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Abstract: In normal conditions, discarding single-use personal protective equipment after use is the
rule for its users due to the possibility of being infected, particularly for masks and filtering facepiece
respirators. When the demand for these protective tools is not satisfied by the companies supplying
them, a scenario of shortages occurs, and new strategies must arise. One possible approach regards
the disinfection of these pieces of equipment, but there are multiple methods. Analyzing these
methods, Ultraviolet-C (UV-C) becomes an exciting option, given its germicidal capability. This paper
aims to describe the state-of-the-art for UV-C sterilization in masks and filtering facepiece respirators.
To achieve this goal, we adopted a systematic literature review in multiple databases added to a
snowball method to make our sample as robust as possible and encompass a more significant number
of studies. We found that UV-C’s germicidal capability is just as good as other sterilization methods.
Combining this characteristic with other advantages makes UV-C sterilization desirable compared to
other methods, despite its possible disadvantages.

Keywords: ultraviolet-C; surgical masks; filtering facepiece respirators; sterilization; germicidal ca-
pability; additional advantages; thermal deformation; shadowing; absorption effect; filtration power

1. Introduction

In normal conditions, single-use personal protective equipment (SUPPE) is discarded
after use, once it might be infected [1]. However, when pandemics, such as the one of
Coronavirus 2019 (COVID-19), happen, conditions for a perfect storm happen, creating a
combination of two factors: (1) a higher demand-side pressure for those pieces of equipment
on a global scale [1–10], added to (2) failure on the supply-side to meet these needs, as most
SUPPE supply chains were in China, and they were unable to export their products [11].
When this perfect storm occurs, reprocessing SUPPE gains visibility as there is no universal
treatment [10,12,13]. Despite the fact that there are now multiple vaccines, SUPPE demand
will continue to suffer pressures until countries reach herd immunization, especially if
countries start banning woven masks, as in Germany or France, due to virus mutations.

Reprocessing SUPPE is crucial because it tackles multiple problems, since (1) it gives a
rapid solution to this shortage during a crisis (economic factor); (2) it reduces the environ-
mental impact this increase in production would cause in terms of nonrecyclable waste
(environmental facet); (3) it enables poorer countries to diminish their costs from highly
inflated SUPPE at this moment (social aspect).

Facing this crisis, multiple organizations throughout the world (e.g., the F.D.A., the
C.D.C., the E.C.D.C., the U.N.) have adjusted their infection control measures [14], issuing
special authorizations for sterilizing SUPPE [15–18], as well as reports/guidelines about
multiple reprocessing methods [19–24]. Even though such changes in perspective hap-
pened, there is still no universal option for reprocessing SUPPE. This lack of universal
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choice happens because each option may affect SUPPE’s efficiency and integrity, diminish-
ing its barrier capability [1,4,7,8,10,14]. Given that there is no universal choice, reprocessing
SUPPE must consider their materials, topologies, the resources at hand, and the markets’ ac-
ceptance [3,12,25]. The four major sterilization methods are thermal, chemical, radioactive,
and energetic [3,8,12,13,26,27].

Thermal methods commonly deactivate microorganisms, such as viruses, given they
denature their proteins [3,8]. However, these methods face two cardinal problems: they
might deform SUPPE irreversibly and face scalability issues [3,8,9,12–14,20,26]. In or-
der to deal with such problems, some researchers [28–30] use nanostructured materials
with photothermal properties, such as poly(NIPAm-co-NIPMAm) hydrogels [28,29]. This
characteristic enables the absorption of visible/near-infrared light, creating localized heat
sources [28]. Although this solution might solve the previous problems, it is still in its
infancy. Thus, the development of autophotothermal disinfection SUPPE [30] might prove
useful in the future, but it lacks further research to evaluate its industrial feasibility.

The typical chemical methods used to sterilize SUPPE are Vaporized Hydrogen Perox-
ide (VH2O2) and Ethylene Oxide (EtO), and the first has been gaining the second’s market.
Even though VH2O2 is ineffective on cellulose-based SUPPE, it is environmentally friendly,
and EtO is carcinogenic [2,8,12,25]. The chemical methods have some cons, such as their
residues causing allergic reactions and having an intense odor. They depend on specific
machinery, and VH2O2 is highly unstable when vaporized, losing significant efficiency
when condensed [3,5,7,9,12,25,31].

Regarding radioactive sterilization methods, the most common one uses gamma
irradiation, and it is already primarily used for sterilizing medical tools on a large scale,
but it is highly dependent on expensive machinery, it might cause irreversible deformities
on SUPPE, and these methods use radioactive raw material [2,8,20,25,26].

Regarding the energetic methods, the water and the food industry already apply
germicidal ultraviolet (UVGI) [2]. Ultraviolet C (UV-C), among the UVGI, can damage
biological structures via the photodimerization process since both RNA and DNA bases
strongly absorb UV-C [3]. UV-C is suitable due to its low cost, high throughput, ease of
use, and no chemical residues left [6,12,32]. UV-C has some limitations related to SUPPE
thermal deformation, shadowing, and absorption effects [4,5,8,27,31].

Considering this panorama, UV-C seems to be the method that is more suitable
to tackle the problems (economic, environmental, and social) of selecting a sterilization
method for SUPPE. Thus, this paper aims to describe the state-of-the-art for UV-C steriliza-
tion in masks and filtering facepiece respirators.

Among different SUPPE, masks and filtering facepiece respirators (FFRs) became nec-
essary due to their primary role as a protective barrier from Coronavirus disease infection
in the hospital and nonhospital environments [33]; therefore, this paper focuses on these
SUPPE. This analysis allows observing if studies benefit from advantages and face the disad-
vantages described for UV-C and how they are overcoming them. Such evaluations are es-
sential because UV-C is already useful in disinfecting other materials/equipment/products,
but there remain doubts concerning its disinfection ability for masks/FFRs.

The authors have used a systematic literature review (SLR) on multiple databases to
gather English-written publications that researched UV-C’s impacts on masks and FFRs.
More information about the quantitative of analyzed studies and their sources (Table S1),
SLR’s database description (Figure S1) and SLR’s database descriptive analysis (Figure S2)
are available in Supplementary Materials.

2. UV-C Sterilization in Masks and Filtering Facepiece Respirators

This section compiles the SLR results describing the state-of-the-art for UV-C steriliza-
tion in masks and filtering facepiece respirators. Readers may find these studies’ samples,
UV-C’s system setups, and results in Table 1, entitled SLR’s final database main features
and results.
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Table 1. SLR’s final database main features and results.

Sample Biological
Indicators

Nº of
Lamps

UV-C Total
Dose (J/cm2)

Lamp
Power (W)

Exposure to
UV-C (min)

Sterilization
Cycles Log Reduction Toxic

Byproduct
Filtration
Powers

Changes in
Integrity or Fit Source

VIRUSES

Surgical Masks/ Procedure Masks/FFP1

Surgical masks $ PRCV strain 91V44 4 2.6 5.5 2 1 Yes, >5 No No No [34]

Surgical mask H1N1 Influenza A
virus 2 1.35 30 15 Up to 30 Yes, ≥4 No Yes, little or no

effect.

Yes, no physical
changes after 30

cycles.
[35]

Surgical mask $

Infectious porcine
respiratory

coronavirus (PRCV
strain 91V44) and
murine norovirus

(MuNoV line
RAW264.7 ATCC

TIB-71)

4 2.6 & 5.5 2 Up to 5 Yes, 5.37 (PRCV)
and 4.65 (MuNoV) No Yes, little or no

effect.

Yes, slightly
decreased

airflow
resistance.

[36]

FFP2/KN95/N95 FFR

N95 $

H1N1 influenza
(VR-1469) covered

with artificial
saliva or skin oil

8 1 0.39 1, 10 # 1

Yes, ≥3 in 12/15
FFRs and 7/15
straps for both

soiling conditions

No No No [1]

N95 MS2 coliphage 1 38 to 4707 40 2 to 266 - Yes, >3 (after 1000 J
of irradiation) No No No [6]

N95
MS2

bacteriophages
and Phi6

2 - -
22 (each cycle)

or 31 (once
extended)

Up to 3

Yes, ≥2.1 (MS2)
single cycle. >6

(three consecutive
cycles or extended)

No No
Yes, no physical

changes after
three cycles.

[37]

N95
Hcov-19

ncov-WA1-2020
(MN985325.1)

1 0.33 to 1.98 - Multiple (10,
30, and 60) Up to 3 Yes, >3 No Yes, little or no

effect.

Yes, it reached
the minimum at
fit test after three

cycles.

[38]
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Table 1. Cont.

Sample Biological
Indicators

Nº of
Lamps

UV-C Total
Dose (J/cm2)

Lamp
Power (W)

Exposure to
UV-C (min)

Sterilization
Cycles Log Reduction Toxic

Byproduct
Filtration
Powers

Changes in
Integrity or Fit Source

N95

RIX4414 strain of
the human

rotavirus G1P[8]
Wa strain

1 - - 15 & Up to 5

Yes, “the
rotaviral RNA

was detected on
both decontami-
nation methods,
while the back of
N95 respirators,

the rotaviral
RNA was

undetected.”
(p. 50)

No Yes, little or
no effect. No [39]

N95

H1N1 influenza
(VR-1469) using

droplet and
aerosol

applications

1 1.8 80 15 1
Yes, >4 (all

models both
applications)

No No
Yes, no

physical
changes.

[40]

N95 $ Escherichia virus
MS2. 8 >2 - 1 1 Yes, >3 No No No [41]

N95 $

Escherichia virus
MS2 (MS2),

Pseudomonas
virus phi6 (Phi6)

8 >2 - 1 1 Yes, >2 (MS2 and
Phi6) No No No [41]

N95 Vesicular
stomatitis virus Up to 1.12 - - Up to 5 Yes, >4 No

Yes, little or
no effect
after ten
cycles.

Yes, effect after
ten cycles. [42]

N95
Influenza
A/H5N1

(VNH5N1)
2 18,000 - 15 1 Yes, >4 (all

models) No Yes, little or
no effect. No [43]
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Table 1. Cont.

Sample Biological
Indicators

Nº of
Lamps

UV-C Total
Dose (J/cm2)

Lamp
Power (W)

Exposure to
UV-C (min)

Sterilization
Cycles Log Reduction Toxic

Byproduct
Filtration
Powers

Changes in
Integrity or Fit Source

KN95 $ PRCV strain
91V44 4 5.2 5.5 4 1 Yes, >4 No No No [34]

N95

Lentivirus
bearing a GFP

reporter (a
surrogate for
SARS-CoV-2)

- 1.8 -

<30 (7 white
cycle, 10.5

colored cycle,
12 heat)

3 Yes, ~5 (UV-C
alone)

Yes,
minimal

ozone accu-
mulation

Yes, little or
no effect.

Yes, no
physical
changes.

[44] *

N95 SARS-CoV-2
(USA-WA1/202) - - - Up to 5 1 Yes, >4.79 No No No [45]

N95

Swine
coronavirus

(PEDV strain
CO2013)

- 0.36 to 2.52 & 25 Multiple (1,
3, 5, 7) & Multiple Yes, 4 No No No [46]

N95 Clinical samples
of SARS-CoV-2 1 - 30 - 1 Yes, it depended

on the model No No

Yes, internal
degradation,
producing
particulate.

[47]

N95

Staphylococcal
bacteriophages
(vb_hsa_2002

and P66 phages)

10 Multiple - 4 1 Yes, >3

Yes,
minimal

ozone con-
centration

Yes, little or
no effect.
(Effect

caused by
wearing)

Yes, no
physical

changes even
in dosage

corresponding
to 50 cycles.

[48] *
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Table 1. Cont.

Sample Biological
Indicators

Nº of
Lamps

UV-C Total
Dose (J/cm2)

Lamp
Power (W)

Exposure to
UV-C (min)

Sterilization
Cycles Log Reduction Toxic

Byproduct
Filtration
Powers

Changes in
Integrity or Fit Source

N95 (one model
with a hydrophilic

outer layer and
another with a

hydrophobic outer
layer)

MS2
bacteriophage

(ATCC 15597-B1)
(multiple

deposition
methods:
droplets,

vaporized, and
aerosolized)

1 ~1 40 5 1
Yes, >5 (for all

models and
methods).

Yes, no
toxic

byproduct
left.

Yes, little or
no effect.

Yes, no
physical
changes.

[49]

N95 MS2 coliphage 1 4.32 40 Up to 300 1

Yes, >3 after
three hours. No
virus after five

hours at
~7.20 J/cm2.

No No No [50]

N95/KN95

MS2, Phi6,
influenza A

virus, murine
hepatitis virus

1 - - 15 1

Yes, but <2 (MS2,
Phi6, influenza
A, MHV) (only

UV-PX).

No Yes, little or
no effect.

Yes, no
physical
changes.

[51] *

N95

MS2
bacteriophage

(multiple
deposition

methods and
humidity levels)

1 - 4 Up to 240 Multiple

Yes, multiple
results

depending on
the relative

humidity of the
coupon face and
the deposition
method (the

highest was 5.8)

No No No [52]
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Table 1. Cont.

Sample Biological
Indicators

Nº of
Lamps

UV-C Total
Dose (J/cm2)

Lamp
Power (W)

Exposure to
UV-C (min)

Sterilization
Cycles Log Reduction Toxic

Byproduct
Filtration
Powers

Changes in
Integrity or Fit Source

N95
Swine

coronavirus
(PEDV)

1 - 4
Multiple (10,
15, and 20),

1 #
1

Yes, “it is likely
that 10-min

UV-C is
sufficient for the
inactivation of

the virus” (p. 06)

No No
Yes, no

physical
changes.

[53]

N95
Hcov-19

ncov-WA1-2020
(MN985325.1)

1 0.33 to 1.98 - Multiple (10,
30, and 60) Up to 3 Yes, >3 No

Yes, little or
no effect

after three
cycles.

Yes, minimum
at fit test after
three cycles.

[54]

N95 $ SARS-CoV-2 UV
LEDs 0.3 to 0.6 - Multiple (0,

5, and 10) Up to 3 Yes, >3 (in one
model) No No No [55]

KN95 $

Infectious
porcine

respiratory
coronavirus

(PRCV strain
91V44) and

murine
norovirus

(MuNoV line
RAW264.7

ATCC TIB-71)

4 2.6 & 5.5 2 5
Yes, 4.48 (PRCV)

and 4.33
(MuNoV)

No Yes, little or
no effect.

Yes, no
physical
changes.

[36]

N95 $

SARS-CoV-2
(USA-

WA1/2020
NR-52281)

- 1.5 & - 1 to 1.16 & 1 Yes, it depended
on the model No No No [56]

N95

SARS-CoV-2
(USA-WA1/202,

bei resource
NR52281)

2 1.5 - 0 to 2.73 1 Yes, 3.5 No No No [57]
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Table 1. Cont.

Sample Biological
Indicators

Nº of
Lamps

UV-C Total
Dose (J/cm2)

Lamp
Power (W)

Exposure to
UV-C (min)

Sterilization
Cycles Log Reduction Toxic

Byproduct
Filtration
Powers

Changes in
Integrity or Fit Source

N95
Human

coronavirus
NL63

1 - - 15 1 Yes, >3 No No No [58]

BACTERIA

Surgical Masks/ Procedure Masks/FFP1

FFP1 and surgical
mask

E. Coli (K12) and
B. Subtilis
(B 4056)

1 Up to 0.378 - Multiple
(5, 10, 15) 1 - No Yes, little or

no effect. No [59]

surgical mask S. Aureus 2 1.35 30 15 Up to 30 Yes, ≥4 No Yes, little or
no effect.

Yes, no
physical

changes after
30 cycles.

[35]

FFP1 and surgical
mask S. Aureus 24 2.7 95 30 Up to 3 Yes, ≥8 No No No [60]

surgical mask S. Aureus 1 - 20 5 & Up to 3 Yes, 4 No

Yes, little or
no effect

after three
cycles.

Yes, no
physical

changes after a
90-min

exposure.

[61]

FFP2/KN95/N95 FFR

N95
Methicillin-
resistant S.

Aureus (MRSA)
2 - -

22 (each
cycle) or 31

(once
extended)

Up to 3

Yes, >6 (single
cycle,

consecutive
cycles, and
extended)

No No

Yes, no
physical

changes after
three cycles.

[37]
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Table 1. Cont.

Sample Biological
Indicators

Nº of
Lamps

UV-C Total
Dose (J/cm2)

Lamp
Power (W)

Exposure to
UV-C (min)

Sterilization
Cycles Log Reduction Toxic

Byproduct
Filtration
Powers

Changes in
Integrity or Fit Source

FFP2
E. Coli (K12) and

B. Subtilis (B
4056)

1 Up to 0.378 Multiple
(5, 10, 15) 1

Yes, “No
surviving

bacterium was
observed after
UVI treatment

for 5 min or
longer”

(p. 13166)

No

Yes, little or
no effect

even when
20 J/cm2.

No [59]

N95 (5 layers:
coverweb,

stiffener, 1st and
2nd filter layers,
innerweb)/KF94

(3 layers:
coverweb, filter
web, inner web)

E. Coli (KCTC
1039) 1 - 10 60 & 1 Yes, <2

Yes, peaks
of C–O–C
and O–H
bending

Yes, little or
no effect.

Yes, no
physical
changes

[62]

N95 $

Methicillin-
resistant S.

Aureus (MRSA)
and C. Difficile

8 >2 - Up to 3 1 Yes, >5 (MRSA),
<3 (C. difficile) No No No [41]

N95 B. Subtilis (CCRC
12145) 1 - 6 Multiple (1,

2, 5, 10, 20) & 1

Yes, “no colony
was recovered

after exposure to
UVC for as little
as five minutes”

(p. 757)

No No No [63]

N95

S. Epidermis, P.
Aeruginosa, and

G. Stearother-
mophilus

- 1.8 -

<30 (7 white
cycle, 10.5

colored cycle,
12 heat)

3

Yes, 6 (S.
Epidermis and P.
Aeruginosa) and

> 6 (G. Stearother-
mophilus) just
using UV-C

Yes,
minimal

ozone accu-
mulation

Yes, little or
no effect.

Yes, no
physical
changes

[44] *
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Table 1. Cont.

Sample Biological
Indicators

Nº of
Lamps

UV-C Total
Dose (J/cm2)

Lamp
Power (W)

Exposure to
UV-C (min)

Sterilization
Cycles Log Reduction Toxic

Byproduct
Filtration
Powers

Changes in
Integrity or Fit Source

N95

B. Pumilus
PM-106 (as a
surrogate for
SARS-CoV-2)

Variable ≥1 30
(nonozone) 5, 10 # Up to 5 Yes, 6

Yes,
minimal

ozone con-
centration.

Yes, little or
no effect.

(one model)

Yes, no
physical
changes

through five
cycles. (One

model)

[64]

N95/KN95
E. Coli, S. Aureus,
and G. Stearother-

mophilus
1 - - 15 1

Yes, but <1 (S.
aureus) (UV-PX

alone).
No Yes, little or

no effect.

Yes, no
physical
changes.

[51] *

N95/KN95 S. Aureus 24 2.7 95 30 Up to 3 Yes, ≥7 No No No [60]

FFP3/KN98/N98 FFR

FFP3
E. Coli (K12) and

B. Subtilis
(B 4056)

1 Up to 0.378 - Multiple (5,
10, 15) 1 - No Yes, little or

no effect. No [59]

Others

One mask (with
HEPA filter)

B. Atrophaeus
(ATCC9372) 10 1 17 15 Up to 3

Yes, “UVC
radiation

eliminates
pathogens in all

layers ofthe
HEPA filter.”

(p. 13)

No No
Yes, no

physical
changes.

[65]

NO BIOLOGICAL INDICATORS/OTHER BIOLOGICAL INDICATORS

Surgical Masks/ Procedure Masks/FFP1

Surgical mask - 1 ≥1 0.017 1 1
Yes, >5.5 (in

52 min,
simulation)

No No No [66] *
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Table 1. Cont.

Sample Biological
Indicators

Nº of
Lamps

UV-C Total
Dose (J/cm2)

Lamp
Power (W)

Exposure to
UV-C (min)

Sterilization
Cycles Log Reduction Toxic

Byproduct
Filtration
Powers

Changes in
Integrity or Fit Source

Surgical mask
(two outers of

cellulose acetate
and interior of
polypropylene)

- 4 1 to 10 120 ~2 - No

Yes, no
toxic

byproduct
left.

Yes, little or
no effect.

Yes, no
physical
changes.

[67]

surgical mask - 2 2.7 - 5 - No No No No [68]

FFP2/KN95/N95 FFR

N95 $ - 2 120 to 950 15 - 1 No No

Yes,
efficiency

reduction of
1.25% in

higher doses.

No [7]

N95/KN95/KF94
$ - 1 ~3.6 8 30, 10 # 10 No No No

Yes, no
physical
changes.

[33]

FFP2 - 3 0.3 to 3 4.9 0.183 to 100 - No No No No [69]

N95 - 1 ≥1 0.017 1 1
Yes, >5.5 (in

52 min,
simulation)

No No No [66] *

N95/FFP2 - 1 - 40 45 1 No Yes, no
odor. No

Yes, no
physical
changes.

[70]

N95 - 1 3.24 (1.62 &) 40 15 Up to 3 No Yes, no
odor. No

Yes, no
physical
changes.

[71]

N95 - Variable 0.3 - 19.4 & 1 No No No No [72]
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Table 1. Cont.

Sample Biological
Indicators

Nº of
Lamps

UV-C Total
Dose (J/cm2)

Lamp
Power (W)

Exposure to
UV-C (min)

Sterilization
Cycles Log Reduction Toxic

Byproduct
Filtration
Powers

Changes in
Integrity or Fit Source

N95 (in different
sizes) - >1 - - 12.5 & 2 No No Yes, little or

no effect.

Yes, no
physical
changes.

[73]

N95 - 1 0.06 - 15 to 20 Up to 5 No No No No [74] *

N95 - 2 Multiple (1,
7, 13, 19, 31) 38

Multiple (5,
35, 65, 95,

155)
Up to 5 No No

Yes, it
presented a
decrease in

fiber
filtration
power.

Yes, it showed
degradation

with the
increase in

dosage.

[75]

N95 - - ~1 - 5 10 No No
Yes, little or
no effect up
to 10 cycles.

No [76] **

N95 - - - - 10 & 1 (equivalent
to 10×) No No

Yes, some
decrease
after the

ninth cycle.

No [77]

N95 - 8 - 18 10 1 No No No

Yes, it showed
degradation

after
reprocessing,
but levels are
dependent on

the model.

[78]
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Table 1. Cont.

Sample Biological
Indicators

Nº of
Lamps

UV-C Total
Dose (J/cm2)

Lamp
Power (W)

Exposure to
UV-C (min)

Sterilization
Cycles Log Reduction Toxic

Byproduct
Filtration
Powers

Changes in
Integrity or Fit Source

N95 - - 2.7 8 60 - No

Yes, unique
peaks, but
related to

the
n-pentane
(solvent).

No No [79]

N95 - 2 - 40 Up to 480
(240 &) 1 No No Yes, little or

no effect.

Yes, no
physical
changes.

[80]

N95 - 1 0.176 to 0.181
& 40 30 (15 &) 1 No No Yes, little or

no effect.

Yes, no
physical
changes.

[81]

N953 - 1 - 40 30 (15 &),
Overnight # Up to 5 No Yes, no

odor.
Yes, little or

no effect.

Yes, no
physical
changes.

[82]

N95/KN95 fungus
Aspergillus niger 1 - - 15 1 Yes, but <0.3

(UV-PX alone). No Yes, little or
no effect.

Yes, no
physical
changes.

[51] *

N95 (One model
with the second
layer: polyester,
while the other

possesses a
plastic-mesh in the

outer layer)

- 4 1 to 10 120 ~2 - No

Yes, no
toxic

byproduct
left.

Yes, little or
no effect.

Yes, no
physical
changes.

[67]

N95 - 1 1 0.0001 62 to 258 & 1 No No No No [83]
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Table 1. Cont.

Sample Biological
Indicators

Nº of
Lamps

UV-C Total
Dose (J/cm2)

Lamp
Power (W)

Exposure to
UV-C (min)

Sterilization
Cycles Log Reduction Toxic

Byproduct
Filtration
Powers

Changes in
Integrity or Fit Source

N95 - 4 ≥1 - 4 Multiple (1,
3, 5, and 10) No No

Yes, little or
no effect
(<1.5% at
0.3 µm).

Yes, it
“induced slight

dose-
dependent

photochemical
damage” (p.

03) after three
cycles (p. 30).

[84]

N95 - 16 0.18 to 1.2 0.016 5 Up to 5. No No No No [85]

N95/KN95 $ - - - 8 30, 10 # Up to 10 No No No Yes, effect after
ten cycles. [86]

N95 - 2 2.7 - 5 - No No No No [68]

FFP3/KN98/N98 FFR

FFP3 - 3 0.3 to 3 4.9 0.183 to 100 - No No No No [69]

P3 - 1 - 40 120 1 No No Yes, little or
no effect.

Yes, no
physical
changes.

[87]

Others

Meltblown fabric
(20 g/m2) - 1 ~3.6 8 30, 10 # 10 No No

Yes,
reduction to
93% after 20

cycles.

No [33]
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Table 1. Cont.

Sample Biological
Indicators

Nº of
Lamps

UV-C Total
Dose (J/cm2)

Lamp
Power (W)

Exposure to
UV-C (min)

Sterilization
Cycles Log Reduction Toxic

Byproduct
Filtration
Powers

Changes in
Integrity or Fit Source

P100 - 2 - 40 Up to 480
(240 &) 1 No No

Yes, little or
no effect, but

its results
were more

variable
when the
exposure

period
increased.

Yes, no
physical
changes.

[80]

P100 - 1 0.176 to
0.181 & 40 30 (15 &) 1 No No Yes, little or

no effect.

Yes, no
physical
changes.

[81]

Observations: Grey background indicates “grey” literature, explained in section Methods. “$” indicates that researchers also evaluated straps. “*” indicates that authors normally considered hybrid methods
instead of only UV-C. “**” indicates that there were in these authors’ sample “alternative face mask and respirator materials”, but they did not evaluate these masks after UVGI sterilization. “-” implies that the
source did not provide such information. “~” signs for the idea of approximately. “&” indicates “(per) each side”. “#” stands for ambient conditions.
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3. UV-C’s Germicidal Capability

Considering the studies in the SLR’s final database, 31 studies [1,6,34–47,49,50,52,55–61,63–66,85],
representing 53.45% of the SLR database, attest to UV-C’s germicidal capability, as they
find results of at least 3-log reduction using different biological indicators, conditions,
and setups. These studies present results using UV-C as a single method of sterilization.
In contrast, another five studies [44,48,51,66,74] use ultraviolet in hybrid models, four
combined heat and UV-C, and one adds hydrogen peroxide. While two publications [48,74]
do not evaluate UVGI alone, the other two [44,51] do, one attesting for it and another one
not. The last one [66] simulates its efficiency. However, when the authors evaluate the
hybrid model, they find reductions “well beyond 3” -log [51] (p. 13). Additionally, four
research papers [1,47,55,56] indicate a relation between virucidal activity and the masks’
(or FFRs’) models. Summing these results up, all of the researchers tested for the germicidal
capability of UVGI and found at least partial confirmation of it, being the majority working
with UV-C and being in favor of its usage.

Besides its need to be germicidal for SUPPE, UV-C must have low cost, high through-
put, ease of use, and reduce or leave behind no chemical byproducts [6,12,32]. The sum of
these advantages creates appeal for this reprocessing method. These advantages can be
either read solely for UVGI methods or in comparison with other (thermal, chemical, and
radioactive) methods’ disadvantages.

4. UV-C’s Additional Advantages

Ultraviolet-C is normally regarded as a low-cost reprocessing method. From the SLR’s
final sample, most publications used either adapted biosafety [6,49,50,57–59,61,83] or steril-
ization [33,56,86] cabinets; adapted chambers [7,39,43,48,64,66,75,78], rooms [51,68,69,85]
or laminar flow cabinets [43,71,80,82]; the lamps alone [38,40,46,52,54,63,79,87] or tube
racks [70]. Most of these resources are available in research departments or hospitals; mak-
ing this method “reasonably ( . . . ) inexpensive” [7] (p. 515) or, at least, “a cost-effective
alternative to heat or chemical decontamination” [69] (pp. 396–397).

Ten publications [34,37,42,44,45,60,62,73,76,77] adapted machines/robots or used spe-
cific UVGI cabinets. These options seemed more expensive approaches than the previous
ones. This information does not completely invalidate the “low-cost” idea, as they might
prove to be cost-effective once the facility is looking for reprocessing masks and might
already own such devices, and they may be idle. Lastly, some researchers created pro-
totypes [41,53], or built their own UV cabinets [1,35,55,65,67,72,74,84]. These self-built
UV cabinets are sometimes built from scratch using inexpensive raw materials like alu-
minum [1,65], or they adapted other containers [55,67,72,74], such as metallic tool storage,
an old freezer box, or a reflecting box.

Considering that UVGI methods are of high throughput, this advantage is not men-
tioned by every study. Assuming that most studies use small chambers [7,39,43,48,64,66,75,78],
biosafety [6,50,57–59,61,83] or sterilization [33,56,86] cabinets, this could partially hinder
this advantage, as SUPPE cannot be stacked (piled up) [47,76].

Although some publications [7,41,57] argue that reaching high throughput depends
on adapting their systems’ setups, which increases their processes’ agility and consequently
their throughput per round, finally, some studies [39,44,67,72,73] indicate an actual number
of masks and FFRs disinfected per round. These numbers depend on the area each mask
model has and the irradiated area the system has. Despite these studies, this capability
becomes easily observed when researchers use adapted rooms [51,68,69,85] since they can
disinfect multiple SUPPE at once.

In the matter of effortlessness application of UVGI, fewer studies [7,34,41,44,48,55,72,73,87]
discuss it. Usually, this characteristic relates to how easy the insertion of these setups into
the potential users’ facilities is or how workers benefit from it amidst each patient consulta-
tion. On some level, this effortlessness of inserting these setups into healthcare facilities is
more important than workers’ ability to know how to do it. We argue that possible users
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should invest in training a group of workers and detach them for this job, given that if
every worker starts doing it, it will increase the probability of someone not following the
guidelines correctly, thus increasing the infection probability.

The last common advantage UVGI has compared to chemical disinfection methods is
the reduced/no chemical byproduct left in SUPPE after sterilization rounds. Some stud-
ies [7,40,44,48,49,62,64,67,70,71,79,82,83] discuss this advantage. On the one hand, a few
studies [7,40,83] only mention this advantage without testing it—three [70,71,82] publica-
tions tangentially discuss this characteristic by the possibility of the lasting odors resulting
from the UV-C reprocessing. On the other hand, other publications [44,48,49,62,64,67,79]
test for this chemical byproduct. Using low-pressure mercury lamps during the ster-
ilization may create Ozone (O3), which “can pose an additional health hazard” [64]
(p. 7592); if trapped inside the container, the reprocessing is taking place. Three research pa-
pers [44,48,64] find low accumulation levels of O3 ranging from less than 0.001 to 0.02 ppm
after the UV-C sterilization process.

Still on chemical byproducts, two other publications [62,79] find some unique peaks
in their analysis, but these results indicate divergent observations. Jung et al. explain that
the byproducts are a result of “surface oxidation leaving some peaks of C–O–C and O–H
bending” [62] (p. 11). In contrast, Salter et al. argue that their unique peaks “appear to be
( . . . ) related to the solvent (n-pentane) and unrelated to the disinfectant” [79] (p. 443).

Despite these advantages, there is no universal option concerning sterilization meth-
ods since all of them present disadvantages; thus, we should observe which disadvan-
tages are present in our SLR database and if they have made this choice of reprocessing
procedure inadvisable.

5. UV-C’s Disadvantages

There are three common problems the UV-C sterilization process demonstrates: the
possibility of thermal deformation, shadowing, and absorption effects [4,5,8,27,31]. As the
first potential problem (changes in integrity) already discards reprocessed SUPPE, we opted
to leave it on Table 1 column “Changes in integrity or fit.” From our SLR database, 30 studies
(51.72%) assess it, of which 21 [33,35,37,40,44,48,49,51,53,61,62,64,65,67,70,71,73,80–82,87]
observe no physical changes within different rounds of sterilization or extenuating con-
ditions. On the other hand, nine studies [36,38,42,47,54,75,78,84,86] find that masks or
FFRs degraded, or faced changes in airflow resistance [36,47,75,78], or reached minimum
acceptability levels after some rounds of reprocessing [38,42,54,84,86]. These results are
important to consider, albeit with caution because one publication [78] indicates that de-
spite having degradation problems, they varied according to the different models used,
suggesting that it is wise to observe each case individually. In contrast, another study [75]
indicates a positive relationship between degradation levels and dosage.

Another potential problem reprocessed masks and FFRs might present the reduction of their
filtration power. Most studies [35,36,38,39,42–44,48,49,51,54,59,61,62,64,67,73,76,80–82,84,87]
indicate that little or no effect happened as these SUPPE faced UV-C sterilization. However,
this is not a consensus in the SLR’s final sample. Few publications [7,33,75,77] indicate prob-
lems in these SUPPE’s filtration power after sterilization, normally after some reprocessing
cycles or in higher doses.

A third setback for choosing UV-C’s method is shadowing. This problem happens
when parts of the masks or FFRs are poorly irradiated or not irradiated at all. Such a concern
is a priority, especially when the object possesses inner-layers where microorganisms can
remain. This problem automatically impacts UV-C’s germicidal capability because all parts
must be irradiated to be decontaminated and reused. Shadowing is also a problem in these
SUPPE’s straps. Some studies [1,37,40,41,44,55,58,66,67,72] discussed shadowing although
only few [41,44,55,66,72] presented possible solutions. One study [41] is concerned with
this problem regarding masks and FFRs straps, then to solve it, they include a fused quartz
hook that enables UV irradiation. Other researchers [44,55,66,72] suggest changing the
UV-C system setup or the SUPPE’s positions to increase exposure or the system’s reflection.
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A fourth problem concerns UV-C’s penetration ability. This problem is intimately
related to the irradiation of inner parts and with the material these SUPPEs use. Some
studies [1,6,34,40,76] argue about it. The leading cause for this concern lies in the physio–
chemical properties of the materials used in masks and FFRs [6,34,76]. None of these
studies discussing absorption problems tried to solve them. Only one [40] argued about the
possibility of optimizing their system’s setup to cope with it. Nevertheless, an increase in
dosage to reach deeper layers may lead to photooxidation on the surface [42,67,75]. Thus,
better reflective setups and more uniform irradiation might prove to be better solutions to
reach the inner layers.

A fifth problem lies outside the capability of UV-C but in the potential users’ ability to
explain to the users of reprocessed SUPPE the procedure’s safety. Only two studies [42,73]
discuss it, but a system where users of the reprocessed masks and FFRs only wear their
previously used SUPPE may increase acceptability.

Finally, we summarize all these potential hindrances in one. If researchers aimed
at solving it, UV-C may turn into the universal method. How to improve its germicidal
capability on small particles deep within masks and FFRs’ inner layers? This problem
combines all possible disadvantages since it evaluates its germicidal ability, the possibility
of material shadows shield these tiny particles, and the material absorption that could
impede the appropriate dosage reaching them. Dealing with this problem could create more
acceptance of the method in its users, and then they could use any reprocessed mask/FFR.

6. Conclusions

During a crisis in SUPPE, the ability of supply chains to meet the increase in demand,
reprocessing these pieces of protective equipment, such as masks and FFRs, gains visibility.
This visibility incentivizes academia to develop, evaluate and create multiple alternatives
to sterilize them. This study aimed to describe the state-of-the-art for UV-C sterilization in
masks and filtering facepiece respirators.

We used an SLR to gather information about UV-C’s germicidal capability, other
advantages, and potential disadvantages. The germicidal ability combined with other
benefits increases UV-C’s appeal compared to other existing sterilization methods.

Regarding the potential problems, we must consider that masks degrade in different
ways [78] once they use other materials and possess individual physio–chemical properties.
This consideration indicates that each model might present specific changes after UV-C
sterilization rounds, and the same happens for shadowing or absorption effects [1,6]. From
our SLR, we synthesize the most critical barrier for implementing UV-C sterilization as
a disinfection method for masks and FFRs: How to improve its germicidal capability on
small particles deep within masks and FFRs’ inner layers?

Our study might have regarded our database as another potential problem, as this
topic gained relative importance after the COVID-19 pandemic. This importance increased
the number of published studies significantly. Thus, we can only assert these results up to
the end of January 2021, as other studies might appear after this one, and they could create
new perspectives on this topic.

Therefore, a comprehensive study with multiple mask (and FFR) models, like Mills et al. [1],
increases the likelihood of selecting the appropriate model(s) for UV-C sterilization, clearly
explaining why the other models should not use it. Another potential avenue for future
research is evaluating the physio–chemical changes masks and FFRs might pass when
reprocessed by UV-C, such as the levels of chemical byproducts. Finally, UV-LEDs might
be useful because they are adjustable into different shapes than the longitudinal bulbs.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-436
0/13/5/801/s1, Figure S1: SLR’s database description, Figure S2: SLR’s database descriptive analysis.
(a) Publications (Scholarly literature x “Grey” literature) before and after COVID-19 outbreak; (b)
Journals’ quartiles according to SJR (2021). Observations: We suppressed the “Q4” column as there
were no publications at it. “N/A” condensates studies published either in “grey” literature or in
journals that were not in SJR (2021). (c) Journals’ area. Observations: “Health” encompasses multiples
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journal’s areas (“Applied Microbiology and Biotechnology,” “Medicine (miscellaneous),” “Public
Health, Environmental and Occupational Health,” “Infectious Diseases,” “Ophthalmology,” “Health,
Toxicology and Mutagenesis,” and “Neurology (clinical)”). “Engineering” condensates journals with
the following areas: “Material Sciences (miscellaneous),” “Polymers and Plastics,” and “Engineering
(miscellaneous).” “N/A” condensates “grey” literature and some journals that do not have defined
areas in SJR, Table S1: Quantitative of analyzed studies and their sources.
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