase transition, which
will be briefly summarized here and are illustrated in Figure 7. The PAOx backbone
provides the necessary hydrophilic-hydrophobic balance for LCST behavior, whereby the
hydrophilicity of the H-bond accepting tertiary amide is counteracted by the length of its
hydrophobic alkyl substituents. Therefore, the comonomer should be chosen as a function
of the relative hydrophobicity of the guest molecule and the number of guest molecules
per polymer chain. Here, a secondary amide is installed in the linker between the polymer
backbone and hydrophobic guest molecules to enable additional H-bonding and to enhance
the overall hydrophilicity, leading to an adamantane functionalized copolymer with a T¢p
of 32 °C. The spacer length between the polymer backbone can potentially be tuned to vary
the exchange rate of the host and guest and therefore plays a crucial part in the occurrence
of hysteresis between heating and cooling curves. The host-guest pair (i.e., the association
constant and its thermodynamic parameters, as well as the relative dimensions of the host)
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will also affect the thermal response and its dependence on the host concentration. Finally,
the observed cooperativity is hypothesized to be related to the hydrophobic shielding of
the adamantane groups and, hence, would depend on the comonomer ratio and polymer
chain length.

Hydrophilic Host

, ]—-Hydrophoblc Guest

o—> H-bond donor +acceptor

ﬁ) p } Spacer length
\«1 stat ] /w}’\“O

H-bond acceptor
Figure 7. Rationalization of the polymer design.

4. Conclusions

The synthesis of polymers with an adaptable thermal response is an attractive alterna-
tive to exhaustive copolymer synthesis, requiring limited synthetic effort. In this context,
supramolecular complexation is a promising tool to synthesize polymers with a tunable
thermoresponsive behavior, yet the application thereof is limited, as most reports require a
substantial excess of the host and show a limited window of tunability, viz. 5-20 °C. Within
this work, we demonstrate that this apparent limitation can be overcome by combining
supramolecular complexation with rational polymer design. In summary, a thermorespon-
sive poly(2-alkyl-2-oxazoline) copolymer with pendant adamantane groups was prepared
in a single step via an organocatalyzed post-polymerization amidation reaction. The syn-
thesized copolymer was capable of forming polymer inclusion complexes via molecular
recognition with both 3-CD and HP-3-CD. This molecular recognition was subsequently
exploited to tune the thermoresponsive behavior of the polymer in the exceptionally wide
temperature range of 56 °C by simply adding up to 1 equivalent of 3-CD. The observed
thermal transitions were sharp and revealed minimal hysteresis over the entire temperature
range. This exceptional tunability could be attributed to the subtle interplay of hydropho-
bic interactions, host—guest recognition, and cooperative hydrogen bonding, which were
rationalized in the polymer design as a whole. Together, these results demonstrate that
molecular recognition and rational polymer design can be powerful tools in the synthesis of
polymers featuring tunable thermal responsiveness with minimal synthetic effort. Future
studies will be aimed at the introduction of additional responsiveness in the polymer
structure and the exploitation of molecular recognition and thermoresponsive behavior
in drug delivery [86,87]. Furthermore, careful exploitation of the polymer structure and
host-guest chemistry might enable the synthesis of polymer inclusion complexes with
complex thermoresponsive behaviors.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2073-436
0/13/3/374/s1: additional "H NMR and DOSY NMR spectra.


https://www.mdpi.com/2073-4360/13/3/374/s1
https://www.mdpi.com/2073-4360/13/3/374/s1

Polymers 2021, 13, 374 13 of 16

Author Contributions: ] ER.V.G., conceptualization: lead, writing—original draft: lead, writing—review
and editing: equal; D.B., writing—original draft: lead, writing—review and editing: equal; R.H., concep-
tualization: lead, supervision: lead, writing—original draft: equal, writing—review and editing: lead.
All authors have read and agreed to the published version of the manuscript.

Funding: D.B. is grateful to the FWO for the Pegasus Marie Curie postdoctoral fellowship. This project
has received funding from the Research Foundation—Flanders (FWO) and the European Union’s
Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement
No 665501. R.H. acknowledge continuous financial support from the FWO and Ghent University.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: R.H. is listed as an inventor on patent W0O2013103297A1, which covers the
amidated PAOx materials reported in this work. R.H. is one of the founders of Avroxa BVBA, which
commercializes poly(2-oxazoline)s as Ultroxa®. The other authors have no conflicts to declare.

References

1. Fan, X,; Chung, ].Y;; Lim, Y.X;; Li, Z.; Loh, X.J. Review of Adaptive Programmable Materials and Their Bioapplications. ACS Appl.
Mater. Interfaces 2016, 8, 33351-33370. [CrossRef] [PubMed]

2. Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Miiller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, 1.; Tsukruk, V.V.; Urban, M.;
et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101-113. [CrossRef] [PubMed]

3. Qiao, S.; Wang, H. Temperature-responsive polymers: Synthesis, properties, and biomedical applications. Nano Res. 2018,
11, 5400-5423. [CrossRef]

4. Kocak, G.; Tuncer, C.; Biitiin, V. PH-Responsive polymers. Polym. Chem. 2017, 8, 144-176. [CrossRef]

5. Bertrand, O.; Gohy, J.E. Photo-responsive polymers: Synthesis and applications. Polym. Chem. 2017, 8, 52-73. [CrossRef]

6.  Bowser, B.H.; Craig, S.L. Empowering mechanochemistry with multi-mechanophore polymer architectures. Polym. Chem. 2018,
9, 3583-3593. [CrossRef]

7. Davis, D.A.; Hamilton, A.; Yang, ].; Cremar, L.D.; Van Gough, D.; Potisek, S.L.; Ong, M.T.; Braun, P.V,; Martinez, T.].; White, S.R.;
et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 2009, 459, 68-72. [CrossRef]

8.  Zhang, X,; Han, L.; Liu, M.; Wang, K; Tao, L.; Wan, Q.; Wei, Y. Recent progress and advances in redox-responsive polymers as
controlled delivery nanoplatforms. Mater. Chem. Front. 2017, 1, 807-822. [CrossRef]

9.  Yan, Q;Yuan,].; Cai, Z,; Xin, Y;; Kang, Y.; Yin, Y. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers.
J. Am. Chem. Soc. 2010, 132, 9268-9270. [CrossRef]

10. Vancoillie, G.; Frank, D.; Hoogenboom, R. Thermoresponsive poly(oligo ethylene glycol acrylates). Prog. Polym. Sci. 2014,
39, 1074-1095. [CrossRef]

11. Seuring, J.; Agarwal, S. Polymers with upper critical solution temperature in aqueous solution: Unexpected properties from
known building blocks. ACS Macro Lett. 2013, 2, 597-600. [CrossRef]

12. Zhang, Q.; Weber, C.; Schubert, U.S.; Hoogenboom, R. Thermoresponsive polymers with lower critical solution temperature:
From fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater. Horiz. 2017, 4, 109-116.
[CrossRef]

13. Soeriyadi, A.H.; Li, G.Z,; Slavin, S.; Jones, M.W.; Amos, C.M.; Becer, C.R.; Whittaker, M.R.; Haddleton, D.M.; Boyer, C.; Davis,
T.P. Synthesis and modification of thermoresponsive poly(oligo(ethylene glycol) methacrylate) via catalytic chain transfer
polymerization and thiol-ene michael addition. Polym. Chem. 2011, 2, 815-822. [CrossRef]

14. Magnusson, J.P; Khan, A.; Pasparakis, G.; Saeed, A.O.; Wang, W.; Alexander, C. Ion-sensitive “isothermal” responsive polymers
prepared in water. J. Am. Chem. Soc. 2008, 130, 10852-10853. [CrossRef]

15. Platé, N.; Lebedeva, T.; Valuev, L. Lower critical solution temperature in aqueous solutions of N-alkyl-substituted Polyacrylamides.
Polym. ]. 1999, 31, 21-27. [CrossRef]

16. Mahmoud, A.M.; Morrow, J.P; Pizzi, D.; Nanayakkara, S.; Davis, T.P.; Saito, K.; Kempe, K. Nonionic Water-Soluble and
Cytocompatible Poly(amide acrylate)s. Macromolecules 2020, 53, 693-701. [CrossRef]

17.  Higashi, N.; Sonoda, R.; Koga, T. Thermo-responsive amino acid-based vinyl polymers showing widely tunable LCST/UCST
behavior in water. RSC Adv. 2015, 5, 67652-67657. [ CrossRef]

18. Hedir, G.G.; Arno, M.C,; Langlais, M.; Husband, ].T.; O'Reilly, R.K.; Dove, A.P. Poly(oligo(ethylene glycol) vinyl acetate)s: A
Versatile Class of Thermoresponsive and Biocompatible Polymers. Angew. Chem. Int. Ed. 2017, 56, 9178-9182. [CrossRef]

19. Yiu, A.; Simchuk, D.; Hao, J. Facile Synthesis of Novel Thermo-Responsive Polyvalerolactones with Tunable LCSTs. Macromol.

Chem. Phys. 2020, 221, 1-6. [CrossRef]


http://doi.org/10.1021/acsami.6b09110
http://www.ncbi.nlm.nih.gov/pubmed/27960431
http://doi.org/10.1038/nmat2614
http://www.ncbi.nlm.nih.gov/pubmed/20094081
http://doi.org/10.1007/s12274-018-2121-x
http://doi.org/10.1039/C6PY01872F
http://doi.org/10.1039/C6PY01082B
http://doi.org/10.1039/C8PY00720A
http://doi.org/10.1038/nature07970
http://doi.org/10.1039/C6QM00135A
http://doi.org/10.1021/ja1027502
http://doi.org/10.1016/j.progpolymsci.2014.02.005
http://doi.org/10.1021/mz400227y
http://doi.org/10.1039/C7MH00016B
http://doi.org/10.1039/c0py00372g
http://doi.org/10.1021/ja802609r
http://doi.org/10.1295/polymj.31.21
http://doi.org/10.1021/acs.macromol.9b02267
http://doi.org/10.1039/C5RA13009C
http://doi.org/10.1002/anie.201703763
http://doi.org/10.1002/macp.202000136

Polymers 2021, 13, 374 14 of 16

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Park, ]J.S.; Kataoka, K. Comprehensive and accurate control of thermosensitivity of poly(2-alkyl-2-oxazoline)s via well-defined
gradient or random copolymerization. Macromolecules 2007, 40, 3599-3609. [CrossRef]

Hoogenboom, R.; Schlaad, H. Thermoresponsive poly(2-oxazoline)s, polypeptoids, and polypeptides. Polym. Chem. 2017, 8, 24-40.
[CrossRef]

Fu, X.; Xing, C.; Sun, J. Tunable LCST/UCST-Type Polypeptoids and Their Structure-Property Relationship. Biomacromolecules
2020, 21, 4980-4988. [CrossRef] [PubMed]

Liu, D.; Sun, J. Thermoresponsive polypeptoids. Polymers 2020, 12, 2973. [CrossRef]

Jana, S.; Uchman, M. Poly(2-oxazoline)-based stimulus-responsive (Co)polymers: An overview of their design, solution properties,
surface-chemistries and applications. Prog. Polym. Sci. 2020, 106, 101252. [CrossRef]

Doberenz, E; Zeng, K.; Willems, C.; Zhang, K.; Groth, T. Thermoresponsive polymers and their biomedical application in tissue
engineering-A review. |. Mater. Chem. B 2020, 8, 607-628. [CrossRef]

Bordat, A.; Boissenot, T.; Nicolas, J.; Tsapis, N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv.
Drug Deliv. Rev. 2019, 138, 167-192. [CrossRef]

Park, J.R.;; Van Guyse, ]. ER.; Podevyn, A.; Bolle, E.C.L.; Bock, N.; Linde, E.; Celina, M.; Hoogenboom, R.; Dargaville, T.R.
Influence of side-chain length on long-term release kinetics from poly(2-oxazoline)-drug conjugate networks. Eur. Polym. |. 2019,
120,109217. [CrossRef]

Kim, Y.J.; Matsunaga, Y.T. Thermo-responsive polymers and their application as smart biomaterials. J. Mater. Chem. B 2017,
5,4307-4321. [CrossRef]

Sponchioni, M.; Capasso Palmiero, U.; Moscatelli, D. Thermo-responsive polymers: Applications of smart materials in drug
delivery and tissue engineering. Mater. Sci. Eng. C 2019, 102, 589-605. [CrossRef]

Vanparijs, N.; Nuhn, L.; De Geest, B.G. Transiently thermoresponsive polymers and their applications in biomedicine. Chem. Soc.
Rev. 2017, 46, 1193-1239. [CrossRef]

Vancoillie, G.; Van Guyse, J.ER.; Voorhaar, L.; Maji, S.; Frank, D.; Holder, E.; Hoogenboom, R. Understanding the effect of
monomer structure of oligoethylene glycol acrylate copolymers on their thermoresponsive behavior for the development of
polymeric sensors. Polym. Chem. 2019, 10, 5778-5789. [CrossRef]

Sun, W.; An, Z.; Wu, P. UCST or LCST? Composition-Dependent Thermoresponsive Behavior of Poly(N-acryloylglycinamide-co-
diacetone acrylamide). Macromolecules 2017, 50, 2175-2182. [CrossRef]

Hoogenboom, R.; Thijs, H.M.L.; Jochems, M.].H.C.; van Lankvelt, B.M.; Fijten, M.W.M.; Schubert, U.S. Tuning the LCST of
poly(2-oxazoline)s by varying composition and molecular weight: Alternatives to poly(N-isopropylacrylamide)? Chem. Commun.
2008, 2008, 5758-5760. [CrossRef]

Villano, L.D.; Kommedal, R.; Fijten, M.\W.M.; Schubert, U.S.; Hoogenboom, R.; Kelland, M.A. A study of the kinetic hydrate
inhibitor performance and seawater biodegradability of a series of poly(2-alkyl-2-oxazoline)s. Energy Fuels 2009, 23, 3665-3673.
[CrossRef]

Taylor, L.D.; Cerankowski, L.D. Preparation Of Films Exhibiting A Balanced Temperature Dependence To Permeation By Aqueous
Solutions—A Study Of Lower Consolute Behavior. J. Polym. Sci. Polym. Chem. Ed. 1975, 13, 2551-2570. [CrossRef]
Hoogenboom, R.; Zorn, A.-M.M.; Keul, H.; Barner-Kowollik, C.; Moeller, M. Copolymers of 2-hydroxyethylacrylate and 2-
methoxyethyl acrylate by nitroxide mediated polymerization: Kinetics, SEC-ESI-MS analysis and thermoresponsive properties.
Polym. Chem. 2012, 3, 335-342. [CrossRef]

Steinhauer, W.; Hoogenboom, R.; Keul, H.; Moeller, M. Copolymerization of 2-hydroxyethyl acrylate and 2-methoxyethyl acrylate
via RAFT: Kinetics and thermoresponsive properties. Macromolecules 2010, 43, 7041-7047. [CrossRef]

Popescu, D.; Hoogenboom, R.; Keul, H.; Moeller, M. Thermoresponsive polyacrylates obtained via a cascade of enzymatic
transacylation and FRP or NMP. Polym. Chem. 2010, 1, 878-890. [CrossRef]

de la Rosa, V.R.; Woisel, P.; Hoogenboom, R. Supramolecular control over thermoresponsive polymers. Mater. Today 2015,
19, 44-55. [CrossRef]

De La Rosa, V.R.; Nau, W.M.; Hoogenboom, R. Tuning temperature responsive poly(2-alkyl-2-oxazoline)s by supramolecular
host-guest interactions. Org. Biomol. Chem. 2015, 13, 3048-3057. [CrossRef]

Ji, X.; Chen, J.; Chi, X.; Huang, F. PH-responsive supramolecular control of polymer thermoresponsive behavior by pillararene-
based host-guest interactions. ACS Macro Lett. 2014, 3, 110-113. [CrossRef]

Wang, L.; Li, X.; Zhang, Q.; Luo, Z.; Deng, Y.; Yang, W.; Dong, S.; Wang, Q.A.; Han, C. Supramolecular control over pillararene-
based LCST phase behaviour. New |. Chem. 2018, 42, 8330-8333. [CrossRef]

Bigot, J.; Bria, M.; Caldwell, S.T.; Cazaux, F.; Cooper, A.; Charleux, B.; Cooke, G.; Fitzpatrick, B.; Fournier, D.; Lyskawa, J.; et al.
LCST: A powerful tool to control complexation between a dialkoxynaphthalene-functionalised poly(N-isopropylacrylamide) and
CBPQT 4+ in water. Chem. Commun. 2009, 2009, 5266-5268. [CrossRef] [PubMed]

Sambe, L.; de La Rosa, V.R.; Belal, K,; Stoffelbach, F.; Lyskawa, J.; Delattre, E; Bria, M.; Cooke, G.; Hoogenboom, R.; Woisel, P.
Programmable Polymer-Based Supramolecular Temperature Sensor with a Memory Function. Angew. Chem. 2014, 126, 5144-5148.
[CrossRef]

Kretschmann, O.; Steffens, C.; Ritter, H. Cyclodextrin complexes of polymers bearing adamantyl groups: Host-guest interactions
and the effect of spacers on water solubility. Angew. Chem. Int. Ed. 2007, 46, 2708-2711. [CrossRef]


http://doi.org/10.1021/ma0701181
http://doi.org/10.1039/C6PY01320A
http://doi.org/10.1021/acs.biomac.0c01177
http://www.ncbi.nlm.nih.gov/pubmed/33307699
http://doi.org/10.3390/polym12122973
http://doi.org/10.1016/j.progpolymsci.2020.101252
http://doi.org/10.1039/C9TB02052G
http://doi.org/10.1016/j.addr.2018.10.005
http://doi.org/10.1016/j.eurpolymj.2019.109217
http://doi.org/10.1039/C7TB00157F
http://doi.org/10.1016/j.msec.2019.04.069
http://doi.org/10.1039/C6CS00748A
http://doi.org/10.1039/C9PY01326A
http://doi.org/10.1021/acs.macromol.7b00020
http://doi.org/10.1039/b813140f
http://doi.org/10.1021/ef900172f
http://doi.org/10.1002/pol.1975.170131113
http://doi.org/10.1039/C1PY00344E
http://doi.org/10.1021/ma101122b
http://doi.org/10.1039/c0py00051e
http://doi.org/10.1016/j.mattod.2015.06.013
http://doi.org/10.1039/C4OB02654C
http://doi.org/10.1021/mz400528a
http://doi.org/10.1039/C8NJ01366G
http://doi.org/10.1039/b910856d
http://www.ncbi.nlm.nih.gov/pubmed/19707641
http://doi.org/10.1002/ange.201402108
http://doi.org/10.1002/anie.200603753

Polymers 2021, 13, 374 15 of 16

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.
57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Wintgens, V.; Charles, M.; Allouache, F; Amiel, C. Triggering the thermosensitive properties of hydrophobically modified
poly(N-isopropylacrylamide) by complexation with cyclodextrin polymers. Macromol. Chem. Phys. 2005, 206, 1853-1861.
[CrossRef]

Jia, Y.G.; Zhu, X.X. Thermoresponsiveness of copolymers bearing cholic acid pendants induced by complexation with f3-
cyclodextrin. Langmuir 2014, 30, 11770-11775. [CrossRef]

Maatz, G.; Maciollek, A; Ritter, H. Cyclodextrin-induced host-guest effects of classically prepared poly(NIPAM) bearing azo-dye
end groups. Beilstein |. Org. Chem. 2012, 8, 1929-1935. [CrossRef]

Reinelt, S.; Steinke, D.; Ritter, H. End-group-functionalized poly(N,N-diethylacrylamide) via free-radical chain transfer polymer-
ization: Influence of sulfur oxidation and cyclodextrin on self-organization and cloud points in water. Beilstein |. Org. Chem. 2014,
10, 680-691. [CrossRef]

delaRosa, V.R.; Hoogenboom, R. Solution Polymeric Optical Temperature Sensors with Long-Term Memory Function Powered
by Supramolecular Chemistry. Chem. Eur. J. 2015, 21, 1302-1311. [CrossRef]

Burkhart, A.; Ritter, H. Influence of cyclodextrin on the UCST- and LCST-Behavior of poly(2-methacrylamido-caprolactam)-CO-
(N,N-dimethylacrylamide). Beilstein . Org. Chem. 2014, 10, 1951-1958. [CrossRef] [PubMed]

Del Valle, EM.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033-1046. [CrossRef]

Kellett, K.; Duggan, B.M.; Gilson, M.K. Facile synthesis of a diverse library of mono-3-substituted -cyclodextrin analogues.
Supramol. Chem. 2019, 31, 251-259. [CrossRef]

Hanessian, S.; Benalil, A.; Laferriere, C. The synthesis of functionalized cyclodextrins as scaffolds and templates for molecular
diversity, catalysis, and inclusion phenomena. J. Org. Chem. 1995, 60, 4786—4797. [CrossRef]

Munro, I.C.; Newberne, PM.; Young, V.R.; Bér, A. Safety assessment of gamma-cyclodextrin. Regul. Toxicol. Pharmacol. 2004, 39
(Suppl. 1), 3-13. [CrossRef]

Loftsson, T.; Duchéne, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007, 329, 1-11. [CrossRef]
Bouten, PJ.M.; Hertsen, D.; Vergaelen, M.; Monnery, B.D.; Catak, S.; Van Hest, ].C.M.; Van Speybroeck, V.; Hoogenboom, R.
Synthesis of poly(2-oxazoline)s with side chain methyl ester functionalities: Detailed understanding of living copolymerization
behavior of methyl ester containing monomers with 2-alkyl-2-oxazolines. |. Polym. Sci. Part A Polym. Chem. 2015, 53, 2649-2661.
[CrossRef]

Bouten, PJ.M.; Lava, K.; Van Hest, ].C.M.; Hoogenboom, R. Thermal properties of methyl ester-containing poly(2-oxazoline)s.
Polymers 2015, 7, 1998-2008. [CrossRef]

Van Guyse, ].E; Mees, M. A ; Vergaelen, M.; Baert, M.; Verbraeken, B.; Martens, P.J.; Hoogenboom, R. Amidation of Methyl Ester
Side Chain bearing Poly(2-oxazoline)s with Tyramine: A Quest for a Selective and Quantitative Approach. Polym. Chem. 2019,
10, 954-962. [CrossRef]

Connell, M.A; Bowyer, PJ.; Adam Bone, P; Davis, A.L.; Swanson, A.G.; Nilsson, M.; Morris, G.A. Improving the accuracy of
pulsed field gradient NMR diffusion experiments: Correction for gradient non-uniformity. J. Magn. Reson. 2009, 198, 121-131.
[CrossRef]

Sinnaeve, D. The Stejskal-Tanner equation generalized for any gradient shape-An overview of most pulse sequences measuring
free diffusion. Concepts Magn. Reson. Part A Bridg. Educ. Res. 2012, 40 A, 39-65. [CrossRef]

Mees, M.A.; Hoogenboom, R. Functional Poly(2-oxazoline)s by Direct Amidation of Methyl Ester Side Chains. Macromolecules
2015, 48, 3531-3538. [CrossRef]

Van Guyse, ]. ER.; Xu, X.; Hoogenboom, R. Acyl guanidine functional poly(2-oxazoline)s as reactive intermediates and stimuli-
responsive materials. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 2616-2624. [CrossRef]

Monnery, B.D.; Jerca, V.V,; Sedlacek, O.; Verbraeken, B.; Cavill, R.; Hoogenboom, R. Defined High Molar Mass Poly(2-Oxazoline)s.
Angew. Chem. 2018, 130, 15626-15630. [CrossRef]

Walach, W.; Oleszko-Torbus, N.; Utrata-Wesolek, A.; Bochenek, M.; Kijefiska-Gawroriska, E.; Gorecka, Z.; Swie;szkowski, W.;
Dworak, A. Processing of (Co)poly(2-oxazoline)s by electrospinning and extrusion from melt and the postprocessing properties
of the (co)polymers. Polymers 2020, 12, 295. [CrossRef] [PubMed]

Lamoureux, G.; Artavia, G. Use of the Adamantane Structure in Medicinal Chemistry. Curr. Med. Chem. 2010, 17, 2967-2978.
[CrossRef]

Dolin, R.; Reichman, R.C.; Madore, H.P.; Maynard, R.; Linton, PN.; Webber-Jones, ]J. A Controlled Trial of Amantadine and
Rimantadine in the Prophylaxis of Influenza a Infection. N. Engl. . Med. 1982, 307, 580-584. [CrossRef]

Van Guyse, J.ER.; Verjans, J.; Vandewalle, S.; De Bruycker, K.; Du Prez, FE.; Hoogenboom, R. Full and Partial Amidation of
Poly(methyl acrylate) as Basis for Functional Polyacrylamide (Co)Polymers. Macromolecules 2019, 52, 5102-5109. [CrossRef]

Ito, D.; Ogura, Y.; Sawamoto, M.; Terashima, T. Acrylate-Selective Transesterification of Methacrylate/Acrylate Copolymers:
Postfunctionalization with Common Acrylates and Alcohols. ACS Macro Lett. 2018, 7, 997-1002. [CrossRef]

Eftink, M.R.; Andy, M.L.; Bystrom, K.; Perlmutter, H.D.; Kristol, D.S. Cyclodextrin Inclusion Complexes: Studies of the Variation
in the Size of Alicyclic Guests. J. Am. Chem. Soc. 1989, 111, 6765-6772. [CrossRef]

Kwak, E.S.; Gomez, F.A. Determination of the binding of -cyclodextrin derivatives to adamantane carboxylic acids using
capillary electrophoresis. Chromatographia 1996, 43, 659-662. [CrossRef]


http://doi.org/10.1002/macp.200500202
http://doi.org/10.1021/la5030873
http://doi.org/10.3762/bjoc.8.224
http://doi.org/10.3762/bjoc.10.61
http://doi.org/10.1002/chem.201405161
http://doi.org/10.3762/bjoc.10.203
http://www.ncbi.nlm.nih.gov/pubmed/25246954
http://doi.org/10.1016/S0032-9592(03)00258-9
http://doi.org/10.1080/10610278.2018.1562191
http://doi.org/10.1021/jo00120a023
http://doi.org/10.1016/j.yrtph.2004.05.008
http://doi.org/10.1016/j.ijpharm.2006.10.044
http://doi.org/10.1002/pola.27733
http://doi.org/10.3390/polym7101494
http://doi.org/10.1039/C9PY00014C
http://doi.org/10.1016/j.jmr.2009.01.025
http://doi.org/10.1002/cmr.a.21223
http://doi.org/10.1021/acs.macromol.5b00290
http://doi.org/10.1002/pola.29542
http://doi.org/10.1002/ange.201807796
http://doi.org/10.3390/polym12020295
http://www.ncbi.nlm.nih.gov/pubmed/32024273
http://doi.org/10.1021/acscentsci.6b00277
http://www.ncbi.nlm.nih.gov/pubmed/28149948
http://doi.org/10.2174/092986710792065027
http://doi.org/10.1056/NEJM198209023071002
http://doi.org/10.1021/acs.macromol.9b00399
http://doi.org/10.1021/acsmacrolett.8b00502
http://doi.org/10.1021/ja00199a041
http://doi.org/10.1007/BF02292984

Polymers 2021, 13, 374 16 of 16

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Harries, D.; Rau, D.C.; Parsegian, V.A. Solutes probe hydration in specific association of cyclodextrin and adamantane. J. Am.
Chem. Soc. 2005, 127, 2184-2190. [CrossRef]

Cromwell, W.C,; Bystrom, K.; Eftink, M.R. Cyclodextrin-adamantanecarboxylate inclusion complexes: Studies of the variation in
cavity size. J. Phys. Chem. 1985, 89, 326-332. [CrossRef]

Palepu, R.; Reinsborough, V.C. 3-Cyclodextrin Inclusion of Adamantane Derivatives in Solution. Aust. J. Chern. 1990, 43, 2119-2123.
[CrossRef]

Gelb, R.I; Schwartz, L.M. Complexation of admantane-ammonium substrates by beta-cyclodextrin and its O-methylated
derivatives. J. Incl. Phenom. Macrocycl. Chem. 1989, 7, 537-543. [CrossRef]

Granadero, D.; Bordello, J.; Pérez-Alvite, M.].; Novo, M.; Al-Soufi, W. Host-guest complexation studied by fluorescence correlation
spectroscopy: Adamantane-cyclodextrin inclusion. Int. . Mol. Sci. 2010, 11, 173-188. [CrossRef]

Bergeron, R.J.; Channing, M.A.; Gibeily, G.J.; Pillor, D.M. Disposition requirements for binding in aqueous solution of polar
substrates in the cyclohexaamylose cavity. . Am. Chem. Soc. 1977, 99, 5146-5151. [CrossRef]

Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 2011,
40, 1305-1323. [CrossRef]

Schneider, H.J.; Hacket, F; Rudiger, V.; Ikeda, H. NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 1998,
98, 1755-1785. [CrossRef]

Bakirci, H.; Zhang, X.; Nau, W.M. Induced circular dichroism and structural assignment of the cyclodextrin inclusion complexes
of bicyclic azoalkanes. . Org. Chem. 2005, 70, 39-46. [CrossRef] [PubMed]

Nau, W.M.; Zhang, X. An exceedingly long-lived fluorescent state as a distinct structural and dynamic probe for supramolecular
association: An exploratory study of host-guest complexation by cyclodextrins. J. Am. Chem. Soc. 1999, 121, 8022-8032. [CrossRef]
Schonbeck, C.; Holm, R. Exploring the Origins of Enthalpy-Entropy Compensation by Calorimetric Studies of Cyclodextrin
Complexes. J. Phys. Chem. B 2019, 123, 6686—6693. [CrossRef]

Rekharsky, M.V.; Inoue, Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 1998, 98, 1875-1917. [CrossRef]
[PubMed]

Hardy, R.C.; Cottington, R.L. Viscosity of deuterium oxide and water in the range 5 to 125 C. . Res. Natl. Bur. Stand. 1949,
42,573-578. [CrossRef]

Park, J.-R.; Sarwat, M.; Bolle, E.C.L.; de Laat, M.A.; Van Guyse, ]. ER.; Podevyn, A.; Hoogenboom, R.; Dargaville, T.R. Drug—
polymer conjugates with dynamic cloud point temperatures based on poly(2-oxazoline) copolymers. Polym. Chem. 2020,
11, 5191-5199. [CrossRef]

Osawa, S.; Osada, K.; Hiki, S.; Dirisala, A.; Ishii, T.; Kataoka, K. Polyplex Micelles with Double-Protective Compartments of
Hydrophilic Shell and Thermoswitchable Palisade of Poly(oxazoline)-Based Block Copolymers for Promoted Gene Transfection.
Biomacromolecules 2016, 17, 354-361. [CrossRef]


http://doi.org/10.1021/ja045541t
http://doi.org/10.1021/j100248a029
http://doi.org/10.1071/CH9902119
http://doi.org/10.1007/BF01080464
http://doi.org/10.3390/ijms11010173
http://doi.org/10.1021/ja00457a040
http://doi.org/10.1039/C0CS00062K
http://doi.org/10.1021/cr970019t
http://doi.org/10.1021/jo048420k
http://www.ncbi.nlm.nih.gov/pubmed/15624904
http://doi.org/10.1021/ja990626t
http://doi.org/10.1021/acs.jpcb.9b03393
http://doi.org/10.1021/cr970015o
http://www.ncbi.nlm.nih.gov/pubmed/11848952
http://doi.org/10.6028/jres.042.049
http://doi.org/10.1039/D0PY00602E
http://doi.org/10.1021/acs.biomac.5b01456

	Introduction 
	Materials and Methods 
	Materials 
	Equipment 
	Synthesis of Poly(2-ethyl-2-oxazoline)90-stat-poly(2-C3Mest-2-oxazoline)10 Copolymer (Poly(EtOx-stat-C3MestOx)) 
	TBD-Catalyzed Amidation of the Poly(2-ethyl-2-oxazoline)90-stat-poly(2-C3Mest-2-oxazoline)10 Copolymer with 1-adamantanemethylamine (P(EtOx-stat-AdamantanOx)) 
	Cloud Point Measurements 
	1H NMR Titration Experiments 
	Diffusion Ordered NMR Spectra (2D DOSY) 

	Results and Discussion 
	Polymer Synthesis 
	Tuning Thermoresponsive Behavior by Molecular Recognition 
	Molecular Recognition of Adamantane Pendant Groups by Hydroxypropyl–CD 
	Diffusion Ordered NMR Spectroscopy 
	Rationalization of Polymer Design with Respect to Thermal Response 

	Conclusions 
	References

