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Abstract: Epoxy resins with acidic compounds feature adhesion, robustness, and deoxidizing ability.
In this study, hybrid adhesive films with deoxidizing and curing capabilities for semiconductor
packaging were fabricated. The compatibilizing effects and mechanical properties were chiefly inves-
tigated by using various additive binders (thermoplastic amorphous polymers) and compatibilizing
agents. The curing, deoxidizing, thermal, and rheological properties were systematically investigated.
For uniform film formation and maximizing deoxidizing curable abilities, a thermoplastic–thermoset
mixture containing a phenyl and carboxylic acid-based additive (benzoic acid), and a polycarbonate
was chosen as the model adhesive film. Without either a phenyl or an acidic group in the compatibi-
lizing agent, deoxidizing and compatibilizing effects were not achieved. The manufactured hybrid
adhesive film can be effectively used, especially for electronic devices that require deoxidization
and adhesion.

Keywords: epoxy; adhesive film; deoxidizing; impact modifier; compatibilizer; amorphous polymer

1. Introduction

Epoxy resins have been widely utilized in a myriad of applications, such as electronic
and semiconductor packaging, owing to their excellent adhesion to various substrates, and
their mechanical and thermal properties [1–3]. As an example, they have been used as
structural adhesives for epoxy molding compounds (EMCs) which protect semiconductor
chips from external environmental factors, such as impact, pressure, moisture, heat, and
ultraviolet rays [4,5].

Epoxy resins have also been used as underfill substances that are filled between the
chips and substrates and thus act as an underfill encapsulant as well as an adhesive [2,6,7].
For electrical interconnections between chips and substrates, Sn-based fusible metal solders,
such as Sn/Ag and Sn/Ag/Cu caps on Cu pillars, have been utilized [8–10]. At elevated
temperatures, the metal solders are melted and wetted, thereby creating an electrical path
between the chips and substrates [11]. However, Sn-based metal solders are susceptible
to oxidation on the surface in an ambient atmosphere [12–14]. Therefore, a reductant for
removing an oxidized metal layer is required; this results in wetting and generation of the
electrical path [15].

Electrical interconnections between chips and substrates are commonly achieved by
melting and interconnecting solders (soldering) using deoxidizing flux materials at high
temperatures (greater than the melting point of solder) prior to the additional process:
that is, the epoxy underfill encapsulant process [16]. To overcome the tedious two-step
procedure, a new soldering/underfilling process has been developed. The electrical inter-
connections were facilely achieved by an in situ bonding procedure using curable deoxi-
dizing epoxy-based adhesives [11,15]. Hydroxyl, amino and acidic moieties, organoamine
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hydrochlorides, rosin-based fluxes, and inorganic acids in the state-of-the-art adhesives
(known as no-flow underfill or fluxing underfill) remove the oxidizing layer of the metal
pad (electrode) on the chips or substrates, thereby leading to the electrical interconnection
via a melting and wetting of solders at elevated temperatures. Subsequently, the func-
tional adhesives are completely cured, despite the presence of some residual deoxidizing
additives in the resin [15].

The residues, such as reductants and additives, remain in the adhesives after complete
curing, thus causing negative plasticization effects that reduce the thermal and mechan-
ical properties of the functional adhesives [15,17]. Recently, anhydride-based adhesives
endowed with curable deoxidizing capabilities without the deoxidizing additives (flux)
were reported, thereby reducing the probability of residual substances [15].

In addition to the adhesive pastes, versatile epoxy/phenoxy/anhydride-based hybrid
adhesive films were fabricated by combining thermosetting resins and a thermoplastic
matrix [18]. The hybrid adhesive films can be facilely applied to substrates with the re-
quired dimensions and contents. The films were melted and the metal oxidized layers
were removed at elevated temperatures to induce electrical interconnections. Finally, the
adhesive films were networked between the chips and substrates. However, the mechanical
and thermal properties of the cured adhesive films were not satisfactory. In this study,
impact modifiers and compatibilizers were utilized to enhance the mechanical properties
of functional adhesive films.

2. Experiment
2.1. Materials
2.1.1. Polymer

An epoxy binder (YD-128) containing a diglycidyl ether of bisphenol A (DGEBA)
with an epoxy equivalent weight (EEW) of 187 g/eq and a phenoxy resin (YP-50) with a
molecular weight of ca. 55,000 g/moL were supplied by Kukdo Chemicals Co. (Seoul,
Korea). Polycarbonate (PC; Infino SC-1100R, Lotte Chemical Co., Seoul, Korea), poly(methyl
methacrylate) (PMMA; IG840, LG MMA Co., Seoul, Korea), and polystyrene (PS; Styrolu-
tion PS 147F, BASF Co., Ludwigshafen, Germany) were utilized as impact modifiers. Their
chemical structures are displayed in Figure 1 and Figure S1.
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2.1.2. Compatibilizer

Biphenyl (99.0%) and hexanoic acid (98.0%) were obtained from Tokyo Chemical
Industry (TCI) Co. Ltd. (Tokyo, Japan). Benzoic acid (>99.0%), stearic acid and benzene
(99.0%) were purchased from BNOChem Co. (Cheongju, Korea).

2.1.3. Curing Agent and Solvent

Bis(4-aminophenyl sulfone) (DDS, >97.0%) were obtained from Tokyo Chemical In-
dustry (TCI) Co. Ltd. (Tokyo, Japan). Dichloromethane (DCM, 99.8%) and 2-butanone
(methyl ethyl ketone; MEK, 99.5%) were supplied by Samchun Pure Chemicals Co. (Seoul,
Korea).

2.1.4. Metal Solder and Al Substrate

For wetting (soldering) tests, Sn-based metal solders (SAC305; 96.5% Sn/3.0% Ag/0.5%
Cu) with a diameter of 700 µm and a melting point of 219 ◦C were purchased from Poongsan
Co. (Seoul, Korea). Aluminum (Al) alloy (Al6061, Al: Mg: Si: Fe: Cu: Cr = ca. 97.2: 1.0: 0.6:
0.35: 0.25: 0.25 by mass, less than 0.35 wt% Zn/Ti/Mn) sheets with dimensions of 24 mm
× 85 mm × 1.96 mm were supplied by Jun Tech Co. (Hwaseong, Korea).

2.2. Fabrication of Hybrid Adhesive Films

A thermoplastic-based matrix (phenoxy, PS, PMMA, and PC) (60 wt.%) was mixed in
DCM using a vortex mixer (MX-S, DLAB Scientific Inc., Beijing, China) at room temperature
for 1 h [18]. The EEW ratios between DGEBA and DDS were 1:1. The concentration of
benzoic acid was varied between 0 and 10 phr. DDS and benzoic acid were mixed in MEK
for 3 min. Then, the solution was added to the epoxy binder and mixed for 3 min using
the vortex mixer. Subsequently, the 40 wt.% epoxy resin (DGEBA-based binder and curing
agent) and the 0–10 phr deoxidizing agent (benzoic acid) were added to the thermoplastic
blend solutions and mixed for 3 min at room temperature. The viscosity of the mixture
solution was controlled by drying the solution at room temperature. The mixture was then
poured onto a silicone substrate. The thickness of the mixture (0.5 mm) was controlled via
a doctor blade method and then it was completely dried at room temperature for 1 h to
form a 100 µm adhesive film. The sample names are abbreviated and listed in Table 1. For
example, a hybrid film containing 40 wt.% 1:1 epoxy/DDS (E/D), 55 wt.% phenoxy (P), 5
wt.% PC (C), and 5 phr benzoic acid (Ba) was denoted as EDPC5Ba5.

Table 1. Full names, abbreviations, and sample names of components.

Name Epoxy DDS Phenoxy PC PMMA PS

Sample name E D P C M S

Name Benzoic acid Benzene Biphneyl Hexanoic acid Stearic acid

Sample name Ba Be Bi Ha Sa

2.3. Adhesive Film Bonding Procedure

Aluminum specimens were cleaned in acetone via an ultrasonic cleaner for 20 min
prior to bonding. An adhesive film with dimensions of 24 mm × 10 mm was placed
between the Al substrates. Subsequently, a weight of 200 g was applied to the sandwiched
samples and then the adhesive film was cured at 250 ◦C for 5 min.

2.4. Characterization

Differential scanning calorimetry (DSC; Model DSC25, TA Instruments Inc., New
Castle, DE, USA) was conducted to monitor the curing behaviors of the hybrid adhesive
films at a scanning rate of 10 ◦C/min under nitrogen purging (50 mL/min). Approximately
3 mg of the hybrid adhesive film was placed in a hermetic aluminum DSC pan.

Fourier transform infrared (FTIR) spectroscopy (Spectrum Two, PerkinElmer Inc.,
Waltham, MA, USA) with attenuated total reflection (ATR) mode was utilized to detect the
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epoxide, ether, amino and acidic groups of the adhesive films before and after curing. Each
spectrum at 4000–400 cm−1 was obtained using a KBr pallet with a scan number of 16. The
samples used for ATR FTIR spectroscopy were cured at 100 ◦C for 30 min, at 150 ◦C for
30 min, and then at 200 ◦C for 1 h.

For the wetting tests [19–21], six metal solder balls were placed between the Cu plate
and the uncured hybrid adhesive films as shown in Figure S2a. The wetting tests were
performed for potential application to the bonding process between chips and substrates
(Figure S2b). The sample was heated on a hot plate at 250 ◦C in air. The initial wetting time
and the number of wetted metal solder balls were recorded.

A universal testing machine (UTM; LR10K Plus, Lloyd Instruments, AMETEK Inc.,
Berwyn, PA, USA) was employed to measure the shear strength and toughness of the cured
adhesive films between Al substrates at a crosshead rate of 1 mm/min. The toughness
values were determined from the integrated areas of the resulting stress-strain curves.

Scanning electron microscopy (SEM; Apreo, FEI Co., Hillsboro, OR, USA) at the Center
for Advanced Materials Analysis was utilized to examine the morphologies of the fractured
cured samples. The samples on the carbon tape for SEM examination were sputter-coated
with Au.

A torsional parallel plate rheometer (MCR 300, Anton Paar, Graz, Austria) was utilized
to investigate the rheological properties of the uncured adhesive films. The viscosities of
the adhesive films were measured under dynamic conditions at a frequency of 1 Hz and a
controlled strain (displacement mode) of γ = 0.01. The heating rate was 3 ◦C/min.

3. Results and Discussion

The mechanical properties of adhesive materials in semiconductor packaging are
crucial because electronic devices are exposed to various extreme conditions. Thus, we
examined the mechanics as well as the curing, deoxidizing, thermal, and rheological
properties by using amorphous polymer additives and compatibilizing agents (Figure 2)
with curing and deoxidizing capabilities.
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Figure 3 shows that the incorporation of binders (PC, PMMA and PS) into the EDP
hybrid adhesive film composed of the primary epoxy binder, amine curing agent, and phe-
noxy matrix improved both its shear strength and toughness. However, above 10 phr PC
or 10 phr PS, the shear strength was reduced, probably as a result of the uncompatibilizing
behaviors between the phenoxy main matrix and amorphous polymer additives. Poly-
mers are commonly incompatible and immiscible with one another [22–24]. As shown in
Figure 4, it was found that the compatibilizing agent (benzoic acid) reduced the inter-
facial energy among each component, thereby leading to compatibilizing effects. The
shear strength and toughness of EDP-based adhesive films considerably increased when
increasing the benzoic acid (Ba) concentration. The adhesive film without the PC, PMMA,
and PS additives also exhibited enhanced mechanical properties. This indicates that the
incorporation of Ba into the adhesive mixture resulted in the compatibilizing effects not
only between the phenoxy resin and amorphous polymer additives but also between the
phenoxy and epoxy resins. The mechanical properties of the EDPMBa adhesive series
containing PMMA (M) decreased as a function of Ba content. Morphological studies should
be performed to examine the causes of the changes in mechanical properties.
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Visual observation of the phase morphologies for the polymer blends is routinely
investigated by SEM. Figure 5 and Figure S3 show that the domain sizes in the matrices
of EDP, EDPC5, and EDPS5 were reduced and compatibilized by the incorporation of
5 phr Ba. In contrast, the Ba in the EDPM5 adhesive films exhibited phase separation
and incompatibility between PMMA and the phenoxy resin because of the structural
relationship. PMMA has no aromatic rings or moieties that can form hydrogen bonds.
Therefore, benzoic acid failed to compatibilize the blends but remained as a plasticizer and
impurity, thereby decreasing the interfacial adhesion between the polymer domain and
phenoxy/epoxy matrices. This morphological behavior examined by SEM was in good
agreement with the mechanical property results.
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Benzoic acid (Ba), benzene (Be), biphenyl (Bi), hexanoic acid (Ha), and stearic acid
(Sa) were added to the EDPC adhesive films to further examine the structural interplay,
as shown in Figure 6. For the formation of films, the EDPC5 series was selected based on
the images in Figure S4 because, beyond 10 phr PC (C), the film morphologies became
phase-separated with the loss of transparency. Among the various additives, the infiltration
of 5 phr Bi into the EDPC5 adhesive film showed the highest compatibilizing effect by
increasing the shear strength (×4; from 200 to 840 MPa) and toughness (×10; from 430 to
4400 J/m3) of the EDPC5Bi5 adhesive film. Be and Ba, both of which have an aromatic
ring, also substantially increased the mechanics of the cured adhesive films. In particular,
Ba was able to attack the epoxide and hydroxyl moieties of the epoxy and phenoxy resins,
thus reducing the compatibilizing effect. In contrast, Ha and Sa, neither of which has an
aromatic ring, represented relatively low values. In particular, the mechanical properties
of EDPC5Sa5 were lower than those of EDPC5 without Sa because the aliphatic chain of
Sa is considerably longer, thereby losing the compatibilizing effect. Despite the highest
compatibilizing effect of Bi, only additives with acidic groups, such as Ba, can be utilized
for the electrical interconnections in semiconductor packaging. Figure S5 shows that the
compatibilizing agents without acidic groups (Be and Bi) did not achieve wetting of the
solder balls on the Cu pads. Among the acidic additives, Ba showed the best mechanical
properties and thus Ba was primarily selected for the rest of the tests in this study.
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Similar to the correlation between the mechanical properties and morphological
studies of EDPC, EDPM, and EDPS with Ba, the SEM images of EDPC5 with different
additives also confirmed the origins of the mechanical properties. EDPC5Ba5, EDPC5Be5,
and EDPC5Bi5 exhibited the compatibilized morphologies, whereas the additives without
an aromatic ring (Ha and Sa) showed the phase-separated domains of polycarbonate in
the epoxy and phenoxy matrices, compared with EDPC5 without an additive, as shown
in Figure 7. Thus, the phase separation between the domains and matrices hindered the
mechanical properties of the cured hybrid adhesive films.
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The deoxidizing (fluxing; removing the metal oxide layers on the metal solder surfaces)
capability [11,15,18] can be achieved by hydroxyl, amino and acidic moieties, organoamine
hydrochlorides, rosin-based fluxes, and inorganic acids of hybrid adhesive films. In this
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study, acidic groups were utilized for the fluxing capability. The fluxing capability resulted
in the wetting behavior. The electrical interconnections in semiconductor packaging require
good wettability of Sn-based metal solders. Figure 8 shows the wettability of the hybrid
adhesive films. The SAC305 solder balls in the adhesive film containing no benzoic acid
remained non-wetted owing to the absence of acidic groups, as shown in Figure 8b,c and
Figure S6. The incorporation of additive binders into adhesive films rarely influenced the
wettability, except for the EDPM5 series, probably because the benzoic acid coalesced in
the uncompatibilized matrices.
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Figure 8. The wetting tests using SAC305 solder balls on Cu substrates: (a) number of wetted SAC305
balls as a function of amorphous polymer additive content, (b) number of wetted SAC305 balls as a
function of benzoic acid, (c) EDPC5 and (d) EDPC5Ba5.

The curing behaviors, exothermic reaction peak temperature and enthalpy of the
uncured adhesive films, and glass transition temperature (Tg) of the cured adhesive films
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were examined by DSC as shown in Figure 9, Figures S7 and S8. The incorporation of
amorphous polymer additives into the adhesive films slightly influenced the curing behav-
iors, exothermic peak temperatures, and reaction enthalpy. The infiltration of additives
slightly reduced the Tg values of the cured adhesive films because the additives decreased
the compatibility between the matrices and additive domains. The presence of SAC305 in
the EDPC5Ba5 adhesive film only altered the curing behavior to a small degree, as shown
in Figure S9.
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Figure 9. DSC results of adhesive films with different binders as a function of binder content: (a)
exothermic reaction peak temperature, (b) reaction enthalpy, and (c) glass transition temperature of
the cured adhesive films during the second scan.
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Chemorheological behaviors were examined by rheometry to understand the cor-
relation between the curing reaction and viscosity. The viscosities of the adhesive films
commenced to decrease at the initial stage of heating because the curing reaction rarely
occurred until ca. 90 ◦C, as shown in Figure 10. Beyond this point, the curing reaction
aggressively occurred and dominated the thermally induced softening behaviors, thereby
increasing the viscosity. The EDP adhesive film showed the lowest viscosity over the entire
temperature range and the latest increment in viscosity due to the high curing reaction
temperature, which is in good agreement with the DSC curves in Figure S8. The incorpo-
ration of polycarbonate additive into the adhesive film increased the viscosity due to the
high molecular weight of polycarbonate (low melt flow index) and rarely influenced the
curing behaviors because of the non-reactivity of polycarbonate with hydroxyl or epoxide
groups. The viscosity of EDPC5Ba5 was higher than that of the other adhesive films, and
the curing reaction temperature decreased owing to the reactive moieties of Ba. The initial
curing temperatures measured by DSC were lower than those measured by rheometry
because the sample content for DSC was substantially lower than that in the rheometry test
and the generated heat detection is commonly faster than the mechanical responses in, for
example, dynamic mechanical analysis, thermal-mechanical analysis, and rheometry [25].
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The effects of Ba on curing behaviors, exothermic reaction peak temperature and
enthalpy of the uncured adhesive films and Tg of the cured adhesive films were also inves-
tigated by DSC (Figure 11). The exothermic reaction peak temperatures of EDP, EDPC5,
EDPM5, and EDPS5 adhesive films decreased with an increasing Ba concentration owing
to the curing and catalytic reactivity of Ba in the curable adhesive films. The reaction en-
thalpy slightly changed at 5 phr Ba. Above 10 phr Ba, the enthalpy substantially decreased
because of excessive Ba content, which complicated the reaction mechanism and reduced
the cross-linking density due to the mono-reactive acidic moiety of Ba. Similarly, the Tg
values were also reduced by the incorporation of Ba owing to the Ba-induced decrease in
cross-linking density. Ba is necessary for the deoxidization of Sn-based metal solders that
leads to electrical interconnections in the semiconductor packaging. The Ba incorporation
into the hybrid adhesive films resulted in deoxidization and reactivity changes.



Polymers 2021, 13, 1129 13 of 17

Polymers 2021, 13, x FOR PEER REVIEW 14 of 18 
 

 

0 5 10
0

150

200

250

300

Ex
o.

 p
ea

k 
te

m
p.

 (o C
)

 EDP
 EDPC5
 EDPM5
 EDPS5

 

 

Benzoic acid (phr)
 

0 5 10
0

50

100

150

200

250

En
th

al
py

 (J
/g

)

 EDP
 EDPC5
 EDPM5
 EDPS5

 

 

Benzoic acid (phr)
 

0 5 10
0

85

90

95

100

105

110

T g (
o C

)

 EDP
 EDPC5
 EDPM5
 EDPS5

 

 

Benzoic acid (phr)
 

Figure 11. DSC results of adhesive films with different binders as a function of Ba loading: (a) ex-
othermic reaction peak temperature, (b) reaction enthalpy during the first heating scan, and (c) Tg 
of the cured adhesive films during the second heating scan. 

(b) 

(a) 

(c) 

Polymers 2021, 13, x FOR PEER REVIEW 14 of 18 
 

 

0 5 10
0

150

200

250

300

Ex
o.

 p
ea

k 
te

m
p.

 (o C
)

 EDP
 EDPC5
 EDPM5
 EDPS5

 

 

Benzoic acid (phr)
 

0 5 10
0

50

100

150

200

250

En
th

al
py

 (J
/g

)

 EDP
 EDPC5
 EDPM5
 EDPS5

 

 

Benzoic acid (phr)
 

0 5 10
0

85

90

95

100

105

110

T g (
o C

)

 EDP
 EDPC5
 EDPM5
 EDPS5

 

 

Benzoic acid (phr)
 

Figure 11. DSC results of adhesive films with different binders as a function of Ba loading: (a) ex-
othermic reaction peak temperature, (b) reaction enthalpy during the first heating scan, and (c) Tg 
of the cured adhesive films during the second heating scan. 

(b) 

(a) 

(c) 

Polymers 2021, 13, x FOR PEER REVIEW 14 of 18 
 

 

0 5 10
0

150

200

250

300

Ex
o.

 p
ea

k 
te

m
p.

 (o C
)

 EDP
 EDPC5
 EDPM5
 EDPS5

 

 

Benzoic acid (phr)
 

0 5 10
0

50

100

150

200

250

En
th

al
py

 (J
/g

)

 EDP
 EDPC5
 EDPM5
 EDPS5

 

 

Benzoic acid (phr)
 

0 5 10
0

85

90

95

100

105

110

T g (
o C

)

 EDP
 EDPC5
 EDPM5
 EDPS5

 

 

Benzoic acid (phr)
 

Figure 11. DSC results of adhesive films with different binders as a function of Ba loading: (a) ex-
othermic reaction peak temperature, (b) reaction enthalpy during the first heating scan, and (c) Tg 
of the cured adhesive films during the second heating scan. 

(b) 

(a) 

(c) 

Figure 11. DSC results of adhesive films with different binders as a function of Ba loading: (a) exother-
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Spectroscopic analyses [26,27], such as through FTIR spectroscopy, are extensively
utilized to detect the chemical structures of epoxides, acids, and amines. Figure 12 shows
the ATR FTIR spectra of EDPBa5, EDPC5Ba5, EDPM5Ba5, and EDPS5Ba5 before and after
curing. The peaks for epoxide (913 cm−1), acid (1710 cm−1), and amine (1625 cm−1) of the
hybrid adhesive films substantially decreased after curing. This indicates that not only
typical curable substances but also acidic moieties participated in the curing reactions. The
multifunctional Ba additive acts as a compatibilizing, deoxidizing, and curing agent in
the hybrid adhesive films. This result is in good agreement with the curing, mechanical,
thermal, and rheological properties investigated in this study. The acidic moieties in
EDPM5Ba5 were less consumed compared with EDPBa5, EDPC5Ba5, and EDPS5Ba5,
because PMMA might impede the curing reaction between Ba and epoxide. The peak at
1600 cm−1 is ascribed to the conjugation of the C=C bond with the C=O bond in Ba and
partially overlaps with the peak at 1625 cm−1 for N-H bending.
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The effects of various compatibilizers (Ba, Be, Bi, Ha, and Sa) on the curing behaviors,
exothermic reaction peak temperature and enthalpy of the uncured adhesive films, and
Tg of the cured adhesive films were examined, as shown in Figure 13 and Figure S10. The
exothermic reaction peak temperatures were barely influenced by the incorporation of Be5,
Bi5, and Sa5, whereas they were reduced by Ba5 and Ha5 because of the curing reaction
of the mono-reactive groups with epoxides. The reaction enthalpies of the adhesive films



Polymers 2021, 13, 1129 15 of 17

were slightly decreased by the additive incorporation due to the curing reaction of mono-
reactive groups and residual unreactive molecules. As the concentration of unreactive
molecules increased, the proportion of the reactive moieties decreased, thereby decreasing
the probability of exothermic reactions. The additives in the adhesive films decreased the
Tgs of the cured adhesive films, owing to the mono-reactive groups and residual unreactive
molecules, which resulted in plasticization effects. The 5 phr Sa significantly decreased the
Tg of the cured EDPC5Sa5 adhesive film because of its long aliphatic chain.
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Figure 13. DSC results of EDPC5 with different compatibilizers at a loading of 5 phr: (a) exothermic
reaction peak temperature, (b) reaction enthalpy during the first heating scan, and (c) Tg of the cured
adhesive films during the second heating scan.
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4. Conclusions

We fabricated the robust hybrid adhesive films with deoxidizing and curing capabili-
ties for electrical interconnections and adhesion. We also examined the effects of additive
binders (PC, PMMA, and PS) and compatibilizing agents on the curing, deoxidizing, me-
chanical, thermal and rheological properties. Small amounts (5 phr) of polymer binders
and benzene-containing compatibilizers enhanced the various properties, such as me-
chanical properties. The EDPC5Ba5 composition was determined to be the most effective
adhesive film for deoxidizing curable capabilities and film formation, despite the highest
compatibilizing effects of Be and Bi, due to the absence of acidic moieties. These fabri-
cated adhesive films can be utilized for electronic device adhesion (e.g., semiconductor
packaging) and the effects of additives and compatibilizing agents can be used for various
blending applications.
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.3390/polym13071129/s1, Figure S1: Chemical structures of PMMA, PS, benzene, biphenyl, hexanoic
acid and stearic acid, Figure S2: (a) Wetting test of solder ball on Cu plate and (b) bonding procedure
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with different polymer additives: (a) EDP, (b) EDPBa5, (c) EDPC5, (d) EDPC5Ba5, (e) EDPM5, (f)
EDPM5Ba5, (g) EDPS5, and (h) EDPS5Ba5, Figure S4: Adhesive films with different polycarbonate
contents: (a) EDPC5Ba5, (b) EDPC10Ba5, (c) EDPC20Ba5, and (d) EDPC30Ba5, Figure S5: Wetting
test of SAC305 solder ball on Cu plate: EDPC5 with various additives of 5 phr, Figure S6: Wetting
test of SAC305 solder ball on Cu plate as a function of Ba concentration, Figure S7: DSC scans of
hybrid adhesive films with different additive binders: (a) EDPCBa5, (b) EDPMBa5, and (c) EDPSBa5,
Figure S8: DSC scans of hybrid adhesive films with different additive binders: (a) EDP, (b) EDPC, (c)
EDPM, and (d) EDPS, Figure S9: DSC scans: EDPC5Ba5 with and without SAC305 solder balls at a
heating rate of 10 ◦C/min, Figure S10: DSC scans of EDPC5 with different compatibilizers (Ba, Be,
Bi, Ha, and Sa) at loading of 5 phr.
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27. Chmielewska, D.; Sterzyński, T.; Dudziec, B. Epoxy Compositions Cured with Aluminosilsesquioxanes: Thermomechanical

Properties. J. Appl. Polym. Sci. 2014, 131. [CrossRef]

http://doi.org/10.3390/polym13010147
http://www.ncbi.nlm.nih.gov/pubmed/33401420
http://doi.org/10.1016/j.compositesa.2018.12.019
http://doi.org/10.1016/j.polymer.2018.09.063
http://doi.org/10.3390/polym11111797
http://doi.org/10.1016/j.surfcoat.2020.125703
http://doi.org/10.1016/j.microrel.2020.113657
http://doi.org/10.1016/j.coco.2020.03.011
http://doi.org/10.1063/1.1445283
http://doi.org/10.1016/j.jallcom.2010.08.006
http://doi.org/10.1016/j.microrel.2011.07.093
http://doi.org/10.1002/pi.5631
http://doi.org/10.1116/1.572173
http://doi.org/10.1007/s11664-008-0544-y
http://doi.org/10.1016/j.jallcom.2007.08.007
http://doi.org/10.1002/app.46639
http://doi.org/10.1109/6144.774718
http://doi.org/10.1109/TCAPT.2002.807590
http://doi.org/10.1021/acs.iecr.8b01142
http://doi.org/10.4218/etrij.10.0109.0400
http://doi.org/10.1016/j.mee.2008.05.038
http://doi.org/10.4218/etrij.14.0113.0570
http://doi.org/10.1002/app.47684
http://doi.org/10.1002/app.47110
http://doi.org/10.1021/ma9617330
http://doi.org/10.1039/c2gc35154d
http://doi.org/10.1002/app.40672

	Introduction 
	Experiment 
	Materials 
	Polymer 
	Compatibilizer 
	Curing Agent and Solvent 
	Metal Solder and Al Substrate 

	Fabrication of Hybrid Adhesive Films 
	Adhesive Film Bonding Procedure 
	Characterization 

	Results and Discussion 
	Conclusions 
	References

