

Supplementary Materials: Rendering Banana Plant Residues into a Potentially Commercial By-Product by Doping Cellulose Films with Phenolic Compounds

Rosa E. A. Nascimento, Joana Monte, Mafalda Cadima, Vítor D. Alves and Luísa A. Neves

	Dilution	Vextract (mL)	Vmethanol (mL)	Vworking solution (mL)
White	-	-	0.5	3.5
Extra et colution	1:1	0.5	-	3.5
Extract solution	1:2	0.25	0.25	3.5
Control	1:1	0.5	3.5	-
Control	1:2	0.25	3.75	-

Table S1. Samples preparation for DPPH Method.

Figure S1. Films prepared: (a) HEC at 0.577, 0.753 and 0.843 a_w; (b) HEC+L at 0.577 and 0.753 a_w; (c) PS at 0.577, 0.753 and 0.843 a_w; (d) PS+L at 0.577 and 0.753 a_w.

Figure S2. Scanning Electron Microscopy (SEM) analysis results for HEC (**a–d**) and PS (**e–h**) films exposed to 0.753 aw, with 1000 × magnification.

Figure S3. SEM analysis results for HEC(**a**, **b**) and PS (**c**, **d**) films exposed to 0.843 a_w, with 1000 × magnification.

Film 0.577 aw	Fotal weight loss (%)	Temperature range (°C)	Film 0.753 aw	Total weight loss (%)	Temperature range (°C)	Film 0.84 3 aw	Total weight loss (%)	Temperature range (°C)
HEC	1.14	49.72–115.95	HEC	71.69	46.37-443.42	HEC	2.09	46.90-132.06
	70.06	176.26-466.04					67.49	172.42-464.33
HEC	2.72	32.16-126.29	HEC	7.22	32.55-139.54		-	-
+L	70.9	126.39-456.38	+L	73.47	140.19-455.15	-	-	-
PS	4.03	35.29–164.38	PS	3.45	33.05–180.96	PS	4.32	47.88–176.97
	68.17	192.6-463.86		66.32	181.42-462.35		66.93	176.97-472.71
PS+L	2.09	47.35–152.38	PS+L	2.41	49.67–151.13	-	-	-
	71.37	152.64-463.66		68.85	150.08-466.91		-	-

Table S2. Weight loss and respective temperature range, resultant from thermogravimetric analysis (TGA) of the films exposed to 0.577, 0.753 and 0.843 aw.