Supplementary Material

Revised Atomic Charges for OPLS Force Field Model of Poly(Ethylene Oxide): Benchmarks and Applications in Polymer Electrolyte

Chan-En Fang ^{1,†}, Yi-Chen Tsai ^{1,2,†}, Christoph Scheurer ^{3,†} and Chi-cheng Chiu $_{1,2,\dagger,*}$

1 Deparment of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; samuel083826@gmail.com(C.-E. F.); a4775324@gmail.com (Y.-C. T.)

2 Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan

3 Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany

* Correspondence: ccchiu2@mail.ncku.edu.tw

[†] These authors contributed equally to this work.

1. Simulation system list

Table S1. Pure PEO systems

	OPLS	BARBOSA	RESP
Different T	20ns for each T	20ns for each T	20ns for each T
298K equilibrium	150ns	400ns	700ns

Table S2. Electrolyte system ([EO]/[Li⁺] =16)

	OPLS	RESP(1/1)	RESP(0.8/0.55)
298K	300ns	300ns	200ns
333K	300ns	300ns	200ns
363K	300ns	300ns	500ns

Table S3. Electrolyte system (OPLS^R force field with different [EO]/[Li⁺] ratio at 363K)

System([EO]/[Li ⁺])	Simulation time
16 (0.8/0.55)	500ns
25 (0.8/0.55)	500ns
50 (0.8/0.55)	500ns

2. Diffusion of TFSI (333K, [EO]/[Li⁺]=16)

Figure s1. The mean square displacement profiles of TFSI in PEO/LiTFSI SPE system at 333K for three tested force fields.

3. Diffusion of Li^+ at different temperature ([EO]/[Li^+]=16)

Figure s2. The mean square displacement profiles of Li⁺ in PEO/LiTFSI SPE system at different temperature of default OPLS force field.

Figure s3. The mean square displacement profiles of Li^+ in PEO/LiTFSI SPE system at different temperature of OPLS^R force field with scaling factor ($f_{poly} = 1$, $f_{ion} = 1$).

Figure s4. The mean square displacement profiles of Li^+ in PEO/LiTFSI SPE system at different temperature of OPLS^R force field with scaling factor ($f_{poly} = 0.8$, $f_{ion} = 0.55$).

4. Diffusion of TFSI at different temperature ($[EO]/[Li^+]=16$)

Figure s5. The mean square displacement profiles of TFSI in PEO/LiTFSI SPE system at different temperature of default OPLS force field.

Figure s6. The mean square displacement profiles of TFSI in PEO/LiTFSI SPE system at different temperature of OPLS^R force field with scaling factor ($f_{poly} = 1$, $f_{ion} = 1$).

Figure s7. The mean square displacement profiles of TFSI in PEO/LiTFSI SPE system at different temperature of $OPLS^R$ force field with scaling factor ($f_{poly} = 0.8$, $f_{ion} = 0.55$).

5. Diffusion of Li^+ in different [EO]/[Li^+] ratio at 363K

Figure s8. The mean square displacement profiles of Li^+ in PEO/LiTFSI SPE system at $[EO]/[Li^+]$ ratio of OPLS^R force field with scaling factor ($f_{poly} = 0.8$, $f_{ion} = 0.55$).