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Abstract: Refractive index modification by laser micro-structuration of diffractive optical devices in
ophthalmic polymers has recently been applied for refractive correction in the fields of optics and
ophthalmology. In this work, Safrofilcon-A hydrogel, used as soft contact lenses, was processed by
direct laser interference patterning (DLIP) to fabricate linear periodic patterns on the surface of the
samples. Periodic modulation of the surface was attained under two-beam interference by using a
Q-switched laser source with emission at 263 nm and 4 ns pulse duration. Features of processed
areas were studied as a function of both the interference spatial period and the laser fluence. Optical
confocal microscopy used to evaluate the topography of the processed samples showed that both
structured height and surface roughness increased with laser fluence. Static water contact angle
(WCA) measurements were carried out with deionized water droplets on the structured areas to
evaluate the hydration properties of DLIP structures. It was observed that the laser structured areas
induced a delay in the hydration process. Finally, microstructural changes induced in the structured
areas were assessed by confocal micro-Raman spectroscopy showing that at low laser fluences the
polymer structure remained almost unaltered. In addition, Raman spectra of hydrated samples
recovered the original shape of areas structured at low laser fluence.

Keywords: DLIP; laser materials processing; diffraction gratings; ophthalmic materials; polymers

1. Introduction

Polymer technology has rapidly advanced since the beginning of this century. This de-
velopment has provided polymers with excellent properties, such as high optical trans-
parency in the UV-visible-NIR spectral region, elasticity, flexibility, durability [1–4], oxygen
permeability, hydrophobicity, biostability, and biocompatibility [5–8]. In addition, manu-
facturing process is easy, reliable, and highly efficient. Polymers are currently the preferred
materials in almost all biotechnological applications. In particular, in biomedicine, they
have been applied in cardiovascular devices [6], drug delivery [7], as hard and soft tissue
replacement [8], and as both contact and intraocular lenses [8–10].

Short and ultrashort pulsed laser radiation has been recently used to structure poly-
mers, crystals, and glasses in applications such as 2D/3D micro/nanostructures [11,12],
active and passive waveguides [13–18], photonic crystals [19,20], beam splitters [11,19],
data storage elements [11,19,21], and microfluidic components [19,22,23]. In addition, in
ophthalmology, ultrashort direct laser writing (UDLW) has been applied to vision cor-
rection in photo-refractive surgery [24–26], and more recently, to change the power of
refractive optical elements [27–34]. It is well known that diffractive optical elements, such
as diffraction gratings, can be used to modify the refractive index and hence the refractive
power of an optical device. Specifically, ultrashort laser radiation with laser pulse energy
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below damage threshold has been employed to fabricate diffraction gratings within dye-
doped and non-doped ophthalmic polymers, resulting in refractive index modification
ranging from ~6 × 10−2 to ~8 × 10−2 [27–34]. Nonetheless, the processing rates reported to
date to structure areas of large dimensions, such as the cornea, are low, which hinders their
application on a real scale. This limitation can be overcome if the whole pattern, instead of
line by line, is transferred to the sample at once. This can be achieved using direct laser
interference patterning (DLIP). We have recently proposed DLIP as a novel approach to
fabricate diffraction gratings on the surface of ophthalmic polymers to be used for refractive
correction [35–37]. DLIP is a single-step and non-contact laser processing technique, which
is more flexible and cost-effective when compared to traditional structuring techniques in
the micro- and sub-micrometer range [37–42]. To date, we have achieved refractive index
changes one order of magnitude higher, with processing yields more than two orders of
magnitude faster, than those reported so far by UDLW in similar non-doped ophthalmic
polymers [35–37].

Ophthalmic polymers for soft contact lenses are commonly machined in dry stage by
lathe cutting to provide them with the required refractive power. Next, they are hydrated
by immersion in saline solution for 24 h, providing them the suitable flexibility to be placed
over the corneal epithelium. To date, our investigations on DLIP structuring in ophthalmic
polymers have been carried out in the dry stage. Nevertheless, accounting for the fact that
the final sample is softened by hydration, it is important to assess to what extent the laser
structuring modifies the capability of the hydrogel to be hydrated. This evaluation will
provide the limiting laser processing parameters to modify the refractive index.

In this work, we investigate how wettability and consequently the hydration process
of the polymer sample may be affected by the laser-induced surface patterning. For this
purpose, periodic patterns are fabricated by means of DLIP under two-beam configuration
with a pulsed laser emitting at 263 nm, and pulsewidth in the nanosecond range. Confocal
microscopy and micro-Raman spectroscopy are performed to investigate surface topogra-
phy, and compositional and structural changes in the laser-processed areas. Finally, static
water contact angle (WCA) measurements are carried out with deionized water droplets
on the structured areas to evaluate the hydration properties of DLIP structures.

2. Experimental System
2.1. Laser Setup

As the laser source, a Q-Switched Nd:YAG laser emitting at 263 nm with pulsewidth of
4 ns and repetition rate of 1 kHz was used to fabricate the periodic structures (Laser-export
Co. Ltd., Tech-263 Advanced, Moscow, Russia). Laser beam was split into two beams of
equal intensity by using a diffractive optical element (DOE), and both laser beams were
collimated by means of a prism. An optical lens of 60 mm focal length was used to interfere
both laser beams on the surface of the sample, as shown in Figure 1. Angle between the
laser beams, 2α, and the wavelength of the laser radiation, λ, allowed one to control the
interference period, Λ, according to the following equation [38]:

Λ =
λ

2sinα
, (1)Polymers 2021, 13, 679 3 of 9 

 

 

 
Figure 1. Schematic representation of direct laser interference patterning (DLIP) setup.  
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As the substrate, 1 mm thick Safrofilcon-A hydrogel polymer disks, provided by the 

manufacturer (Contamac Ltd., Saffron Walden, UK) in dry stage, were used to be 
processed. The optical transmission spectrum is shown in Figure 2.  

 
Figure 2. Optical transmission spectra of Safrofilcon-A hydrogel polymer.  

2.3. Characterization Techniques 
Optical transmission spectra were obtained by means of a spectrophotometer (U-

3400, Hitachi, Abingdon, UK). Optical confocal microscopy (Sensofar S Neox, Terrassa, 
Spain) was performed to investigate surface topographies and height profiles of the 
structured samples by using a 150× microscope objective, which provided an optical 
resolution of 140 nm and a lateral resolution of 1 nm. Surface roughness was determined 
by using the arithmetical mean height of the surface, Sa. Confocal micro-Raman 
spectroscopy was utilized to characterize the microstructural changes using a confocal 
optical microscope coupled to a spectrometer (SR303i-B, Andor, Belfast, Northern 
Ireland), equipped with a thermoelectric-cooled CCD detector (Newton 920, Andor, 
Belfast, Northern Ireland). A continuous wave 785 nm laser was used as the excitation 
source. Laser power was kept below 50 mW to avoid the heating of the sample. The 
backscattered light was collected through a 60× (0.85 NA) microscope objective lens. 
Finally, static water contact angle (WCA) measurements were performed using a drop 
shape analyzer (Krüss DSA 100 S, Hamburg, Germany) and a tensile droplet volume of 2 
µL at ambient conditions of 22 °C and 16% of relative humidity. The tangent droplet fitting 
method was used for all measurements to determine the contact angles between the 
surface and the droplet. Each measurement was repeated three times for a statistical 
purpose. 
  

DOE

PRISM LENS SAMPLE

LASER 
BEAM

2α

Figure 1. Schematic representation of direct laser interference patterning (DLIP) setup.
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Interference spatial periods were experimentally set at 3 µm and 6 µm. Laser fluence
was set at 0.47 J/cm2, and number of pulses was modified between 2 and 10 pulses. These
values were selected after previous experiments to be above the modification threshold
and not to induce an excessive damage on the samples.

2.2. Materials

As the substrate, 1 mm thick Safrofilcon-A hydrogel polymer disks, provided by the
manufacturer (Contamac Ltd., Saffron Walden, UK) in dry stage, were used to be processed.
The optical transmission spectrum is shown in Figure 2.
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Figure 2. Optical transmission spectra of Safrofilcon-A hydrogel polymer.

2.3. Characterization Techniques

Optical transmission spectra were obtained by means of a spectrophotometer (U-3400,
Hitachi, Abingdon, UK). Optical confocal microscopy (Sensofar S Neox, Terrassa, Spain)
was performed to investigate surface topographies and height profiles of the structured
samples by using a 150× microscope objective, which provided an optical resolution of
140 nm and a lateral resolution of 1 nm. Surface roughness was determined by using
the arithmetical mean height of the surface, Sa. Confocal micro-Raman spectroscopy was
utilized to characterize the microstructural changes using a confocal optical microscope
coupled to a spectrometer (SR303i-B, Andor, Belfast, Northern Ireland), equipped with a
thermoelectric-cooled CCD detector (Newton 920, Andor, Belfast, Northern Ireland). A
continuous wave 785 nm laser was used as the excitation source. Laser power was kept
below 50 mW to avoid the heating of the sample. The backscattered light was collected
through a 60× (0.85 NA) microscope objective lens. Finally, static water contact angle
(WCA) measurements were performed using a drop shape analyzer (Krüss DSA 100
S, Hamburg, Germany) and a tensile droplet volume of 2 µL at ambient conditions of
22 ◦C and 16% of relative humidity. The tangent droplet fitting method was used for all
measurements to determine the contact angles between the surface and the droplet. Each
measurement was repeated three times for a statistical purpose.

3. Results and Discussion
3.1. DLIP Structuring

The polymer samples were structured with periodic line-like patterns adjusting the
experimental setup according to equation 1 to induce spatial periods of 3 µm and 6 µm on
the surface of the sample. Multi-pulse laser structuring was carried out delivering 2, 4, 6, 8,
and 10 laser pulses at a laser fluence of 0.47 J/cm2. Previous experiments allowed one to
determine this laser fluence as optimal to process this material. Lower and higher laser
fluences were found to be unsuitable since neither produced any effect on the material nor
induced significant damage. Figure 3 shows surface topographies of structured samples
with spatial periods Λ of 3 µm (a and b) and 6 µm (c and d) using 2 (left) and 6 (right)
laser pulses of 0.47 J/cm2. Experimental period of the interference pattern was assessed
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by confocal microscopy, resulting in 3.03 ± 0.22 µm and 6.10 ± 0.16 µm, close to the
theoretical values given by Equation (1). It can be observed that the higher the number
of pulses, the more material was re-deposited on the surface of the material, thus leading
to a more undefined structure. Accounting for the fact that the pulse duration of this
laser source was in the nanosecond range, and the high optical absorption of this polymer
at the laser wavelength was used to carry out the process (263 nm), the laser intensity
was transferred onto the material by both photo-chemical and photo-thermal processes.
This type of laser-matter interaction implies direct bond breaking and thermally induced
vaporization processes [43].
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Figure 3. Confocal topographies of structured samples with spatial periods Λ of 3 µm (a,b) and 6 µm
(c,d) using 2 (left) and 6 (right) laser pulses of 0.47 J/cm2.

Next, profile measurements were taken by using confocal microscopy to evaluate the
height of DLIP structures. As Figure 4 shows, structured height increased with laser fluence.
For the case of samples structured with a spatial period of 3 µm, the increase was found to
be linear. Nevertheless, in samples structured with a spatial period of 6 µm, the maximal
height was achieved at a cumulated laser fluence of 2.82 J/cm2 (6 laser pulses of 0.47 J/cm2).
Higher laser fluences led to a lower height due to both an increased damage induced by
the laser radiation in the polymer and to the greater amount of material re-deposited
onto the surface as a consequence of the laser ablation process. It is worth highlighting
that the height of DLIP structures decreased with the spatial period, in good agreement
with previous works found in the literature [41]. In addition to the DLIP height, surface
roughness (Sa) was assessed by confocal microscopy, shown in Figure 5. It was observed
that roughness was relatively high compared to the structure depth, and that increased
with laser fluence until reaching a saturation value. This value was around 160 nm and
was achieved with six laser pulses for samples structured with a spatial period of 3 µm,
whereas this saturation value was higher and was reached earlier for samples processed
with a spatial period of 6 µm. Specifically, it was found to be around 300 nm and was
achieved with 4 laser pulses.
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3.2. Hydration Assessment

Static water contact angle (WCA) measurements were performed to evaluate the
wetting characteristics of the laser-structured areas. Figure 6 shows time-dependent mea-
surements taken during the absorption of the water droplet by the polymer samples. It
can be observed that all samples showed the same behavior; departing from the initial
WCA value, it decreased as a function of time until an inflection point appeared for a WCA
value around 9◦. Once this point was reached, the curve became flat. For non-processed
samples to reach this inflection point took around 19 min. Concerning DLIP-structured
samples, the most significant parameter affecting the hydration process was the spatial
period. Provided a spatial period, to reach the inflection point took approximately the same
time independently of the laser fluence used to structure the sample, specifically, around
22 min and 24 min for samples structured with spatial periods of 6 µm and 3 µm, respec-
tively. Therefore, it was found that hydration process was modified by the laser-induced
DLIP structures so that the smaller the spatial period, the longer the time for the sample
to be hydrated. In particular, the delay time was estimated in 15% and 26% for Λ of 6 µm
and 3 µm, respectively. In addition, although both non-processed and DLIP-structured
samples were shown to be hydrophobic, it was observed that the value of the WCA was
also affected by the structuring period. For instance, regarding the initial value of the
WCA, in non-processed samples it took values around 114◦ whereas for DLIP-structured
samples it took values around 121◦ and 129◦ for Λ of 6 µm and 3 µm, respectively. It was
also observed that WCA value was also affected by the laser fluence at which the laser
structuring was carried out, so that it was increased with the laser fluence. This increase
could reach up to a 7% and a 30% in samples structured with spatial periods of 6 µm
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and 3 µm, respectively, when increasing the cumulated laser fluence from 0.94 J/cm2 to
2.82 J/cm 2.
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of the water droplet by the polymer samples.

3.3. Microstructural Characterization

Confocal micro-Raman spectroscopy was performed in laser-structured areas as in dry
stage after hydration assessment to investigate modifications in both polymer structure and
chemical composition. Figure 7 shows Raman spectra in the wavenumber region 300–2000
cm−1 of the polymer sample in non-structured regions and in the DLIP processed areas
with a spatial period of 3 µm at 0.94 J/cm2 (a) and 2.82 J/cm2 of cumulated laser fluence
(b) before and after hydration assessment. Raman spectra showed sharp peaks and broad
bands, which agreed with those previously reported in the literature [44,45]. These peaks
and bands were assigned as follows: 605 cm−1, νsCCO; 646 cm−1, SiO3; 766 cm−1, SiCH3;
1425 cm−1 δCH2; 1457 cm−1 δCH2 and δCH3; and 1615 cm−1 νCO. It is observed that
Raman spectra of areas structured at low cumulated laser fluence, 0.94 J/cm2, before and
after hydration did not show significant changes when compared with non-processed
areas, Figure 7a. Therefore, at low laser fluences the polymer structure remained almost
unaltered and hydration process did not produce any substantial modification. However,
areas structured at higher fluences showed a strong decrease in the intensity of Raman
peaks placed at 646 cm−1, 766 cm−1, 1425 cm−1, 1457 cm−1, and 1615 cm−1, as shown in
Figure 7b. This modification resulted from the photo-thermal damaged induced by the
laser radiation. It is worth noting that Raman spectra of these samples after hydration
process recovered the original shape of areas structured at low laser fluence, as shown in
Figure 7b.
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period, the lower the contact angle. Micro-Raman analyses carried out in the processed 
areas showed that at low cumulated laser fluence polymer structure remained almost un-
altered. However, high laser fluence induced photo-thermal damaged on the polymer 
sample. Furthermore, Raman analyses performed after hydration process showed that 
structured samples recovered the spectra of areas structured at low laser fluence. 
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Figure 7. Micro-Raman spectra of the polymer sample in non-processed areas and in the DLIP
structured regions with a spatial period of 3 µm at 0.94 J/cm2 laser fluence (a) and 2.82 J/cm2 laser
fluence (b) before and after hydration assessment.
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4. Conclusions

Safrofilcon-A hydrogel polymers employed as soft contact lenses were structured
on the surface with linear periodic patterns using DLIP with UV pulsed laser radiation
in the nanosecond range. The produced periodic patterns were evaluated as a function
of the cumulated laser fluence and the spatial period. It was found that height of the
DLIP patterns increased with the cumulated laser fluence (or pulse number at a constant
fluence). In addition, the height of the periodic structure decreased when the spatial
period decreased. Additionally, it was observed that surface roughness increased with
both laser fluence and spatial period. Evolution of static water contact angle (WCA) as a
function of time was assessed to study how DLIP structures may affect the hydration of the
polymer sample. Static water contact angle measurements showed that WCA decreased
as a function of time and became flat for a contact angle around 9◦. In addition, the
laser structured samples induced a delay in the hydration process, so that the shorter the
spatial period, the longer the time required for the sample to be hydrated. Delay time was
estimated in 15% and 26% for Λ of 6 µm and 3 µm, respectively. Contact angle value was
affected by the structuring period. It increased for structured samples, so that the larger
the spatial period, the lower the contact angle. Micro-Raman analyses carried out in the
processed areas showed that at low cumulated laser fluence polymer structure remained
almost unaltered. However, high laser fluence induced photo-thermal damaged on the
polymer sample. Furthermore, Raman analyses performed after hydration process showed
that structured samples recovered the spectra of areas structured at low laser fluence.
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