Supplementary Materials: Rendering Banana Plant Residues into a Potentially Commercial By-Product by Doping Cellulose Films with Phenolic Compounds

Rosa E. A. Nascimento, Joana Monte, Mafalda Cadima, Vítor D. Alves and Luísa A. Neves

Table S1. Samples preparation for DPPH Method.

	Dilution	$V_{\text {extract }}(\mathbf{m L})$	$\mathbf{V}_{\text {methanol }}(\mathrm{mL})$	$\mathbf{V}_{\text {working solution }}(\mathbf{m L})$
White	-	-	0.5	3.5
Extract solution	$1: 1$	0.5	-	3.5
	$1: 2$	0.25	0.25	3.5
Control	$1: 1$	0.5	3.5	-
	$1: 2$	0.25	3.75	-

Figure S1. Films prepared: (a) HEC at $0.577,0.753$ and 0.843 aw; (b) HEC+L at 0.577 and 0.753 aw; (c) PS at $0.577,0.753$ and 0.843 aw ; (d) PS+L at 0.577 and 0.753 aw .

Figure S2. Scanning Electron Microscopy (SEM) analysis results for HEC (a-d) and PS (e-h) films exposed to 0.753 aw, with $1000 \times$ magnification.

Figure S3. SEM analysis results for $\operatorname{HEC}(\mathbf{a}, \mathbf{b})$ and $\operatorname{PS}(\mathbf{c}, \mathbf{d})$ films exposed to 0.843 aw, with $1000 \times$ magnification.

Table S2. Weight loss and respective temperature range, resultant from thermogravimetric analysis (TGA) of the films exposed to $0.577,0.753$ and 0.843 aw .

Film Total weight Temperature			Film Total weight Temperature				Total weight Temperature	
aw	loss (\%)	range (${ }^{\circ} \mathrm{C}$)		loss (\%)	range (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} 0.84 \\ 3 \mathrm{aw} \end{gathered}$	loss (\%)	range (${ }^{\circ} \mathrm{C}$)
HEC	1.14	49.72-115.95	HEC	71.69	46.37-443.42	HEC	2.09	46.90-132.06
	70.06	176.26-466.04					67.49	172.42-464.33
$\begin{gathered} \hline \text { HEC } \\ +\mathrm{L} \end{gathered}$	2.72	32.16-126.29	HEC	7.22	32.55-139.54		-	-
	70.9	126.39-456.38	+L	73.47	140.19-455.15		-	-
PS	4.03	35.29-164.38	PS	3.45	33.05-180.96	PS	4.32	47.88-176.97
	68.17	192.6-463.86		66.32	181.42-462.35		66.93	176.97-472.71
PS+L	2.09	47.35-152.38	$\text { PS }+\mathrm{L}$	2.41	49.67-151.13		-	-
	71.37	152.64-463.66		68.85	150.08-466.91		-	-

