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Abstract: The temperature dependence of the dielectric permittivity and polarization hysteresis
loops of P(VDF-TrFE-CFE) polymer films with different compositions are studied. Among them, the
three compositions, 51.3/48.7/6.2, 59.8/40.2/7.3, and 70/30/8.1, are characterized for the first time.
Relaxor behavior is confirmed for all studied samples. Increasing the CFE content results in lowering
the freezing temperature and stabilizes the ergodic relaxor state. The observed double hysteresis
loops are related to the field-induced transition to a ferroelectric state. The critical field corresponding
to this transition varies with the composition and temperature; it becomes larger for temperatures
far from the freezing temperature. The energy storage performance is evaluated from the analysis
of unipolar polarization hysteresis loops. P(VDF-TrFE-CFE) 59.8/40.2/7.3 shows the largest energy
density of about 5 J·cm−3 (at the field of 200 MV·m−1) and a charge–discharge efficiency of 63%,
which iscomparable with the best literature data for the neat terpolymers.

Keywords: polymers; relaxors; energy storage; P(VDF-TrFE-CFE)

1. Introduction

Alternative technologies in the energy generation sector, miniaturization in the elec-
tronics industry, and electric mobility have opened up many doors for advancements
in the field of energy storage [1]. Due to the high dielectric strength, various dielectric
polymers, such as polypropylene, polycarbonate, and polyethylene terephthalate, were
commercially used for decades in thin film and thick film capacitors, all showing a linear
dielectric response and thus a plain capacitive behavior [2–4]. For a non-linear or hysteretic
material, the stored energy density in a polarization–electric field graph is given by the
area between the charging branch of a dielectric displacement—electric field hysteresis loop
and the dielectric displacement axis (Figure 1).

Ustored =
∫ Dmax

0

→
E (
→
D)·d

→
D, (1)

with the dielectric displacement given by the polarization
→
P of the material and the

dielectric permittivity of free space
→
D = ε0·

→
E +

→
P(
→
E).
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storage applications [5–8]. Ideally, all this stored energy should berecoverable, which en-
tails that a remanent contribution to polarization should be small. In ferroelectric poly-
mers, saturation and remanent polarization often do not differ much, which is unfavora-
ble for the recoverable energy storage density which is defined by the area between the 
discharging part of the D–E hysteresis loop and the dielectric displacement axis. 𝑈 =  𝐸 (�⃗�) · 𝑑�⃗� (2)

Therefore, materials with a high polarizability and a slim hysteresis loop are more 
suited for energy storage applications. Such a combination of properties is typical for re-
laxor ferroelectrics or shortly speaking relaxors [9]. 

 
Figure 1. A unipolar polarization hysteresis loop. The green area corresponds to the recoverable 
energy density. The hatched area yields losses in the storage process. 

In relaxors, the transition into a long-range ordered ferroelectric state is hindered by 
structural or charge disorder.Therefore, polarization is correlated at the local scale within 
polar nanoregions (PNRs) having asize of a few nanometers [9]. At high temperatures, the 
dipole moments of these PNRs are dynamic and are easily rotated by an electric field, 
facilitatinga large polarizability of relaxors. When the field is removed, the PNRs return 
to a disordered state, resulting in a small remanent polarization. To distinguish from the 
paraelectric state, this state is also called the ergodic relaxor state. 

In order to achieve relaxor behavior in P(VDF-TrFE) co-polymers, various tech-
niques, such as electron beam and γ-beam irradiation, mechanical stretching, and defect 
modification were implemented. By defect modification, another bulky monomer such as 
chlorofluoroethylene (CFE), hexafluoropropylene (HFP), or chlorotrifluoroethylene 
(CTFE) is incorporated into P(VDF-TrFE) [10–13]. It was reported that terpolymers 
P(VDF-TrFE-CFE) with the VDF/TrFE molar ratio below 75/25 and the molar amount of 
CFE > 4 mol% exhibit relaxor behavior with a broad and frequency-dependent peakof the 
dielectric permittivity [10,11,14]. For P(VDF-TrFE-CFE), both single hysteresis loops 
(SHL) [15] [16], which are typical for relaxors, and double hysteresis loops (DHL) [12] 
were reported. The DHL behavior was attributed to a field-induced phase transition. The 
double hysteresis behavior of the polymer relaxors is not well-understood yet [17]. It was 
shown that both SHL and DHL behavior can be observed in the same polymer composi-
tion depending on the synthesis conditions [13]. 

Small remanent polarization and slim hysteresis make P(VDFx-TrFE1-x-CFEy) terpol-
ymers attractive for energy storage applications [18,19]. A large electrocaloric effect was 
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Figure 1. A unipolar polarization hysteresis loop. The green area corresponds to the recoverable
energy density. The hatched area yields losses in the storage process.

Therefore, polymers exhibiting high polarizability such as ferroelectric polyvinylidene
fluoride P(VDF) and its copolymers with trifluoroethylene (TrFE), hexafluoropropylene
(HFP), chlorofluoroethylene (CFE), and chlorotrifluoroethylene (CTFE), as well as blends
between them or with other linear dielectric polymers, were studied for energy storage
applications [5–8]. Ideally, all this stored energy should berecoverable, which entails
that a remanent contribution to polarization should be small. In ferroelectric polymers,
saturation and remanent polarization often do not differ much, which is unfavorable for the
recoverable energy storage density which is defined by the area between the discharging
part of the D–E hysteresis loop and the dielectric displacement axis.

Udischarged =
∫ Dmax

Drem

→
E (
→
D)·d

→
D (2)

Therefore, materials with a high polarizability and a slim hysteresis loop are more
suited for energy storage applications. Such a combination of properties is typical for
relaxor ferroelectrics or shortly speaking relaxors [9].

In relaxors, the transition into a long-range ordered ferroelectric state is hindered by
structural or charge disorder.Therefore, polarization is correlated at the local scale within
polar nanoregions (PNRs) having asize of a few nanometers [9]. At high temperatures,
the dipole moments of these PNRs are dynamic and are easily rotated by an electric field,
facilitatinga large polarizability of relaxors. When the field is removed, the PNRs return
to a disordered state, resulting in a small remanent polarization. To distinguish from the
paraelectric state, this state is also called the ergodic relaxor state.

In order to achieve relaxor behavior in P(VDF-TrFE) co-polymers, various techniques,
such as electron beam and γ-beam irradiation, mechanical stretching, and defect mod-
ification were implemented. By defect modification, another bulky monomer such as
chlorofluoroethylene (CFE), hexafluoropropylene (HFP), or chlorotrifluoroethylene (CTFE)
is incorporated into P(VDF-TrFE) [10–13]. It was reported that terpolymers P(VDF-TrFE-
CFE) with the VDF/TrFE molar ratio below 75/25 and the molar amount of CFE > 4 mol%
exhibit relaxor behavior with a broad and frequency-dependent peakof the dielectric
permittivity [10,11,14]. For P(VDF-TrFE-CFE), both single hysteresis loops (SHL) [15,16],
which are typical for relaxors, and double hysteresis loops (DHL) [12] were reported. The
DHL behavior was attributed to a field-induced phase transition. The double hysteresis
behavior of the polymer relaxors is not well-understood yet [17]. It was shown that both
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SHL and DHL behavior can be observed in the same polymer composition depending on
the synthesis conditions [13].

Small remanent polarization and slim hysteresis make P(VDFx-TrFE1-x-CFEy) terpoly-
mers attractive for energy storage applications [18,19]. A large electrocaloric effect was also
recently reported in these materials [20,21]. However, among the many possible composi-
tions, only a few have been studied so far. An investigation of dielectric and ferroelectric
behavior in a broader concentration range should help to understand the mechanism of the
formation of the relaxor state and the relationship between the property and composition
in these polymers.

In the present work, we have studied temperature dependence of dielectric permittiv-
ity and polarization of five different P(VDFx-TrFE1-x-CFEy) compositions (Figure S1). To
our knowledge, for the three compositions: 51.3/48.7/6.2, 59.8/40.2/7.3, and 70/30/8.1,
such studies are reported for the first time. The relaxor behavior of the terpolymers is
analyzed. The effect of the CFE content on the relaxor behaviour, the shape of the hysteresis
loops, and the energy storage capability of the studied compositions is discussed.

2. Materials and Methods

The terpolymer powders used in this study, which were synthesized via suspension
polymerization [13], were purchased from Piezotech, Pierre-Bénite, France. The studied
compositions are listed in Table 1.

Table 1. The molar content of each component in the studied P(VDFx-TrFE1-x-CFEy) compositions. It
is important to note that the molar contents are mentioned in a way that the amount of VDF and
TrFE adds up to 100.

VDF (mol. %) TrFE (mol. %) CFE (mol. %)

51.3 48.7 6.2
63.8 36.2 7.2
59.8 40.2 7.3
70 30 8.1
68 32 8.5

The polymer films were prepared by the drop-casting method. The polymer powder
was dissolved in Dimethylformamide (DMF; VWR Chemicals, Radnor, PA, USA) and
stirred overnight at room temperature. The concentration of the solution was set to 20 g L−1.
The polymer solution was filtered and drop-coated onto a glass substrate (Corning Inc.
Corning, New York, NY, USA). The coating was dried at 60 ◦C for 20 h, followed by
annealing under vacuum (260 mbar) at 100 ◦C for 8 h and slowly cooled down to room
temperature. The film with the substrate was then immersed in distilled water for some
time, peeled off, and dried using a fiberless tissue. The final thickness of the freestanding
films was around 20 µm.

To perform electric measurements, silver electrodes were deposited onto the films
through sputtering using a sputter coater 208 HR (Cressington Scientific Instruments,
Watford, UK). The approximate thickness of the sputtered electrodes was 50 nm. The
dielectric permittivity was measured as a function of temperature in a frequency range
103–106 Hz using a Solartron 1260 impedance analyzer with a dielectric interface of 1296
(Solartron Analytical, Farnborough, UK). The measurements were performed upon heating,
as well as upon cooling within a temperature range of 270 K to 370 K, and the data points
were collected every 2 K. The polarization hysteresis curves were measured using a TF
Analyzer 2000 (aixACCT, Aachen, Germany) at temperatures between 298 and 323 K.
The applied voltage was a triangular wave function with a frequency of 10 Hz. The
thermophysical properties were investigated through differential scanning calorimetry
measurements that were performed using a DSC-204 (Netzsch, Selb, Germany) setup.
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3. Results
3.1. Thermal Properties

The impact of compositional variation on the thermal properties (melting and recrys-
tallization temperatures) of the polymer powder was studied. Aluminum crucibles were
used and 10 mg of polymer powder was encapsulated in it. The curves were measured with
a heating/cooling rate of 10 K min−1. The melting and recrystallization temperatures of all
samples were determined from the positions of the endothermic and exothermic peaks on
the thermograms (Figure S2), and are enlisted in Table 2. The melting temperature of the
studied compositions varies from 394 K to 405 K, while the recrystallization temperature
lies between 368 K and 382 K.

Table 2. The melting and recrystallization temperatures of the studied compositions estimated from
DSC measurements.

P(VDFx-TrFE1-x-CFEy)
(mol. %) Melting Temperature (K) Recrystallization Temperature (K)

51.3/48.7/6.2 404 382
63.8/36.2/7.2 394 368
59.8/40.2/7.3 405 379

70/30/8.1 399 370
68/32/8.5 398 372

3.2. Relaxor Properties

Figure 2 shows the temperature dependence of the relative dielectric permittivity and
dielectric loss tangent of the samples under study, measured at frequencies from 1 kHz to
1 MHz upon cooling. All samples manifest broad peaks in the dielectric permittivity and
loss tangent. With increasing frequency, the positions of these peaks shift towards higher
temperatures, the values of the dielectric permittivity become smaller, while the dielectric
loss tangent increases. Such a behavior is a distinctive feature of relaxor materials [9]. For
the same frequency, the dielectric permittivity peak occurs at a lower temperature for the
composition with a higher CFE content. The maximal relative dielectric permittivity lies in
the range of 45 to 90, which is in good agreement with the previous reports [22].

The permittivity-temperature curves were further analyzed to characterize the relaxor
behavior in detail. In order to estimate the degree of the relaxor behavior, the modified
Curie-Weiss law is often used to approximate the temperature dependence of ε(T) above
Tm (Equation (3)) [23].

εm

ε(T)
− 1 =

(
T − Tm

2σ

)γ

(3)

Here, εm is the maximal value of the dielectric permittivity, Tm is the temperature at
the maximum permittivity, the parameter σ describes the broadening of the dielectric peak,
and the exponent γ reflects the degree of the relaxor behavior. For classical ferroelectric
materials, the value of γ is equal to 1; while for the canonical relaxors, its value approaches
2 [24]. An example of the fit of ε(T) by Equation (3) for the P(VDF-TrFE-CFE) 68/32/8.5
film is shown in Figure 3b. The fitting curve matches the experimental data well. The best
fit values for γ for the studied polymers lie between 1.5 and 1.7 (Table 3), which confirms
the strong relaxor behavior.
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Figure 2. Temperature dependence of the dielectric permittivity (a–e) and dielectric loss tangent
(f–j) of P(VDFx-TrFE1-x-CFEy) films measured at frequencies from 1 kHz to 1 MHz upon cooling.

Table 3. Parameters describing the relaxor behavior of the studied the P(VDFx-TrFE1-x-CFEy) films.

P(VDFx-TrFE1-x-CFEy)
(mol. %)

Degree of
Relaxor

Behavior, γ

Freezing
Temperature, Tf (K)

Fitting Parameters for the
Vogel-Fulcher Equation

ln(f 0) Ea (meV)

51.3/48.7/6.2 1.61 306 ± 2 15.8 ± 0.9 6 ± 2
63.8/36.2/7.2 1.52 285 ± 4 16.3 ± 0.8 14 ± 4
59.8/40.2/7.3 1.64 286 ± 3 17.3 ± 0.7 16 ± 4

70/30/8.1 1.50 280 ± 2 17.5 ± 0.5 21 ± 3
68/32/8.5 1.55 278 ± 2 17.6 ± 0.5 20 ± 3
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Figure 3. Examples of (a) the Vogel-Fulcher and (b) the modified Curie-Weiss law fitting for the
P(VDF-TrFE-CFE) 68/32/8.5 film. (c) The freezing temperatures, Tf, of the studied samples.

Unlike ferroelectric materials, the relaxors do not undergo a phase transition into the
ferroelectric state at the Curie temperature. Instead, the slowing-down of the PNRs dynam-
ics results in a transition into a glassy-like state with short-range correlated polarization
(non-ergodic relaxor state) at the freezing temperature, Tf [9]. The freezing temperature
can be determined by using the Vogel-Fulcher equation (Equation (4)) [25].

f = f0 × exp

(
Ea

k(Tm( f )− Tf )

)
(4)

Here, f is the frequency of the applied electric field, Tm(f) is the corresponding tem-
perature of the maximum of the dielectric permittivity, Tf is the freezing temperature,
Ea is the activation energy, f 0 is the attempt frequency, and k is the Boltzmann constant.
Figure 3a shows an example of the Vogel-Fulcher fit of Tm(f) for the P(VDF-TrFE-CFE)
68/32/8.5 film. The best-fitting parameters for the studied samples are given in Table 3.
Figure 3c illustrates the variation in the freezing temperature for the different compositions.
One can see that with an increase in the CFE content, the freezing temperature decreases,
while the activation energy increases. In general, it can be concluded that the increase in
the CFE content expands the range of the ergodic relaxor state towards lower temperatures.

3.3. Polarization Hysteresis Behavior

The polarization hysteresis loops were measured upon heating as well as cooling.
The results obtained during the cooling cycle are shown in Figure 4. The 59.8/40.2/7.3
terpolymer exhibits slim polarization hysteresis loops typical for relaxors (Figure 4b). A
particular feature of other compositions is a jump of the polarization above a certain electric
field value, which results in the DHL shape (Figure 4). Such DHL-shape was already
reported for some P(VDF-TrFE-CFE) polymers, e.g., for 59.2/33.6/7.2 (63.8/36.2/7.8 in our
notation). The DHL was explained in terms of a reversible, electric field-induced relaxor to
ferroelectric phase transition [12].
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Figure 4. Polarization hysteresis loops of the P(VDF-TrFE-CFE) 51.3/48.7/6.2 (a), 59.8/40.2/7.3 (b),
68/32/8.5 (c), 63.8/36.2/7.2 (d), and 70/30/8.1 (e) films measured as a function of temperature at
10 Hz (triangular wave) on cooling.

We have taken a detailed look at the polarization curves shown in Figure 4 to evaluate
the critical fields corresponding to the transition to the ferroelectric state, E1, and back to
the relaxor state, E2. These fields were estimated from the maxima of the field derivative of
polarization. Figure 5 shows the temperature dependences of E1 and E2 for the studied
compositions. It can be observed that the P(VDF-TrFE-CFE) 63.8/36.2/7.2 (Figure 5b)
and P(VDF-TrFE-CFE) 68/32/8.5 (Figure 5d) samples have the largest critical field values,
(E1 = 80–90 MV·m−1) at room temperature; while for the P(VDF-TrFE-CFE) 51.3/48.7/6.2
(Figure 5a) the transition to the ferroelectric state occurs already at 40 MV·m−1. For all the
studied polymers, both E1 and E2 increase with temperature except for P(VDF-TrFE-CFE)
51.3/48.7/6.2, where E1 goes slightly down upon heating.

When we refer to the field-induced relaxor–ferroelectric transition in such inorganic
relaxors as (Pb,La)(Zr,Ti)O3 [26] or Na0.5Bi0.5TiO3-BaTiO3, [27] it can be seen that the critical
field value decreases with temperature in the non-ergodic relaxor state, but increases with
temperature in the ergodic relaxor state. The non-ergodic relaxor state is the state below
the freezing temperature, where the interaction between PNRs blocks their reorientation
and related dynamics. According to the estimations from the dielectric data, the freezing
temperature of the P(VDF-TrFE-CFE) 51.3/48.7/6.2 sample lies at 306 K, i.e., the range
where DHL is observed is around the transition from the non-ergodic to the ergodic relaxor
state. On the other hand, other compositions are in the ergodic relaxor state far from the
freezing temperature and we observe a growing critical field within a temperature range of
298 K to 313 K, while above 313 K, a single hysteresis loop (SHL) is observed.
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Figure 5. Temperature dependences of the critical fields, E1 and E2, corresponding to the field-
induced transitions between relaxor and ferroelectric states for the P(VDF-TrFE-CFE) 51.3/48.7/6.2 (a),
63.8/36.2/7.2 (b), 70/30/8.1 (c), and 68/32/8.5 (d) polymer films.

Another remarkable feature of the polarization hysteresis loops in all studied samples
is the broadening of the hysteresis loops with temperature, which leads to an increase in the
measured values of the remnant polarization as well as the coercive field. This broadening
is related to the contribution of leakage current [28], which increases with temperature,
as can also be seen in the dielectric loss curves at low-frequency (1 kHz) in Figure 2. In
the case of polymers, this leakage current can be related to the field-induced transport of
electronic and ionic charges. In some publications, this increase in the extrinsic polarization
was considered as a signature of a negative electrocaloric effect (ECE) [29–31].

The ECE, which is the change in the temperature/entropy of a dielectric material
under an adiabatically/isothermally applied electric field, has gained popularity as an
environmentally friendly technology for the development of compact solid-state refrigera-
tion and air-conditioning systems [32–35]. Since direct electrocaloric measurements need
particular devices and modifications, the indirect method is more widely used [32,36,37].
The indirect method is based on the Maxwell relation (∂S/∂E)T = (∂P/∂T)E. In this case, the
isofield temperature dependences of the polarization obtained from the hysteresis loops
are used to evaluate the electrocaloric change of the temperature

∆TEC = −
∫ E2

E1

(T/CE)(∂P/∂T)EdE (5)

From this equation, it is obvious that a positive temperature derivative of polarization
implies a negative electrocaloric effect, as was reported by some groups [29–31]. While
the direct electrocaloric measurements of similar compositions only show a positive elec-
trocaloric effect [38,39]. Thus, the leakage-related extrinsic contribution to the polarization
may lead to erroneous evaluation of the electrocaloric effect in ferroelectric and relaxor
polymers [40].

As we mentioned already, the relaxor behavior in P(VDF-TrFE-CFE) is promoted
by the incorporation of bulky CFE monomers, which results in an increasing distance
between the P(VDF-TrFE-CFE) chains. This weakens the cooperative polarization of the
P(VDF-TrFE) dipoles and reduces the size of the ferroelectric domains to the nanoscale.
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The structure of relaxor P(VDF-TrFE-CFE) contains more or less random TmG (m ≤ 4)
sequences, and the FE structure contains relatively long Tn (n > 4) sequences (T and G
represent the trans and gauche conformations, respectively) [5].

The CFE monomers possess their own dipole moment and can serve as dipole defect-
pinning centers, similar to dipole defects built by oxygen vacancies and acceptor impurities
in perovskite ferroelectrics [41]. When the magnitude of the applied electric field is large
enough, the dipoles of CFE may rotate, promoting the switching of the surrounding dipoles
and the formation of a ferroelectric state with large domains [5]. As the field is reduced and
eventually removed, these FE domains transform back to the relaxor phase. In the ergodic
relaxor state, the PNRs are relatively free to rotate and can be easily aligned. Meanwhile,
the thermal agitation breaks this alignment and therefore the critical field, E1, increases
upon heating. When the sample is in the non-ergodic relaxor state, the frozen PNRs are
relatively difficult to be reoriented, but they become less blocked on approaching the
freezing temperature; therefore, we observe that the critical field decreases upon heating
for P(VDF-TrFE-CFE) 51.3/48.7/6.2. The disappearance of the DHL with temperature can
be attributed to the fact that the polymer chains become mobile with temperature and the
pinning effect due to the presence of CFE in the polymer chain becomes less pronounced.
However, this process is also obscured by the broadening of the hysteresis loops due to the
increased conductivity.

3.4. Energy Storage Properties

The stored and recoverable electrical energy densities are given by Equations (1) and (2).
The stored energy cannot be fully recovered due to the leakage current and the hysteresis
losses (Uloss). The energy storage efficiency, η, is defined as the ratio between the discharged
and stored energy of the capacitor (Equation (6)) [42,43].

η = Udischarged/Ustored = Udischarged/(Udischarged + Uloss) (6)

All these characteristics can be deduced from the unipolar polarization hysteresis
curves recorded for a different maximum electric field (Figure S3).

Figure 6 shows the maximum field dependences of the discharged energy density
and energy storage efficiency calculated at room temperature. All compositions show a
linear increase in the discharged energy density with the applied electric field. However,
their energy storage efficiency decreases with the increasing field. There is a tradeoff
between the discharged energy density and the energy storage efficiency due to the hys-
teresis losses. As is clear from Figure 6, the P(VDF-TrFE-CFE) = 59.8/40.2/7.3 sample
outperforms the other compositions in terms of the discharged energy density as well as
the energy storage efficiency. It shows the highest energy density that reaches η = 5 J·cm−3

at a field of 200 MV·m−1, while retaining an efficiency of around 63%. The P(VDF-TrFE-
CFE) 63.8/36.2/7.2 and 68/32/8.5 films show the comparable discharged energy density
at a field of 100 MV·m−1, but have a lower energy storage efficiency due to the DHL
behavior. In Table 4, the discharged energy density of different compositions at a field
of 100 MV·m−1 are compared with data reported in the literature. One can see that the
discharged energy density of the polymers studied in this work is consistent with the
previously reported values.
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Table 4. Comparison of the discharged energy density for different P(VDF-TrFE-CFE) compositions.

P(VDFx-TrFE1-x-CFEy) Electric Field
(MV·m−1)

Discharged Energy Density
(Udischarged) (J·cm−3) Reference

51.3/48.6/6.2 100 1.2 This work
63.8/36.2/7.2 100 2 This work

64/36/7.2 100 1.8 [44]
70/30/8.1 100 1.38 This work
70/30/8.1 100 2 [44]
63/37/8.1 100 1.7 [45]
68/32/8.5 100 2 This work

59.8/40.2/7.3 100 2 This work

4. Conclusions

Dielectric and polarization properties of P(VDF-TrFE-CFE) polymers with different
compositions are compared. All samples show a similar degree of relaxor behavior. In-
creasing the CFE content shifts the freezing temperature down and stabilizes the ergodic
relaxor state at room temperature. The application of a strong enough electric field induces
a transition into a ferroelectric state, as manifested in double hysteresis loops. The value
of the critical electric field depends on the proximity to the freezing temperature. Correct
indirect measurements of the electrocaloric effect are impossible in the studied materials
due to the charge leakage extrinsic contribution to polarization enhanced at higher temper-
atures. Direct electrocaloric measurements are necessary. In particular, it will be interesting
to study a relation between the field-induced transition to the ferroelectric state and the
electrocaloric effect at the corresponding field values.

The characteristics of the polymer films for energy storage application were tested.
A maximum energy density of 5 J·cm−3 at 63% charge–discharge efficiency and a field
of 200 MV·m−1 is observed for the new composition P(VDF-TrFE-CFE) 59.8/40.2/7.3. To
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further improve these characteristics, composites with inorganic fillers can be developed
based on these terpolymers. Such studies are now in progress.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13081343/s1, Figure S1: The ternary compositional diagram of P(VDF-TrFE-CFE)
indicating the studied compositions, Figure S2: Heat flow curves measured by DSC upon heating
(above) and cooling (below), where the peaks correspond to melting and recrystallization, respectively,
Figure S3: Unipolar polarization hysteresis curves measured as a function of voltage at 10 Hz and
room temperature.
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