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Abstract: The vibrational dynamics of a model polymer glass is studied by Molecular Dynamics
simulations. The focus is on the “soft” monomers with high participation to the lower-frequency
vibrational modes contributing to the thermodynamic anomalies of glasses. To better evidence their
role, the threshold to qualify monomers as soft is made severe, allowing for the use of systems with
limited size. A marked tendency of soft monomers to form quasi-local clusters involving up to
15 monomers is evidenced. Each chain contributes to a cluster up to about three monomers and a
single cluster involves a monomer belonging to about 2–3 chains. Clusters with monomers belonging
to a single chain are rare. The open and tenuous character of the clusters is revealed by their fractal
dimension d f < 2. The inertia tensor of the soft clusters evidences their strong anisotropy in shape and
remarkable linear correlation of the two largest eigenvalues. Owing to the limited size of the system,
finite-size effects, as well as dependence of the results on the adopted polymer length, cannot be
ruled out.

Keywords: polymer glasses; vibrational dynamics; soft modes; molecular-dynamics simulations

1. Introduction

Specific heat and thermal conductivity of amorphous solids exhibit anomalies with
respect to crystals [1]. Customarily, the difference is ascribed to “soft modes” (SMs),
i.e., the low-frequency portion of the vibrational density of states (vDOS) g(ω). It was
noted already 20 years ago that in glassy materials some low-frequency modes are “quasi-
localized” with only few particles effectively participating in a mode [2,3]. SMs are involved
in a well-known universal feature of amorphous solids, namely the boson peak (BP), a SM
excess over the Debye level revealed when plotting the reduced vDOS g(ω)/ω2 [1]. The BP
frequency window corresponds to wavelengths where the homogeneous picture of elastic
bodies assumed by the Debye model becomes questionable. Therefore, it is of major interest
to investigate the SM spatial extension. More recently, another source of “excess modes”
has been identified in computer simulations of model glasses [4–9]. It is composed of quasi-
localized low-frequency modes with a density obeying gloc(ω) ∼ ω4. They are observed at
frequencies significantly lower than BP and the link between the two phenomena is not
immediate [9].

Models for the BP dealt with quasi-local vibrational states due to soft anharmonic
potentials [10,11], local inversion-symmetry breaking [12], phonon-saddle transition in
the energy landscape [13], elastic heterogeneities [14–18], and broadening and shift of
the lowest van Hove singularity in the corresponding reference crystal [19] due to the
distribution of force constants [14,16,20]. However, interest in localized SMs extends beyond
a relationship to theoretical models and BP. It was suggested that SMs are correlated with
irreversible structural relaxation in the supercooled liquid state [21], and that SM spatial
distribution is correlated with structural relaxation in glassy polymers [22] as well as
rearrangements upon mechanical deformation and plasticity [23,24].
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The present paper investigates the degree of the localization of the SMs in an amor-
phous system made of a dense assembly of linear polymer chains. To this aim, monomers
are classified in terms of their softness, i.e., the degree of participation to the lower-
frequency vibrational modes and a fraction of “soft” monomers is selected by setting
a suitable (high) threshold. Clusters of soft monomers are identified and characterized in
terms of their fractal dimension, anisotropy in shape, and contributions provided by the
monomers of a single chain and multiple chains.

2. Methods and Simulation

We study by molecular dynamics (MD) simulations a dense system of coarse-grained
linear polymer chains made of 10 monomers each, resulting in a total number of monomers
N = 500. Each monomer has mass m. Non-adjacent monomers in the same chain or
monomers belonging to different chains are defined as “non-bonded” monomers. Non-
bonded monomers when placed at mutual distance r interact via a shifted Lennard–Jones
(LJ) potential:

ULJ(r) = ε

[(
σ∗

r

)12
− 2
(

σ∗

r

)6
]
+ Ucut, (1)

where σ∗ = 21/6σ is the minimum of the potential, ULJ(r = σ∗) = −ε+Ucut. The potential
is truncated at r = rc = 2.5σ for computational convenience and the constant Ucut adjusted
to ensure that ULJ(r) is continuous at r = rc with ULJ(r) = 0 for r ≥ rc. Adjacent monomers
in the same chain are bonded by the harmonic potential Ub(r) = k(r− r0)

2; in the following,
results from systems with different values of the spring stiffness, k = 500, 1000, 2500 in
units of ε/σ2, are shown. Since no torsional or bending potentials are present, the chain
exhibits high flexibility.

All the data presented in the work are expressed in reduced MD units: Length in units
of σ, temperature in units of ε/kB, where kB is the Boltzmann constant, and time in units of
τMD = (mσ2/ε)1/2. We set σ = 1, ε = 1, m = 1, and kB = 1 [25].

Simulations were carried out with the open-source Molecular-Dynamics (MD) soft-
ware LAMMPS [26,27]. The system was initially equilibrated at temperature T = 1.25 and
pressure p = 4.7, then cooled with the same pressure at T = 0.7 and finally quenched to
T = 0.001 with pressure p = 0 in a single time step equal to 0.0002. A subsequent waiting
time of 200 time units was allowed to relax the system. A total number of 154 amorphous
replicas were investigated.

3. Vibrational Modes

We consider a solid in which N particles with equal mass m are regarded as point
masses free to vibrate with small amplitude ui about their equilibrium positions
ri (i = 1, 2, . . . , N ) and let the total potential energy be denoted as U(r1, . . . , rN) [28,29].
In the harmonic approximation, the equation of motion can be written in terms of the
Hessian H of the system:

mü = −Hu (2)

where u is the displacement field, u = (u1, . . . , uN). The elements of the Hessian are defined
as second derivatives of the potential energy of the system under mechanical equilibrium:

Hαβ
ij =

∂2U
∂xi,α∂xj,β

(3)

where xi,α (α = 1, 2, 3) are three-dimensional Cartesian components of the displacements of
the i-th monomer. We can convert Equation (2) into an eigenvalue problem by performing
a time Fourier transform, which gives:

mω2
l ûl = H ûl (4)
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where ωl is the l-th eigenfrequency of the system (l = 1, . . . , 3N, with ωm > ωn if m > n)
and ûl is the corresponding eigenvector (displacement field) with normalization:

∑
i,α

ûi,α,l ûi,α,l′ = δl,l′ . (5)

The participation fraction of particle i in eigenmode ûl is defined by [21,30]:

pi(ωl) = ∑
α

|ûi,α,l |2. (6)

Equations (5) and (6) yield the following relation providing the normalization of the
participation fraction:

∑
i

pi(ωl) = 1. (7)

A useful metric of the spatial extension of the l-th mode is the participation ratio [5,6,9,22,28,30]:

P(ωl) =

[
N ∑

i
p2

i (ωl)

]−1

. (8)

If the mode is completely delocalized so that all particles contribute equally,
pi(ωl) ∼ 1/N and P(ωl) = 1. Instead, a mode localized on a single particle i0 leads
to pi(ωl) = δi,i0 and P(ωl) = 1/N. For a plane wave, P(ωl) = 2/3 [9,30].

Finally, in order to quantify the softness of a particle, we consider the overall par-
ticipation fraction of the i-th particle to the first Nm modes and define the softness field
as [22]:

φi =
1

Nm

Nm

∑
l=1

pi(ωl). (9)

We choose Nm = 30 [21]. Therefore, the i-th monomer is considered softer than the j-th
one if φi > φj.

4. Results and Discussion
4.1. Vibrational Density of States

We have evaluated the vibrational density of states g(ω):

g(ω) =
1

3N − 3

3N−3

∑
l=1

δ(ω−ωl). (10)

Figure 1 plots the vibrational density of states. Two main branches can be distin-
guished: A high-frequency one governed by the bonding interactions and a low-frequency
one governed by non-bonding LJ interactions [29,31]. It is seen that changing the stiffness
of the spring bonding adjacent monomers of the same chain, affects only—as expected—the
high-frequency branch, leaving unaffected the low-frequency one. In accordance with
this observation we note that the narrow peak appearing in between the two side lobes of
the high-frequency branch is located at the characteristic frequency of the vibration of a
dumbell with two monomers coupled by a spring, (4 k/m)1/2. To date, the low-frequency
branch of vDOS attracted most interest since it is involved in thermodynamic anomalies of
amorphous solids [1]. On the other hand, the high-frequency branch observed in polymeric
glasses [29,31] deserves wider attention. As an example, we mention the class of shape
memory polymers where the presence of hard and soft domains has been reported [32,33].
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Figure 1. Vibrational density of states (vDOS) for glassy decamers with different bond strengths.
The 30 lower frequency modes are highlighted. They cover the BP region observed for the present
model at ω ∼ 2 [31]. Curves with k = 500, 1000 are vertically shifted upwards for clarity reasons.

4.2. Localization of the States

Figure 2 plots the participation ratio P(ω), Equation (8). Like vDOS, it shows two
branches, a low-frequency one governed by non-bonding LJ interactions (ω . 30) and
a high-frequency branch governed by the bonding interactions. If the bond stiffness is
high (k & 1000), the two branches are well separated. The participation ratio of the low-
frequency branch exhibits a maximum at about 0.5, close to the one anticipated for the
plane waves. The higher localization of the high-frequency modes is explained by noting
that the bonding interactions has more local character. It is seen that decreasing the bond
strength does not affect the low-frequency branch whereas it increases the participation
ratio of the high-frequency branch. The decrease of the participation ratio at a very low
frequency (ω . 5), i.e., the higher localization of the softer modes, has been noted in
polymers glasses [34] as well as in atomic glasses [5,6,9]. It will be characterized in the
following sections.

0 20 40 60 80 100 120

10
-2

10
-1

P
(

)

    k

  500

1000

2500

Figure 2. Participation ratio of the mode with frequency ω, Equation (8), for different stiffnesses of
the spring bonding adjacent monomers of the same chain. For a plane wave, P(ω) = 2/3.

4.3. Quasi-Local Soft Regions

Figure 3 shows the distribution of the particle softness f (φ). The shape is quite similar
to other studies on polymer glasses [22]. It exhibits a nearly exponential tail at high softness.
It is seen that the softness is virtually independent of the bond strength.
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Figure 3. Distribution of the monomer softness f (φ). Inset: Exponential tail of the distribution at
large softness. A monomer is defined to be soft if φ ≥ 4.6× 10−3.

4.3.1. Evidence of Soft Clusters

A remarkable question is whether the soft particles in glasses are isolated or group
together and form clusters [2,3,22]. Henceforth a soft monomer is defined as a monomer
with φ ≥ 4.6× 10−3. The definition of the threshold is more stringent of previous studies
where the softest particles have φ = 2.7× 10−3 [21]. Figure 4 plots the radial distribution
functions of soft monomers surrounding either a central soft one, gs,s, or a central generic
one, gx,s. It is seen that soft particles tend to be surrounded by more soft particles than a
generic one, i.e., they tend to form clusters.
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, 
g x
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(r

)
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    g
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Figure 4. Radial distribution functions gx,s and gs,s. k = 500. The grey region emphasizes the
tendency of a central soft monomer to be surrounded by more soft particles than a generic one in the
first coordination shell.

It is worthwhile to characterize the soft clusters evidenced by radial distribution
functions. To this aim, by definition, two soft monomers are said to be close to each other
if they are spaced by no more than rc. We choose rc = 1.5, corresponding roughly to the
first minimum of gs,s and gx,s according to Figure 4. A soft cluster of nc members (with
nc ≥ 3) is defined as the largest group of soft monomers where each member is close to at
least another member. Usually, in a configuration one finds up to three clusters. Figure 5
visualizes a typical large soft cluster.
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Figure 5. Two views of a snapshot of a typical large soft cluster composed of 15 monomers. Bond
strength k = 103. Gyration radius Rg = 1.89, principal values of the inertia tensor I1 = 26.4,
I2 = 30.5, and I3 = 50.4. The blue color corresponds to particles with unit diameter (the approximate
monomer diameter). Two soft monomers are defined as “close”, and then belongs to the cluster,
if their surrounding lighter regions superimpose, i.e., their mutual distance r ≤ 1.5, see Figure 4.

4.3.2. Size and Shape of the Soft Clusters

In order to characterize the size and shape of the soft clusters, we consider their
inertia tensor I with respect to the center of mass and evaluate the eigenvalues I1, I2, I3
with I1 < I2 < I3. The size of the cluster is estimated by the radius of gyration which is
evaluated as:

Rg =

[
1

2 m nc
(I1 + I2 + I3)

]1/2
. (11)

A transparent interpretation of the radius of gyration is given by the usual definition:

Rg =

[
1
nc

∑
i

(
r(CM)

i

)2
]1/2

(12)

where r(CM)
i is the distance of the i-th particle of the soft cluster from the centre of mass

of the latter. Figure 6 (left) plots the distribution of the radius of gyration. It is roughly as
large as about one diameter. We are interested in the fractal dimension of the clusters d f
drawn by the radius of gyration [35]. Figure 6 (right) presents the correlation plot between
the number of members of a cluster nc and the gyration radius averaged over all the
clusters with the same number of members

〈
Rg
〉

nc
. The fractal dimension d f is drawn by

best-fitting the data with the power-law:

nc = A
[〈

Rg
〉

nc

]d f
(13)

where A is a constant. We follow two different approaches for the best-fit procedure. In one
case, the least-squares are weighted with the number of clusters involved in the average〈

Rg
〉

nc
. This leads to d f = 1.55± 0.14. On the other hand, with no weight, the fit procedure

yields d′f = 1.7 ± 0.3. The fractal dimension points to a soft cluster, which is open and
tenuous [35]. Indeed, the largest identified soft cluster exhibits a loose structure, see Figure 5.
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Figure 6. (Left) distribution of the radius of gyration of soft clusters. The dashed line is a guide for the
eyes. (Right) correlation plot between the number of members of a cluster nc and the gyration radius
averaged over all the clusters with the same number of members,

〈
Rg
〉

nc
. The dashed line is the best-

fit curve with the power-law, Equation (13), by adopting a linear least-squares procedure with weights
proportional to the number of clusters involved in each average to draw

〈
Rg
〉

nc
. The resulting fractal

dimension is d f = 1.55± 0.14. If no weight is used, one finds d′f = 1.7± 0.3.

To provide insight into the shape of the cluster we present in Figure 7 the correlation
plots between the two largest eigenvalues. Strikingly, we find an excellent linear correlation
over more than one decade. Poorer correlation is found between the largest and the smallest
eigenvalues, Figure 7 (inset). The analysis suggests that the soft clusters are anisotropic
in shape.
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Figure 7. Correlation between the two largest eigenvalues of the inertia tensor. The dashed curve
is the best-fit with the straight line I3 = α× I2, α = 1.43± 0.03 (Pearson correlation coefficient
r = 0.97). Inset: Correlation plot of the largest and the smallest eigenvalues of the inertia tensor.

4.3.3. Monomer Number and Chain Partners of the Soft Clusters

Figure 8 shows the distribution of the number of soft monomers forming a soft cluster.
It is seen that the bond strength has only a marginal impact on the cluster population.
However, there are hints that a stiffer spring favors the formation of soft small clusters.

Finally, Figure 9 analyzes the relevance of the single chain contribution to a given
cluster and the role of different chains in the formation of a single cluster. Even in
this case the dependence on the strength of the bonding interaction is not apparent.
Figure 9 (left) shows that about up to three soft monomers of a given cluster belong-
ing to the same chain. Interestingly, Figure 9 (right) evidences that a single cluster is
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rarely populated by monomers of a single chain, being the most frequent occurrence the
involvement of 2–3 different chains.

Figure 8. Distribution of the number of soft monomers belonging to a soft cluster.

Figure 9. (Left) probability of having n monomers belonging to a given chain in a soft cluster.
(Right) probability of having monomers coming from m different chains in a given soft cluster.

5. Conclusions

Amorphous solids exhibit thermodynamic anomalies rooted in the low-frequency
portion of vDOS where SMs are found. The paper reported on a MD study of the localiza-
tion and the shape of SMs in a model polymer glass made of linear chains. Three different
variants of the model are considered, having different bonding strengths between adjacent
monomers of the same chain. Monomers are classified in terms of softness, i.e., their
participation to the 30 vibrational modes with lowest frequency. The focus is on the frac-
tion of monomers with higher softness with respect to previous studies, thus resulting in
smaller collections of particles, justifting the use of limited system sizes. Evidence that
soft monomers manifest clear tendency to group together in clusters was collected by
investigating their radial distribution function, the gyration radius of the clusters as well
as their inertia tensor. The study offers two major results, namely the open and tenuous
character of the soft clusters which exhibit a fractal dimension d f < 2 and their anisotropy
in shape. A remarkable linear correlation of the two largest eigenvalues of the inertia tensor
was observed. Owing to the limited size of the system under study, finite-size effects,
as well as dependence of the results on the adopted polymer length, cannot be ruled out.
They will be explored in detail in future studies.



Polymers 2021, 13, 1336 9 of 10

Author Contributions: Conceptualization, C.A.M., F.P., A.T., and D.L.; methodology, validation,
formal analysis, investigation, C.A.M., F.P., A.T., and D.L.; software, C.A.M., A.T., and F.P.; writing–
review and editing, C.A.M., F.P., A.T., and D.L.; supervision, F.P. and D.L.; funding acquisition, D.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by University of Pisa, grant number PRA-2018-34 (“ANISE”).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: A generous grant of computing time from Green Data Center of the University
of Pisa, and Dell EMCr Italia is also gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BP Boson peak
vDOS Vibrational density of states
LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator
LJ Lennard-Jones
MD Molecular-dynamics
SM Soft mode
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